Skip to main content
Log in

Integrating habitat suitability modeling with gene flow improves delineation of landscape connections among African savanna elephants

  • Original Research
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Across Africa, space for conservation is sometimes limited to formally protected areas that have become progressively more isolated. There is a need for targeted conservation initiatives such as the demarcation of landscape connections, defined as areas that encompass environmental variables that promote the natural movement of individuals between populations, which can facilitate gene flow. Landscape connections can mitigate genetic isolation, genetic drift, and inbreeding, which can occur in isolated populations in protected areas. Promoting gene flow can reduce the risk of extirpation often associated with isolated populations. Here we develop and test models for identifying landscape connections among African savannah elephant (Loxodonta africana) populations by combining habitat suitability modeling with gene flow estimates across a large region including seven countries. We find a pronounced non-linear response to unsuitable habitat, consistent with previous studies showing that non-transformed habitat models are poor predictors of gene flow. We generated a landscape connections map that considers both suitable habitats based on telemetry occurrence data and gene flow estimated as the inverse of individual genetic distance, delineating areas that are important for maintaining elephant population connectivity. Our approach represents a novel framework for developing spatially and genetically informed conservation strategies for elephants and many other taxa distributed across heterogeneous and fragmented landscapes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All bioinformatic code associated with this manuscript may be found at https://github.com/adeflamingh/de_Flamingh_et_al_Landscape_Connectivity and genetic data is available on DRYAD: https://doi.org/10.5061/dryad.qnk98sfp5

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H et al (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64:233–247. https://doi.org/10.1016/S0169-2046(02)00242-6

    Article  Google Scholar 

  • Alexander NB, Statham MJ, Sacks BN, Bean WT (2019) Generalist dispersal and gene flow of an endangered keystone specialist (Dipodomys ingens). J Mammal 100:1533–1545

    Article  Google Scholar 

  • Allendorf FW, Luikart G (2009) Conservation and the genetics of populations. Blackwell Publishing, Wiley & Sons, West Sussex

    Google Scholar 

  • Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations, 2nd edn. Blackwell Publishing, Wiley and Sons, West Sussex

    Google Scholar 

  • Anderson RP (2012) Harnessing the world’s biodiversity data: promise and peril in ecological niche modeling of species distributions. Ann N Y Acad Sci 1260:66–80. https://doi.org/10.1111/J.1749-6632.2011.06440.X

    Article  PubMed  Google Scholar 

  • Archie EA, Moss CJ, Alberts SC (2003) Characterization of tetranucleotide microsatellite loci in the African Savannah Elephant (Loxodonta africana africana). Mol Ecol Notes 3:244–246. https://doi.org/10.1046/J.1471-8286.2003.00412.X

    Article  CAS  Google Scholar 

  • Baldus RD, Hahn R, Ellis C, DeLeon SD (2007) Connecting the world’s largest elephant ranges: the Selous-Niassa corridor. Peace Parks. https://doi.org/10.7551/mitpress/7433.003.0013

    Article  Google Scholar 

  • Barnes RFW, Barnes KL, Alers MPT, Blom A (1991) Man determines the distribution of elephants in the rain forests of northeastern Gabon. Afr J Ecol 29:54–63

    Article  Google Scholar 

  • Barton K (2009) MuMIn: multi-model inference. R package version 1. 0. 0. http://r-forge.r-project.org/projects/mumin/.

  • Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H et al. (2015) Package ‘lme4.’ Convergence 12.

  • Becker RA, Chambers JM, Wilks AR (1988) The New S Language. Wadsworth & Brooks/Cole, Pacific Grove

    Google Scholar 

  • Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: a fresh approach to numerical computing. SIAM Rev 59:65–98

    Article  Google Scholar 

  • Blanc J (2008) Loxodonta africana. The IUCN Red List of Threatened Species 2008: e. T12392A3339343.

  • Boyce MS, McDonald LL (1999) Relating populations to habitats using resource selection functions. Trends Ecol Evol 14:268–272

    Article  PubMed  CAS  Google Scholar 

  • Braaker S, Kormann U, Bontadina F, Obrist MK (2017) Prediction of genetic connectivity in urban ecosystems by combining detailed movement data, genetic data and multi-path modelling. Landsc Urban Plan 160:107–114

    Article  Google Scholar 

  • Bright EA, Rose AN, Urban ML and McKee JJ (2017) LandScan 2016.

  • Büchi L, Vuilleumier S (2014) Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am Nat 183:612–624

    Article  PubMed  Google Scholar 

  • Burkart S, Gugerli F, Senn J, Kuehn R, Bolliger J (2016) Evaluating the functionality of expert-assessed wildlife corridors with genetic data from roe deer. Basic Appl Ecol 17:52–60

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Soc Methods Res 33:261–304

    Article  Google Scholar 

  • Centeno-Cuadros A, Roman J, Delibes M, Godoy JA (2011) Prisoners in their habitat? Generalist dispersal by habitat specialists: a case study in southern water vole (Arvicola sapidus). PLoS ONE 6:e24613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chamaillé-Jammes S, Valeix M, Fritz H (2007) Managing heterogeneity in elephant distribution: interactions between elephant population density and surface-water availability. J Appl Ecol 44:625–633

    Article  Google Scholar 

  • Chetkiewicz CLB, Boyce MS (2009) Use of resource selection functions to identify conservation corridors. J Appl Ecol 46:1036–1047. https://doi.org/10.1111/j.1365-2664.2009.01686.x

    Article  Google Scholar 

  • Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J Agric Biol Environ Stat 7:361

    Article  Google Scholar 

  • Comstock KE, Wasser SK, Ostrander EA (2000) Polymorphic microsatellite DNA loci identified in the African elephant (Loxodonta africana). Mol Ecol 9:1004–1006. https://doi.org/10.1046/J.1365-294X.2000.00939-8.X

    Article  PubMed  CAS  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • de Flamingh A, Sole CL, van Aarde RJ (2014) Microsatellite repeat motif and amplicon length affect amplification success of degraded faecal DNA. Conserv Genet Resour. https://doi.org/10.1007/s12686-014-0160-5

    Article  Google Scholar 

  • de Flamingh A, Roca AL, van Aarde RJ (2018) Origin and phylogeography of African savannah elephants (Loxodonta africana) in Kruger and nearby parks in southern Africa. Conserv Genet. https://doi.org/10.1007/s10592-017-1005-z

    Article  Google Scholar 

  • de Flamingh A, Ishida Y, Pečnerová P, Vilchis S, Siegismund HR, van Aarde RJ et al (2023) Combining methods for non-invasive fecal DNA enables whole genome and metagenomic analyses in wildlife biology. Front Genet. https://doi.org/10.3389/fgene.2022.1021004

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobson JE, Bright EA, Coleman PR, Durfee RC, Worley BA (2000) LandScan: a global population database for estimating populations at risk. Photogramm Eng Remote Sensing 66:849–857

    Google Scholar 

  • du Toit AL (1929) The volcanic belt of the Lebombo—a region of tension. Trans Royal Soc South Africa 18:189–217

    Article  Google Scholar 

  • Edwards LJ, Muller KE, Wolfinger RD, Qaqish BF, Schabenberger O (2008) An R2 statistic for fixed effects in the linear mixed model. Stat Med 27:6137–6157

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggert LS, Ramakrishnan U, Mundy NI, Woodruff DS (2000) Polymorphic microsatellite DNA markers in the African elephant (Loxodonta africana) and their use in the Asian elephant (Elephas maximus). Mol Ecol 9:2223–2225

    Article  PubMed  CAS  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Fletcher RJ, McCleery RA, Greene DU, Tye CA (2016) Integrated models that unite local and regional data reveal larger-scale environmental relationships and improve predictions of species distributions. Landsc Ecol 31:1369–1382. https://doi.org/10.1007/S10980-015-0327-9/FIGURES/4

    Article  Google Scholar 

  • Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:e97122

    Article  PubMed  PubMed Central  Google Scholar 

  • Garant D, Forde SE, Hendry AP (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol 21:434–443

    Article  Google Scholar 

  • Gobush KS, Edwards CTT, Balfour D, Wittemyer G, Maisels F and Taylor RD (2022) Loxodonta africana (amended version of 2021 assessment)(The IUCN Red List of Threatened Species, 2021). The IUCN Red List of Threatened Species.

  • Grainger M, Van Aarde R, Whyte I (2005) Landscape heterogeneity and the use of space by elephants in the Kruger National Park, South Africa. Afr J Ecol 43:369–375

    Article  Google Scholar 

  • Guisan A, Edwards TC Jr, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Modell 157:89–100

    Article  Google Scholar 

  • Gurka MJ (2006) Selecting the best linear mixed model under REML. Am Stat 60:19–26

    Article  Google Scholar 

  • Hazlitt SL, Eldridge MDB, Goldizen AW (2004) Fine-scale spatial genetic correlation analyses reveal strong female philopatry within a brush-tailed rock-wallaby colony in southeast Queensland. Mol Ecol 13:3621–3632. https://doi.org/10.1111/J.1365-294X.2004.02342.X

    Article  PubMed  CAS  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hoare RE, Du Toit JT (1999) Coexistence between people and elephants in African savannas. Conserv Biol 13:633–639

    Article  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Huang RM, van Aarde RJ, Pimm SL, Chase MJ, Leggett K (2022) Mapping potential connections between Southern Africa’s elephant populations. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0275791

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang RM, Maré C, Guldemond RAR, Pimm SL, Van Aarde RJ (2024) Protecting and connecting landscapes stabilizes populations of the Endangered savannah elephant. Sci Adv 10:eadk2896

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter RD, Fisher RN, Crooks KR (2003) Landscape-level connectivity in coastal southern California, USA, as assessed through carnivore habitat suitability. Nat Areas J 23:302–314

    Google Scholar 

  • Ishida Y, Coeverden V, de Groot PJ, Leggett KEA, Putnam AS, Fox VE, Lai J et al (2016) Genetic connectivity across marginal habitats: the elephants of the Namib Desert. Ecol Evol 6:6189–6201

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson TP, Mosojane S, Ferreira SM, van Aarde RJ (2008) Solutions for elephant Loxodonta africana crop raiding in northern Botswana: moving away from symptomatic approaches. Oryx 42:83–91

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A and Guevara E (2008) Hole-filled SRTM for the globe Version 4. available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org).

  • Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Kabir M, Shoaib Hameed HA, Bosso L, Din JU, Bischof R, Redpath S et al (2017) Habitat suitability and movement corridors of grey wolf (Canis lupus) in Northern Pakistan. PLoS ONE. https://doi.org/10.1371/journal.pone.0187027

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281

    Article  PubMed  PubMed Central  Google Scholar 

  • Keeley ATH, Beier P, Gagnon JW (2016) Estimating landscape resistance from habitat suitability: effects of data source and nonlinearities. Landsc Ecol 31:2151–2162. https://doi.org/10.1007/s10980-016-0387-5

    Article  Google Scholar 

  • Keeley ATH, Beier P, Keeley BW, Fagan ME (2017) Habitat suitability is a poor proxy for landscape connectivity during dispersal and mating movements. Landsc Urban Plan 161:90–102

    Article  Google Scholar 

  • Kitchens, L. J. (2002). Basic Statistics and Data Analysis. Thomson/Brooks/Cole.

  • Klinga P, Mikoláš M, Smolko P, Tejkal M, Höglund J, Paule L (2019) Considering landscape connectivity and gene flow in the Anthropocene using complementary landscape genetics and habitat modelling approaches. Landsc Ecol 34:521–536

    Article  Google Scholar 

  • Koshkina V, Wang Y, Gordon A, Dorazio RM, White M, Stone L (2017) Integrated species distribution models: combining presence-background data and site-occupancy data with imperfect detection. Methods Ecol Evol 8:420–430. https://doi.org/10.1111/2041-210X.12738

    Article  Google Scholar 

  • Landau VA, Shah VB, Anantharaman R, Hall KR (2021) Omniscape. jl: Software to compute omnidirectional landscape connectivity. J Open Source Softw 6:2829

    Article  Google Scholar 

  • Larkin JL, Maehr DS, Hoctor TS, Orlando MA, Whitney K (2004) Landscape linkages and conservation planning for the black bear in west-central Florida. Animal Conservation forum. Cambridge University Press, Cambridge, pp 23–34

    Google Scholar 

  • Leos-Barajas, V., and Michelot, T. (2018). An Introduction to Animal Movement Modeling with Hidden Markov Models using Stan for Bayesian Inference. arXiv preprint arXiv:1806.10639.

  • Leroy B, Meynard CN, Bellard C, Courchamp F (2016) virtualspecies, an R package to generate virtual species distributions. Ecography 39:599–607

    Article  Google Scholar 

  • Loarie SR, van Aarde RJ, Pimm SL (2009a) Elephant seasonal vegetation preferences across dry and wet savannas. Biol Conserv 142:3099–3107

    Article  Google Scholar 

  • Loarie SR, van Aarde RJ, Pimm SL (2009b) Fences and artificial water affect African savannah elephant movement patterns. Biol Conserv 142:3086–3098

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Lobora AL, Nahonyo CL, Munishi LK, Caro T, Foley C, Prunier JG et al (2018) Incipient signs of genetic differentiation among African elephant populations in fragmenting Miombo ecosystems in South-Western Tanzania. Afr J Ecol 56:993–1002

    Article  Google Scholar 

  • Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G (2003) Landscape genetics: combining landscape ecology and population genetics. Ecol Evol 18:189–198

    Article  Google Scholar 

  • Mapaure IN, Campbell BM (2002) Changes in Miombo woodland cover in and around Sengwa Wildlife Research Area, Zimbabwe, in relation to elephants and fire. Afr J Ecol 40:212–219

    Article  Google Scholar 

  • Mashintonio AF, Pimm SL, Harris GM, Van Aarde RJ, Russell GJ (2014) Data-driven discovery of the spatial scales of habitat choice by elephants. PeerJ 2:e504

    Article  PubMed  PubMed Central  Google Scholar 

  • Mateo-Sánchez MC, Balkenhol N, Cushman S, Pérez T, Domínguez A, Saura S (2015) Estimating effective landscape distances and movement corridors: comparison of habitat and genetic data. Ecosphere 6:1–16

    Article  Google Scholar 

  • McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561

    PubMed  Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.0706568104

    Article  PubMed  PubMed Central  Google Scholar 

  • McRae BH, Popper K, Jones A, Schindel M, Buttrick S, Hall K et al (2016) Conserving nature’s stage: mapping omnidirectional connectivity for resilient terrestrial landscapes in the pacific northwest. The Nature Conservancy, Portland

    Google Scholar 

  • Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Article  Google Scholar 

  • Milanesi P, Holderegger R, Caniglia R, Fabbri E, Galaverni M, Randi E (2017) Expert-based versus habitat-suitability models to develop resistance surfaces in landscape genetics. Oecologia 183:67–79

    Article  PubMed  Google Scholar 

  • Miller MP (2005) Alleles in space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724

    Article  PubMed  CAS  Google Scholar 

  • Mole MA, Rodrigues DÁraujo S, Van Aarde RJ, Mitchell D, Fuller A (2016) Coping with heat: behavioural and physiological responses of savanna elephants in their natural habitat. Conserv Physiol. https://doi.org/10.1093/conphys/cow044

    Article  PubMed  PubMed Central  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  PubMed  CAS  Google Scholar 

  • Newmark WD (2008) Isolation of African protected areas. Front Ecol Environ 6:321–328

    Article  Google Scholar 

  • Ntumi CP, Van Aarde RJ, Fairall N, De Boer WF (2005) Use of space and habitat by elephants (Loxodonta africana) in the Maputo Elephant Reserve, Mozambique. South African J Wildlife Re 35:139–146

    Google Scholar 

  • Nyakaana S, Arctander P (1999) Population genetic structure of the African elephant in Uganda based on variation at mitochondrial and nuclear loci: evidence for male-biased gene flow. Mol Ecol 8:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Orelien JG, Edwards LJ (2008) Fixed-effect variable selection in linear mixed models using R2 statistics. Comput Stat Data Anal 52:1896–1907

    Article  Google Scholar 

  • Orton RW, Tucker DB, Harrison JS, McBrayer LD (2020) Spatial and temporal patterns of genetic diversity in a fragmented and transient landscape. Evol Ecol. https://doi.org/10.1007/s10682-019-10030-3

    Article  Google Scholar 

  • Ott, T. (2008). Landscape heterogeneity as a determinant of range utilization by African elephants (Loxodonta africana) in mesic savannas.

  • Pekel J-F, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540:418–422

    Article  PubMed  CAS  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510

    Article  PubMed  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Phillips, S. J., Dudík, M., and Schapire, R. E. (2017). Maxent software for modeling species niches and distributions (Version 3.4. 1). Biodiversity Informatics.

  • Pinter-Wollman N (2012) Human–elephant conflict in Africa: the legal and political viability of translocations, wildlife corridors, and transfrontier parks for large mammal conservation. J Int Wildlife Law Policy 15:152–166

    Article  Google Scholar 

  • Pullinger MG, Johnson CJ (2010) Maintaining or restoring connectivity of modified landscapes: evaluating the least-cost path model with multiple sources of ecological information. Landsc Ecol 25:1547–1560

    Article  Google Scholar 

  • Purdon A, Mole MA, Chase MJ, Van Aarde RJ (2018) Partial migration in savanna elephant populations distributed across southern Africa. Sci Rep 8:1–11

    Article  CAS  Google Scholar 

  • R Core Team (2019) R Core Team (2019). R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. URL http://www.R-project.org/., page R Foundation for Statistical Computing.

  • Renner IW, Warton DI (2013) Equivalence of MAXENT and poisson point process models for species distribution modeling in ecology. Biometrics 69:274–281. https://doi.org/10.1111/J.1541-0420.2012.01824.X

    Article  PubMed  Google Scholar 

  • Richardson JL, Brady SP, Wang IJ, Spear SF (2016) Navigating the pitfalls and promise of landscape genetics. Mol Ecol. https://doi.org/10.1111/mec.13527

    Article  PubMed  PubMed Central  Google Scholar 

  • Riordan-Short E, Pither R, Pither J (2023) Four steps to strengthen connectivity modeling. Ecography. https://doi.org/10.1111/ECOG.06766

    Article  Google Scholar 

  • Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M et al (2015) Collapse of the world’s largest herbivores. Sci Adv 1:e1400103

    Article  PubMed  PubMed Central  Google Scholar 

  • Robson AS, Trimble MJ, Purdon A, Young-Overton KD, Pimm SL, van Aarde RJ (2017) Savanna elephant numbers are only a quarter of their expected values. PLoS ONE 12:e0175942

    Article  PubMed  PubMed Central  Google Scholar 

  • Roca AL, Georgiadis N, O’Brien SJ (2005) Cytonuclear genomic dissociation in African elephant species. Nat Genet 37:96–100

    Article  PubMed  CAS  Google Scholar 

  • Roever CL, Van Aarde RJ, Leggett K (2012) Functional responses in the habitat selection of a generalist mega-herbivore, the African savannah elephant. Ecography 35:972–982

    Article  Google Scholar 

  • Roever CL, van Aarde RJ, Leggett K (2013) Functional connectivity within conservation networks: delineating corridors for African elephants. Biol Conserv 157:128–135

    Article  Google Scholar 

  • Row JR, Knick ST, Oyler-McCance SJ, Lougheed SC, Fedy BC (2017) Developing approaches for linear mixed modeling in landscape genetics through landscape-directed dispersal simulations. Ecol Evol 7:3751–3761

    Article  PubMed  PubMed Central  Google Scholar 

  • Saggerson EP, Bristow JW (1983) The geology and structural relationships of the southern Lebombo volcanic and intrusive rocks. South Africa Bulletin Volcanologique 46:161

    Article  Google Scholar 

  • Saupe EE, Barve V, Myers CE, Soberón J, Barve N, Hensz CM et al (2012) Variation in niche and distribution model performance: the need for a priori assessment of key causal factors. Ecol Modell 237:11–22

    Article  Google Scholar 

  • Schlossberg S, Chase M, Biology RSC (2019) Evidence of a growing elephant poaching problem in Botswana. cell.comS Schlossberg, MJ Chase, R SutcliffeCurrent Biology, 2019•cell.com, 2017–2018. https://doi.org/10.1016/j.cub.2019.05.061

  • Shabani F, Kumar L, Ahmadi M (2016) A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol Evol 6:5973–5986

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafer ABA, Northrup JM, White KS, Boyce MS, Côté SD, Coltman DW (2012) Habitat selection predicts genetic relatedness in an alpine ungulate. Ecology 93:1317–1329

    Article  PubMed  Google Scholar 

  • Shah VB, and McRae BH (2008) Circuitscape: a tool for landscape ecology. In: Proceedings of the 7th Python in Science Conference, (SciPy 2008, Pasadena, California, USA), pp. 62–66.

  • Shirk AJ, Cushman SA, Landguth EL (2012) Simulating pattern-process relationships to validate landscape genetic models. Int J Ecol. https://doi.org/10.1155/2012/539109

    Article  Google Scholar 

  • Shirk AJ, Landguth EL, Cushman SA (2017) A comparison of individual-based genetic distance metrics for landscape genetics. Mol Ecol Resour 17:1308–1317. https://doi.org/10.1111/1755-0998.12684

    Article  PubMed  CAS  Google Scholar 

  • Shrestha B, Kindlmann P (2020) Implications of landscape genetics and connectivity of snow leopard in the Nepalese Himalayas for its conservation. Sci Rep 10:19853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Songhurst A, Chase M, Coulson T (2015) Using simulations of past and present elephant (Loxodonta africana) population numbers in the Okavango Delta Panhandle, Botswana to improve future population estimates. Wetl Ecol Manag 23:583–602

    Article  Google Scholar 

  • Spear SF, Balkenhol N, Fortin M, McRae BH, Scribner KIM (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

    Article  PubMed  Google Scholar 

  • Tang Q, Fung T, Rheindt FE (2019) ResDisMapper: An r package for fine-scale mapping of resistance to dispersal. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.13127

    Article  PubMed  PubMed Central  Google Scholar 

  • Thouless C, Dublin HT, Blanc JJ, Skinner DP, Daniel TE, Taylor RD et al (2016) African elephant status report 2016. Occasional Paper Series of the IUCN Species Survival Commission 60.

  • van Aarde RJ, Jackson TP (2007) Megaparks for metapopulations: addressing the causes of locally high elephant numbers in southern Africa. Biol Conserv 134:289–297

    Article  Google Scholar 

  • Van Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol 21:4010–4023

    Article  PubMed  Google Scholar 

  • Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer, Cham

    Google Scholar 

  • Vogel SM, Lambert B, Songhurst AC, McCulloch GP, Lee Stronza A, Coulson T (2020) Exploring movement decisions: can Bayesian movement-state models explain crop consumption behaviour in elephants (Loxodonta africana)? J Animal Ecol 89(4):1055–1068

    Article  Google Scholar 

  • Waits LP, Storfer A (2015) Basics of population genetics: quantifying neutral and adaptive genetic variation for landscape genetic studies. Landsc Genet. https://doi.org/10.1002/9781118525258.CH03

    Article  Google Scholar 

  • Wall J, Douglas-Hamilton I, Vollrath F (2006) Elephants avoid costly mountaineering. Curr Biol 16:R527–R529

    Article  PubMed  CAS  Google Scholar 

  • Wang G (2019) Machine learning for inferring animal behavior from location and movement data. Ecol Inform 49:69–76

    Article  Google Scholar 

  • Wang Y-H, Yang K-C, Bridgman CL, Lin L-K (2008) Habitat suitability modelling to correlate gene flow with landscape connectivity. Landsc Ecol 23:989–1000

    Google Scholar 

  • Webber BL, Yates CJ, Le Maitre DC, Scott JK, Kriticos DJ, Ota N et al (2011) Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Divers Distrib 17:978–1000

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A et al (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Young KD, Ferreira SM, Van Aarde RJ (2009a) Elephant spatial use in wet and dry savannas of southern Africa. J Zool 278:189–205

    Article  Google Scholar 

  • Young KD, Ferreira SM, van Aarde RJ (2009b) The influence of increasing population size and vegetation productivity on elephant distribution in the Kruger National Park. Austral Ecol 34:329–342

    Article  Google Scholar 

  • Zafra-Calvo N, Lobo JM, Prada C, Nielsen MR, Burgess ND (2018) Predictors of elephant poaching in a wildlife crime hotspot: the Ruvuma landscape of southern Tanzania and northern Mozambique. J Nat Conserv 41:79–87. https://doi.org/10.1016/J.JNC.2017.11.006

    Article  Google Scholar 

Download references

Acknowledgements

We dedicate this paper to the memory of Rudi van Aarde whose life-long passion and dedication to conservation was and continues to be a driving force for the protection of Africa’s elephants. We thank Camilla Nørgaard for permission to include the late Rudi van Aarde as co-author. For facilitating sample collection, we thank Elephant Without Borders (Botswana) and the CERU team. The Zambian Wildlife Authority, the Department of Wildlife and National Parks (Botswana), South African National Parks (SANParks) and the Department of Agriculture, Forestry and Fisheries (South Africa) sanctioned the research. We acknowledge technical support provided by the University of Pretoria’s Sequencing Facility; the High-Throughput Sequencing and Genotyping Unit of the University of Illinois at Urbana-Champaign (UIUC); and the Illinois Campus Cluster, a computing resource that is operated by the Illinois Campus Cluster Program (ICCP) in conjunction with the National Center for Supercomputing Applications (NCSA) and which is supported by funds from UIUC.

Funding

For funding we thank the International Fund for Animal Welfare; the Conservation Ecology Research Unit (CERU) of the University of Pretoria; the Conservation Foundation (Zambia); the US Fish and Wildlife Service African Elephant Conservation Fund. In addition to support from these sources, AdF received a Francis M. and Harlie M. Clark Research Support Grant, a Harley J. Van Cleave Research Award, a University of Illinois Graduate College Dissertation Project Travel Grant, and support from the Cooperative State Research, Education, and Extension Service, US Department of Agriculture under project number ILLU 875–952.

Author information

Authors and Affiliations

Authors

Contributions

AdF, RLS, RJvA and ALR conceived and developed the methodological analysis approach. AdF, TINPS and CD completed the molecular work, and AdF and NA conducted the computational analyses. AdF wrote the original draft of the manuscript, all authors provided critical feedback throughout the process of interpretation of the data and of manuscript preparation, and approved of the final version of the manuscript.

Corresponding author

Correspondence to Alida de Flamingh.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The Animal Ethics Committee of the University of Pretoria (AUCC-040611-013) and the Botswana Ministry of Environment, Wildlife, & Tourism (OP 46/1 LXXXV 89) reviewed and approved the telemetry collaring of the elephants. Collection and export/import of elephant dung was sanctioned by appropriate authorities prior to collection, including South African National Parks, the Department of Agriculture, Forestry and Fisheries in South Africa and the United States Department of Agriculture in the United States of America.

Additional information

Communicated by David Hawksworth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Deceased author: Rudi J. van Aarde

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5252 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Flamingh, A., Alexander, N., Perrin-Stowe, T.I.N. et al. Integrating habitat suitability modeling with gene flow improves delineation of landscape connections among African savanna elephants. Biodivers Conserv 33, 3231–3252 (2024). https://doi.org/10.1007/s10531-024-02910-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10531-024-02910-0

Keywords