Skip to main content

Advertisement

Log in

Elevation range and contemporary climate determine the taxonomic, functional and phylogenetic diversity of forest mammals

  • Original Research
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Forest mammal diversity declined rapidly due to the widespread loss and fragmentation of primary forest habitats, requiring further research on forest mammal diversity. China is a country with diverse forest types, large climate and elevation gradient, high mammal diversity, but massive anthropogenic disturbance on natural landscapes. However, few studies have assessed the associations between forest mammal diversity and these natural and anthropogenic factors. Therefore, this study tried to explore the relationships between forest mammal diversity captured by camera traps with elevation range, contemporary climate, paleoclimate change and human activities in China. We firstly collected mammal species lists from published literatures, calculated different diversity indices, and related these indices with explanatory variables using the multiple linear regression models. The results showed that forest sites with higher elevation range had higher species richness. Higher contemporary precipitation and cropland area promoted phylogenetic diversity and over-dispersed phylogenetic and functional structure. These findings suggest that the mammal diversity in Chinese forest ecosystems is mainly associated with natural environmental variables, supporting the habitat heterogeneity hypothesis, the energy availability hypothesis and tropical conservatism hypothesis. Meanwhile, the associations between forest mammal diversity and cropland area indicate that although these forest ecosystems play important role in conserving forest mammal diversity, further anthropogenic activities should be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Available upon on request to the authors.

References

  • Ackerly DD (2003) Community assembly, niche conservatism, and adaptive evolution in changing environments. Int J Plant Sci 164:S165–S184

    Article  Google Scholar 

  • Andermann T, Faurby S, Turvey ST, Antonelli A, Silvestro D (2020) The past and future human impact on mammalian diversity. Sci Adv 6:eabb2313

    Article  PubMed  PubMed Central  Google Scholar 

  • Barr WA, Biernat M (2020) Mammal functional diversity and habitat heterogeneity: implications for hominin habitat reconstruction. J Hum Evol 146:102853

    Article  PubMed  Google Scholar 

  • Barreto E, Graham CH, Rangel TF (2019) Environmental factors explain the spatial mismatches between species richness and phylogenetic diversity of terrestrial mammals. Glob Ecol Biogeogr 28:1855–1865

    Article  Google Scholar 

  • Bartoń K (2022) MuMIn: multi-model inference

  • Bogoni JA, Peres CA, Ferraz KMPMB (2020) Extent, intensity and drivers of mammal defaunation: a continental-scale analysis across the Neotropics. Sci Rep 10:14750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boron V, Deere NJ, Xofis P, Link A, Quiñones-Guerrero A, Payan E, Tzanopoulos J (2019) Richness, diversity, and factors influencing occupancy of mammal communities across human-modified landscapes in Colombia. Biol Conserv 232:108–116

    Article  Google Scholar 

  • Brodie JF, Williams S, Garner B (2021) The decline of mammal functional and evolutionary diversity worldwide. Proc Natl Acad Sci USA 118:e1921849118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnham K, Anderson D (2004) Model selection and multi-model inference, vol 63, 2nd edn. Springer, New York, p 10

    Book  Google Scholar 

  • Cardillo M (2011) Phylogenetic structure of mammal assemblages at large geographical scales: linking phylogenetic community ecology with macroecology. Philos Trans R Soc B 366:2545–2553

    Article  Google Scholar 

  • Castagneyrol B, Jactel H (2012) Unraveling plant–animal diversity relationships: a meta-regression analysis. Ecology 93:2115–2124

    Article  PubMed  Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA 114:E6089–E6096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chillo V, Ojeda RA (2012) Mammal functional diversity loss under human-induced disturbances in arid lands. J Arid Environ 87:95–102

    Article  Google Scholar 

  • Cooke RSC, Bates AE, Eigenbrod F (2019) Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob Ecol Biogeogr 28:484–495

    Article  Google Scholar 

  • Cowie RH, Bouchet P, Fontaine B (2022) The sixth mass extinction: fact, fiction or speculation? Biol Rev 97:640–663

    Article  PubMed  Google Scholar 

  • Cox N, Young BE, Bowles P, Fernandez M, Marin J, Rapacciuolo G, Böhm M, Brooks TM, Hedges SB, Hilton-Taylor C, Hoffmann M, Jenkins RKB, Tognelli MF, Alexander GJ, Allison A, Ananjeva NB, Auliya M, Avila LJ, Chapple DG, Cisneros-Heredia DF, Cogger HG, Colli GR, de Silva A, Eisemberg CC, Els J, Fong GA, Grant TD, Hitchmough RA, Iskandar DT, Kidera N, Martins M, Meiri S, Mitchell NJ, Molur S, Nogueira CC, Ortiz JC, Penner J, Rhodin AGJ, Rivas GA, Rödel M-O, Roll U, Sanders KL, Santos-Barrera G, Shea GM, Spawls S, Stuart BL, Tolley KA, Trape J-F, Vidal MA, Wagner P, Wallace BP, Xie Y (2022) A global reptile assessment highlights shared conservation needs of tetrapods. Nature 605:285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan J-F, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett 7:1121–1134

    Article  Google Scholar 

  • Davis M, Faurby S, Svenning JC (2018) Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc Natl Acad Sci USA 115:11262–11267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delisle ZJ, Flaherty EA, Nobbe MR, Wzientek CM, Swihart RK (2021) Next-generation camera trapping: systematic review of historic trends suggests keys to expanded research applications in ecology and conservation. Front Ecol Evol 9:97

    Article  Google Scholar 

  • Ding C, Liang D, Xin W, Li C, Ameca y Juárez EI, Jiang Z (2022) A dataset on the morphological, life-history and ecological traits of the mammals in China. Biodivers Sci 30:21520

    Article  Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406

    Article  CAS  PubMed  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:1–8

    Article  Google Scholar 

  • Duchêne DA, Cardillo M (2015) Phylogenetic patterns in the geographic distributions of birds support the tropical conservatism hypothesis. Glob Ecol Biogeogr 24:1261–1268

    Article  Google Scholar 

  • Editorial Committee of China Vegetation (1980) Vegetation of China. Science Press, Beijing

    Google Scholar 

  • Fjeldsaå J, Lovett JC (1997) Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodivers Conserv 6:325–346

    Article  Google Scholar 

  • Flantua SG, Hooghiemstra H, Hoorn C (2018) Historical connectivity and mountain biodiversity. Wiley, Hoboken

    Google Scholar 

  • Forrester TD, Baker M, Costello R, Kays R, Parsons AW, McShea WJ (2017) Creating advocates for mammal conservation through citizen science. Biol Conserv 208:98–105

    Article  Google Scholar 

  • Fricke EC, Ordonez A, Rogers HS, Svenning J-C (2022) The effects of defaunation on plants’ capacity to track climate change. Science 375:210–214

    Article  CAS  PubMed  Google Scholar 

  • Gaston KJ, Blackburn TM (1996) The tropics as a museum of biological diversity: an analysis of the New World avifauna. Proc R Soc Lond B 263:63–68

    Article  Google Scholar 

  • Grantham HS, Duncan A, Evans TD, Jones KR, Beyer HL, Schuster R, Walston J, Ray JC, Robinson JG, Callow M, Clements T, Costa HM, DeGemmis A, Elsen PR, Ervin J, Franco P, Goldman E, Goetz S, Hansen A, Hofsvang E, Jantz P, Jupiter S, Kang A, Langhammer P, Laurance WF, Lieberman S, Linkie M, Malhi Y, Maxwell S, Mendez M, Mittermeier R, Murray NJ, Possingham H, Radachowsky J, Saatchi S, Samper C, Silverman J, Shapiro A, Strassburg B, Stevens T, Stokes E, Taylor R, Tear T, Tizard R, Venter O, Visconti P, Wang S, Watson JEM (2020) Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat Commun 11:5978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamel S, Killengreen ST, Henden JA, Eide NE, Roed-Eriksen L, Ims RA, Yoccoz NG (2013) Towards good practice guidance in using camera-traps in ecology: influence of sampling design on validity of ecological inferences. Methods Ecol Evol 4:105–113

    Article  Google Scholar 

  • Hawkins B, Field R, Cornell H, Currie D, Guegan J, Kaufman D, Kerr J, Mittelbach G, Oberdorff T, O’Brien E, Porter E, Turner J (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  • Hedges L, Lam WY, Campos-Arceiz A, Rayan DM, Laurance WF, Latham CJ, Saaban S, Clements GR (2015) Melanistic leopards reveal their spots: Infrared camera traps provide a population density estimate of leopards in malaysia. J Wildl Manag 79:846–853

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hillebrand H, Blasius B, Borer ET, Chase JM, Downing JA, Eriksson BK, Filstrup CT, Harpole WS, Hodapp D, Larsen S, Lewandowska AM, Seabloom EW, Van de Waal DB, Ryabov AB (2018) Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J Appl Ecol 55:169–184

    Article  Google Scholar 

  • IUCN (2021) The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org. Accessed 19 May 2021

  • Jansen PA, Ahumada J, Fegraus E, O’Brien TG (2014) TEAM: a standardised camera trap survey to monitor terrestrial vertebrate communities in tropical forests. In: Meek PD, Fleming PJS (eds) Camera trapping: wildlife management and research. CSIRO Publishing, Clayton, pp 263–270

    Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Kerr JT, Packer L (1997) Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385:252–254

    Article  CAS  Google Scholar 

  • Kissling WD, Carl G (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob Ecol Biogeogr 17:59–71

    Article  Google Scholar 

  • Klein Goldewijk K, Beusen A, Doelman J, Stehfest E (2017) Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst Sci Data 9:927–953

    Article  Google Scholar 

  • Lacher TE, Davidson AD, Fleming TH, Gomez-Ruiz EP, McCracken GF, Owen-Smith N, Peres CA, Vander Wall SB (2019) The functional roles of mammals in ecosystems. J Mammal 100:942–964

    Article  Google Scholar 

  • Li L, Chi H, Wan Y, Zhou J, Zhang L, He X, Huang W, Zhang B, Xu Z, Liu C et al (2020) Camera-trapping survey on mammals and birds in the Guangdong Yunkaishan National Nature Reserve. Biodivers Sci 28:1154

    Article  Google Scholar 

  • Liang C, Liu J, Pan B, Wang N, Yang J, Yang G, Feng G (2020) Precipitation is the dominant driver for bird species richness, phylogenetic and functional structure in university campuses in northern China. Avian Res 11:26

    Article  Google Scholar 

  • Lin C, Xiao C, Li S, Yang G, Chen J, Bao Y (2021) China: a country of great species diversity. Forest Humankind 22–45

  • Liu Y, Zhang M, Peng W, Qu X, Zhang Y, Du L, Wu N (2021) Phylogenetic and functional diversity could be better indicators of macroinvertebrate community stability. Ecol Indic 129:107892

    Article  Google Scholar 

  • Mander Ü, Mikk M, Külvik M (1999) Ecological and low intensity agriculture as contributors to landscape and biological diversity. Landsc Urban Plan 46:169–177

    Article  Google Scholar 

  • Mansfield ER, Helms BP (1982) Detecting multicollinearity. Am Stat 36:158–160

    Google Scholar 

  • McGlone MS (1996) When history matters: scale, time, climate and tree diversity. Glob Ecol Biogeogr Lett 5:309–314

    Article  Google Scholar 

  • Meng Z, Dong J, Ellis EC, Metternicht G, Qin Y, Song X-P, Löfqvist S, Garrett RD, Jia X, Xiao X (2023) Post-2020 biodiversity framework challenged by cropland expansion in protected areas. Nat Sustain. https://doi.org/10.1038/s41893-023-01093-w

    Article  Google Scholar 

  • Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA, McCain CM, McCune AR, McDade LA, McPeek MA, Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331

    Article  PubMed  Google Scholar 

  • Moreno-Rueda G, Pizarro M (2007) The relative influence of climate, environmental heterogeneity, and human population on the distribution of vertebrate species richness in south-eastern Spain. Acta Oecologica 32:50–58

    Article  Google Scholar 

  • Mortelliti A, Brehm AM (2020) Environmental heterogeneity and population density affect the functional diversity of personality traits in small mammal populations. Proc R Soc B 287:20201713–20201713

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien TG (2008) On the use of automated cameras to estimate species richness for large- and medium-sized rainforest mammals. Anim Conserv 11:179–181

    Article  Google Scholar 

  • Oliveira BF, Machac A, Costa GC, Brooks TM, Davidson AD, Rondinini C, Graham CH (2016) Species and functional diversity accumulate differently in mammals. Glob Ecol Biogeogr 25:1119–1130

    Article  Google Scholar 

  • Onditi KO, Song W-Y, Li X-Y, Chen Z-Z, Li Q, He S-W, Musila S, Kioko E, Jiang X-L (2022) Patterns and predictors of small mammal phylogenetic and functional diversity in contrasting elevational gradients in Kenya. Front Ecol Evol 9:742524

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Pimiento C, Bacon CD, Silvestro D, Hendy A, Jaramillo C, Zizka A, Meyer X, Antonelli A (2020) Selective extinction against redundant species buffers functional diversity. Proc R Soc B 287:20201162

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing

  • Rowan J, Beaudrot L, Franklin J, Reed KE, Smail IE, Zamora A, Kamilar JM (2020) Geographically divergent evolutionary and ecological legacies shape mammal biodiversity in the global tropics and subtropics. Proc Natl Acad Sci USA 117:1559–1565

    Article  CAS  PubMed  Google Scholar 

  • Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA (2014) Quantifying levels of animal activity using camera trap data. Methods Ecol Evol 5:1170–1179

    Article  Google Scholar 

  • Safi K, Cianciaruso MV, Loyola RD, Brito D, Armour-Marshall K, Diniz-Filho JAF (2011) Understanding global patterns of mammalian functional and phylogenetic diversity. Philos Trans R Soc B 366:2536–2544

    Article  Google Scholar 

  • Saltré F, Chadoeuf J, Peters KJ, McDowell MC, Friedrich T, Timmermann A, Ulm S, Bradshaw CJA (2019) Climate-human interaction associated with southeast Australian megafauna extinction patterns. Nat Commun 10:5311

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandom C, Faurby S, Sandel B, Svenning J-C (2014) Global late quaternary megafauna extinctions linked to humans, not climate change. Proc R Soc B 281:20133254

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha N, Xu X, Meng J, Wang Z (2021) Vulnerabilities of protected lands in the face of climate and human footprint changes. Nat Commun 12:1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira L, Jacomo A, Diniz J (2003) Camera trap, line transect census and track surveys: a comparative evaluation. Biol Conserv 114:351–355

    Article  Google Scholar 

  • Stebbins GL (1974) Flowering plants: evolution above the species level. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Stein A, Beck J, Meyer C, Waldmann E, Weigelt P, Kreft H (2015) Differential effects of environmental heterogeneity on global mammal species richness. Glob Ecol Biogeogr 24:1072–1083

    Article  Google Scholar 

  • Stewart M, Carleton WC, Groucutt HS (2021) Climate change, not human population growth, correlates with late quaternary megafauna declines in North America. Nat Commun 12:965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svenning J-C, Eiserhardt WL, Normand S, Ordonez A, Sandel B (2015) The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annu Rev Ecol Evol Syst 46:551–572

    Article  Google Scholar 

  • Trew BT, Maclean I (2021) Vulnerability of global biodiversity hotspots to climate change. Glob Ecol Biogeogr 30:768–783

    Article  Google Scholar 

  • Upham NS, Esselstyn JA, Jetz W (2019) Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol 17:1–44

    Article  Google Scholar 

  • van der Kaars S, Miller GH, Turney CSM, Cook EJ, Nürnberg D, Schönfeld J, Kershaw AP, Lehman SJ (2017) Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nat Commun 8:14142

    Article  PubMed  PubMed Central  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Weir JT, Schluter D (2007) The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315:1574–1576

    Article  CAS  PubMed  Google Scholar 

  • Wen Z, Cai T, Feijó A, Xia L, Cheng J, Ge D, Yang Q (2020) Using completeness and defaunation indices to understand nature reserve’s key attributes in preserving medium- and large-bodied mammals. Biol Conserv 241:108273

    Article  Google Scholar 

  • Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19:639–644

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

GF was supported by the National Key R&D Program of China (2019YFA0607103), the Natural Science Foundation of Inner Mongolia, China (2023JQ01) and the Central Government Guides Local Science and Technology Development Fund Projects (2022ZY0224).

Author information

Authors and Affiliations

Authors

Contributions

GF conceived the idea; LF collected the data; GF, LF and XM analyzed the data, and wrote the paper; ACH edited and revised the paper.

Corresponding author

Correspondence to Gang Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Arshad Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Ma, X., Hughes, A.C. et al. Elevation range and contemporary climate determine the taxonomic, functional and phylogenetic diversity of forest mammals. Biodivers Conserv 32, 4651–4664 (2023). https://doi.org/10.1007/s10531-023-02715-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-023-02715-7

Keywords

Navigation