Biodegradation

, Volume 16, Issue 5, pp 475–484 | Cite as

Development of a catabolically significant genetic probe for polycyclic aromatic hydrocarbon-degrading Mycobacteria in soil

  • Kevin Hall
  • Charles D. Miller
  • Darwin L. Sorensen
  • Anne J. Anderson
  • Ronald C. Sims
Article

Abstract

A gene probe for the detection of polycyclic aromatic hydrocarbon (PAH) induced nidB and nidA dioxygenase genes has been designed from Mycobacteria JLS, KMS, and MCS. The probe detects a catabolic gene involved in the initial steps of PAH biodegradation in mycobacteria. The gene probe is comprised of three PCR primer sets designed to detect the genes that code for two subunits of the PAH induced dioxygenase enzyme within PAH-degrading mycobacteria. The probe was built by combining three primer sets with a DNA extraction procedure that was designed to lyse the gram-positive mycobacteria cells while in the soil matrix and remove PCR inhibitors. The probe was tested on PAH contaminated soils undergoing bioremediation through landfarming and uncontaminated soils from the same site. The PAH gene probe results demonstrate that the dioxygenase genes can be detected in soils. Sequencing the nidA and nidBPCR products verified that the genes were detected in soil. Comparisons of the sequences obtained from the soil probe to seven known nid gene sequences from various PAH-degrading mycobacteria showed between 97 and 99% nucleotide matches with the nidB gene and 95 and 99% matches with the nidA gene.

Keywords

biodegradation bioremediation dioxygenase gene probe mycobacteria polycyclic aromatic hydrocarbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakermans, C, Madsen, E 2001Detection in coal tar waste-contaminated groundwater of mRNA transcripts related to naphthalene dioxygenase by fluorescent in situ hybridization with tyramide signal amplificationJ. Microbiol. Methods507584Google Scholar
  2. Bastiaens, L, Springael, D, Wattiau, P, Harms, H, Wachter, R, Verachtert, H, Diels, L 2000Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriersAppl. Environ. Microbiol.6618341843Google Scholar
  3. Beller, HR, Kane, SR, Legler, TC, Alvarez, PJ 2002A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic geneEnviron. Sci. Technol.3639773984Google Scholar
  4. Brezna, B, Kahn, AA, Cerneglia, CE 2003Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium sppFEMS Microbiol. Let.223177183Google Scholar
  5. Cerniglia, CE 1984Microbial metabolism of polycyclic aromatic hydrocarbonsAdv. Appl. Microbiol.303171CrossRefGoogle Scholar
  6. Cerniglia, CE, Sutherland, JB, Crow, SA 1992a

    Fungal metabolism of aromatic hydrocarbons

    Winkelmann, GWeinheim,  eds. Microbial Degradation of Natural ProductsVCH PressWeinheim, Germany193217
    Google Scholar
  7. Cerniglia, CE 1992bBiodegradation of polycyclic aromatic hydrocarbonsBiodegradation3351368Google Scholar
  8. Cerniglia, CE 1993Biodegradation of polycyclic aromatic hydrocarbonsCurrent Opin. Biotechnol.4331338Google Scholar
  9. Cheung, P, Kinkle, BK 2001Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soilsAppl. Environ. Microbiol.6722222229Google Scholar
  10. Churchill, SA, Harper, JP, Churchill, PF 1999Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbonsAppl. Environ. Microbiol.65549552Google Scholar
  11. Epicentre, 2003, Soil master DNA extraction kit. Epicentre, Madison, WI Available online at http://www.epicentre.com/Google Scholar
  12. Dean-Ross, D, Cerneglia, CE 1996Degradation of pyrene by Mycobacterium flavescensAppl. Microbiol. Biotechnol.46307312Google Scholar
  13. Ginn, JS, William, J, Doucette, WJ, Sims, RC 1996Aerobic biotransformation of polycyclic aromatic hydrocarbons and associated metabolites in soilPolycyclic Aromat. Compd.114355CrossRefGoogle Scholar
  14. Heitkamp, MA, Franklin, W, Cerniglia, CE 1988Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacteriumAppl. Environ. Microbiol.5425492555Google Scholar
  15. Holman, HYN, Nieman, K, Sorensen, DL, Miller, CD, Martin, MC, Borch, T, Mckinney, WR, Sims, RC 2002Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studiesEnviron. Sci. Technol.3612761280Google Scholar
  16. Hristova, KR, Lutenegger, CM, Scow, KM 2001Detection and quantification of methyl tert-butyl ether-degrading strain PM1 by real-time TaqMan PCRAppl. Environ. Microbiol.6751545160Google Scholar
  17. Hurst, CJ, Sims, RC, Sims, JL, Sorensen, DL, McLean, JE, Huling, S 1996Polycyclic aromatic hydrocarbon biodegradation as a function of oxygen tension in contaminated soilJ. Haz. Mat.51193208Google Scholar
  18. Khan, AA, Wang, R, Cao, W, Doerge, DR, Wennerstrom, D, Cerneglia, CE 2001Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium nspstrain PYR-1. Appl. Environ. Microbiol.6735773585Google Scholar
  19. Khan, AA, Kim, SJ, Paine, DD, Cerniglia, CE 2002Classification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Mycobacterium sp strain PYR-1, as Mycobacterium vanbaleenii sp. novInt. J. Syst. Evol. Microbiol.5219972002Google Scholar
  20. Loffler, FE, Sun, Q, Li, J, Tiedje, JM 200016S rRNA Gene-Based Detection of Tetrachloroethene-Dechlorinating Desulfuromonas and Dehalococcoides SpeciesAppl. Environ. Microbiol.6613691374Google Scholar
  21. Madsen, EL 1991Determining in situ biodegradationEnviron. Sci. Tech.2516621673Google Scholar
  22. Marcell, LM, Beattie, GA 2002Effect of leaf surface waxes on leaf colonization by Pantoea agglomerans and Clavibacter michiganensisMol. Plant Microbe.1512361244Google Scholar
  23. McLellan, SL, Warshawsky, D, Shann, JR 2002The effect of polycyclic aromatic hydrocarbons on the degradation of benzo[a]pyrene by Mycobacterium spstrain RJGII-135. Environ. Toxicol. Chem.21253259Google Scholar
  24. Miller, CD, Hall, K, Liang, YN, Nieman, K, Sorensen, D, Anderson, AJ, Sims, RC 2004Isolation and characterization of polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates from soilMicrobiol. Ecol.48230238Google Scholar
  25. Moser, R, Stahl, U 2000Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteriaAppl. Microbiol. Biotech.55609618Google Scholar
  26. Muyzer, G, de, Waal EC, Uitterlinden, AG 1993Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNAAppl. Environ. Microbiol.59695700Google Scholar
  27. Council, National Research 1993In Situ Bioremediation: When Does it Work? National Academy PressWashingtonDCGoogle Scholar
  28. Olsen, GJ, Lane, DJ, Giovannoni, SJ, Pace, NR, Stahl, D 1986Annu.Rev. Microbiol.40337365Google Scholar
  29. Schneider, J, Grosser, R, Jayasimhulu, K, Xue, W, Warshawsky, D 1996Degradation of pyrene, benzo [a] anthracene and benzo [a] pyrene by a Mycobacterium sp strain RJGII-135, isolated from a former coal gasification siteAppl. Environ. Microbiol.621319Google Scholar
  30. Smalla, K, Cresswell, N, Mendoca-Hagler, LC, Wolters, A, Elsas, JD 1993Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplificationJ. Appl. Bacteriol.747885Google Scholar
  31. Stapleton, RD, Steven, R 1998Nucleic acid analytical approaches in bioremediation: site assessment and characterizationJ. Microbiol. Methods32165178Google Scholar
  32. Stapleton, RD, Sayler, GS, Boggs, JM, Libelo, EL, Stauffer, T, MacIntyre, W 2000Changes in subsurface catabolic gene frequencies during natural attenuation of petroleum hydrocarbonsEnviron. Sci. Tech.3419911999Google Scholar
  33. Tsai, YL, Olsen, BH 1992Rapid method for seperation of bacterial DNA from humic substances in sediments for polymerase chain reactionAppl. Envriron. Microbiol.522922295Google Scholar
  34. U.S. Environmental Protection Agency1997Champion International Superfund Site, Libby, Montana Field Performance Evaluation: Bioremediation Unit: In Situ Bioremediation of the Upper AquiferOffice of Research and DevelopmentWashington, DCGoogle Scholar
  35. Wang, R, Luneau, A, Cao, W, Cerneglia, CE 1996PCR detection of polycyclic aromatic hydrocarbon-degrading MycobacteriaEnviron. Sci. Tech.30307311Google Scholar
  36. Williams, MS, Bakermans, C, Madsen, EL 1999In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwaterAppl. Environ. Microbiol.658087Google Scholar
  37. Woo, H, Sanseverino, J, Cox, CD, Robinson, KG, Sayler, GS 2000The measurement of toluene dioxygenase activity in biofilm culture of Pseudomonas putida F1J. Microbiol. Methods40181191Google Scholar
  38. Wu, L, Thompson, DK, Li, G, Hurt, RA, Tiedje, JM, Zhou, J 2001Development and evaluation of functional gene arrays for detection of selected genes in the environmentAppl. Environ. Microbiol.675780Google Scholar
  39. Zhou, J, Bruns, MA, Tiedje, JM 1996DNA recovery from soils of divers compositionAppl. Environ. Microbiol.62316322Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Kevin Hall
    • 1
  • Charles D. Miller
    • 2
  • Darwin L. Sorensen
    • 4
  • Anne J. Anderson
    • 2
  • Ronald C. Sims
    • 3
    • 4
  1. 1.North Wind, Inc.Idaho FallsUSA
  2. 2.Department of BiologyUtah State UniversityLoganUSA
  3. 3.Department of Biological and Irrigation Engineering, College of EngineeringUtah State UniversityOld Main HillLoganUSA
  4. 4.Utah Water Research Laboratory, College of EngineeringUtah State UniversityLoganUSA

Personalised recommendations