Skip to main content

Advertisement

Log in

Land use changes and bird diversity in subtropical forests: urban development as the underlying factor

  • Original Research
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The Serrano Chaco forest is the least extended Gran Chaco forest type with a long history of human disturbances, such as ranching, urbanization, fires, an exotic tree species expansion, which have altered natural vegetation and, therefore, the resources available for avifauna. However, the impact of these disturbances on Serrano forest birds has received little attention. Here, using functional and taxonomic approaches, we explored the environmental, topographical and anthropogenic factors determining bird community structure in the Serrano forests at different spatial scales (< 250 m 500- and 1000-m). We used a combination of satellite imagery-based data and field sampling. We identified three ecological groups of birds: forest specialist, understory specialist and generalists, and classified them into functional groups according to life history traits and habitat use. We found that the response to landscape structure varied with the spatial scale and bird group; however, urban development and exotic trees forest occurrence were consistently present among the main factors reducing functional and taxonomic diversity of forest and understory birds. At the 1000-m scales, forest specialist birds tended to disappear from the areas with dense urbanization in areas with low percentage of Serrano forest. In landscape dominated by L. lucidum, forest understory birds tended to disappear. In all cases, generalist species expanded towards those areas. Our results indicate that the functional roles of avifauna are being greatly modified, potentially affecting forest ecosystem functioning. Restoration strategies must be implemented to preserve the last remnants of Serrano forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Relevant data are available in the supplementary material.

References

  • Albanesi S, Dardanelli S, Bellis LM (2014) Effects of fire disturbance on bird communities and species of mountain Serrano forest in central Argentina. J For Res 19:105–114

    Article  Google Scholar 

  • Alberti M, Marzluff JM (2004) Ecological resilience in urban ecosystems: linking urban patterns to human and ecological functions. Urban Ecosyst 7(3):241–265. https://doi.org/10.1023/B:UECO.0000044038.90173.c6

    Article  Google Scholar 

  • Argañaraz JP, Radeloff VC, Bar-Massada A, Gavier-Pizarro G, Scavuzzo CM, Bellis L (2017) Assessing wildfire exposure in the Wildland-Urban Interface area of the mountains of central Argentina. J Environ Manage Lugar: Amsterdam Vol 196:499–510

    Article  Google Scholar 

  • Argañaraz JP, Gavier-Pizarro G, Zak M, Bellis LM (2015) Fire regime, climate and vegetation in the mountains of Córdoba, Argentina. Fire Ecology, 11:55–73

  • Barros FMD, Granzinolli MAM, Pereira RJG, y Motta-Junior JC (2010) Área de distribución y uso del hábitat por el halcón de carretera, Rupornis magnirostris (Gmelin, 1788) (Aves: Falcaniformes) en el sureste de Brasil. Revista de Historia Natural 45(1–2):65–75

    Article  Google Scholar 

  • Bartón K (2017)Multi-Model Inference. (1), p.73

  • Batáry P, Matthiesen T, Tscharntke T (2010) Landscape-moderated importance of hedges in conserving farmland bird diversity of organic vs. conventional croplands and grasslands. Biol Conserv 143(9):2020–2027

    Article  Google Scholar 

  • Beissinger SR, Steadman EC, Wohlgenant T, Blate G, y Zack S (1996) Modelos nulos para evaluar las prioridades de conservación de los ecosistemas: aves amenazadas como títulos de ecosistemas amenazados en América del Sur. Biología de la conservación 10(5):1343–1352

    Google Scholar 

  • Bellis LM, Pidgeon AM, Alcántara C, Dardanelli S, Radeloff VC (2015) Influences of succession and erosion on bird communities in a south american highland wooded landscape. For Ecol Manag 349:85–93

    Article  Google Scholar 

  • Bellis LM, Astudillo A, Gavier-Pizarro G, Dardanelli S, Landi M, Hoyos L (2021) Glossy privet (Ligustrum lucidum) invasion decreases Chaco Serrano forest bird diversity but favors its seed dispersers. Biol Invasions 23(3):723–739. https://doi.org/10.1007/s10530-020-02399-y

    Article  Google Scholar 

  • Betts MG, Wolf C, Ripple WJ, Phalan B, Millers KA, Duarte A, Levi, T (2017) Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547(7664):441–444

    Article  CAS  Google Scholar 

  • Bibby CJ, Burgess ND, Hill DA, Mustoe S (2000) Bird census techniques. Academic Press, London

    Google Scholar 

  • Boscolo D, Metzger JP (2009) Is bird incidence in Atlantic forest fragments influenced by landscape patterns at multiple scales?Landscape Ecology, 24(7)

  • Breiman L (2001) Random Forest. Machine Learning (en línea). California, USA. Disponible en: http://www.springerlink.com/content/u0p06167n6173512/fulltext.pdf

  • Brotons L, Herrando S, y Martin JL (2004) Bird assemblages in forest fragments within Mediterranean mosaics created by wild fires. Landscape Ecol 19:663–675

    Article  Google Scholar 

  • Bucher EH, Bocco PJ (2009) Reassessing the importance of granivorous pigeons as massive, long-distance seed dispersers. Ecology 90(8):2321–2327

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and Multimodel Inference, a practical information—theoretic approach. Springer-Verlag, p 488

  • Cabido M, Zeballos SR, Zak M, Carranza ML, Giorgis MA, Cantero JJ, Acosta ATR (2018) Native woody vegetation in central Argentina: classification of Chaco and Espinal forests. Appl Veg Sci 21(2):298–311. https://doi.org/10.1111/avsc.12369

    Article  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087. https://doi.org/10.1111/j.1365-2664.2011.02048.x

    Article  Google Scholar 

  • Canelas MJ, Hilbers J, Tukker A, Erb H, Pereira E (2019) Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat Ecol Evol 3:628–637. https://doi.org/10.1038/s41559-019-0824-3

    Article  Google Scholar 

  • Chuvieco E, Martín MP, Palacios A (2002) Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int J Remote Sens 23(23):5103–5110. https://doi.org/10.1080/01431160210153129

    Article  Google Scholar 

  • Codesido M, Drozd AA, Gado P, y Bilenca D (2009) Respuestas de un ensamble de aves a la remoción manual de arbustosen un bosque subtropical semiárido del Chaco Argentino. Ornitología Neotropical, p 20

  • Córdova-Tapia F, Zambrano L (2015) Functional diversity in community ecology. Ecosistemas 24(3):78–87. https://doi.org/10.7818/ECOS.2015.24-3.10

    Article  Google Scholar 

  • Dardanelli S (2006) Dinámica de comunidades de aves en fragmentos de bosque de la provincia de Córdoba. Tesis de doctorado en Ciencias Biológicas. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba. Argentina

  • De La Peña MR (2015a) Aves argentinas. Incluye nidos y huevos. Tomo 1. Eudeba y Ediciones Universidad Nacional del Litoral, Buenos Aires y Santa Fe. 494p. ISBN: 978-987-657-986-5

  • De la Peña MR (2015b) Aves argentinas. Incluye nidos y huevos. Tomo 2. Eudeba y Ediciones Universidad Nacional del Litoral, Buenos Aires y Santa Fe. 384p. ISBN: 978-987-657-987-2

  • Dong-Chen H, Wang L (1990) Texture unit, texture spectrum, and texture analysis. IEEE Trans Geosci Remote Sens 28:509–512

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Lautenbach, S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 35(February):1–20

    Google Scholar 

  • Faeth SH, Bang C, Saari S (2011) Biodiversidad urbana: patrones y mecanismos, vol 1223. Anales de la Academia de Ciencias de Nueva York, pp 69–81. 1

  • Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, De Clerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33. https://doi.org/10.1111/j.1461-0248.2008.01255.x

    Article  Google Scholar 

  • Frishkoff LO, Karp DS (2019) Las respuestas específicas de las especies a la conversión del hábitat a través de escalas reestructuran sinérgicamente las comunidades de aves neotropicales.Aplicaciónes ecológicas, 29(5), e01910

  • Gavier GI, Bucher EH (2004) Deforestación de las Sierras Chicas de Córdoba en el período 1970–1997. Academia Nacional de Ciencias, Miscelánea, p 101

    Google Scholar 

  • Gavier-Pizarro GI, Kuemmerle T, Hoyos LE, Stewart SI, Huebner CD, Keuler NS, Radeloff VC (2012) Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with landsat TM/ETM + satellite data and support Vector Machines in Córdoba, Argentina. Remote Sens Environ 122:134–145. https://doi.org/10.1016/j.rse.2011.09.023

    Article  Google Scholar 

  • Gavier-Pizarro G, Radeloff VC, Stewart SI, Huebner CD, y Keuler N (2010) Rural housing is related to plant invasions in forests of southern Wisconsin, USA. Landscape Ecol 25:1505–1518

    Article  Google Scholar 

  • Geiger F, Snoo GR, Berendse F, Guerrero I, Morales MB, Onate JJ, Tscharntke, T (2010) Landscape composition influences farm management effects on farmland birds in winter: a pan-european approach. Agric Ecosyst Environ 139(4):571–577

    Article  Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multi model inference in ecology and evolution: Challenges and solutions. J Evol Biol 24(4):699–711

    Article  CAS  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Townshend J (2013) Mapas globales de alta resolución del cambio de la cubierta forestal del siglo XXI. ciencia, 342(6160), 850–853

  • Hays RL (1981) Estimating wildlife habitat variables. Fish and Wildlife Service. Biological Services Program FWS/OBS-81/47

  • Holland JD, Bert DG, Fahrig L (2004) Determining the spatial scale of Species’ response to Habitat. Bioscience 54:227

    Article  Google Scholar 

  • Jacoboski LI, Hartz SM (2020) Using functional diversity and taxonomic diversity to assess effects of afforestation of grassland on bird communities. Perspect Ecol Conserv 18(2):103–108. https://doi.org/10.1016/j.pecon.2020.04.001

    Article  Google Scholar 

  • Kluza DA, Griffin CR, Degraaf RM (2000) Housing developments in rural New England: Effects on forest birds. Anim Conserv 3(1):15–26. https://doi.org/10.1111/j.1469-1795.2000.tb00083.x

    Article  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  Google Scholar 

  • Long JS (1997) Regression models for categorical and limited dependent variables. Advanced Quantitative Techniques in the Social Sciences

  • López-Lanús B, Grilli P, Coconier E, Di Giacomo A, y Banchs R (2008) Categorización de las aves de la Argentina segúnsuestado de conservación.Informe de Aves Argentinas/AOP y Secretaría de Ambiente y Desarrollo Sustentable. Buenos Aires, Argentina

  • Luck GW, Carter A, Smallbone L (2013) Changes in bird functional diversity across multiple land uses: interpretations of functional redundancy depend on functional group identity.PloS one, 8(5), e63671

  • Macchi L, Baumann M, Bluhm H, Baker M, Levers C, Grau HR, Kuemmerle T (2019) Thresholds in forest bird communities along woody vegetation gradients in the South American Dry Chaco. J Appl Ecol 56(3):629–639. https://doi.org/10.1111/1365-2664.13342

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Oxford

    Google Scholar 

  • Marinelli MV, Bustos S, Viotto S, Clemente JP, Benitez J, Mari NA, Scavuzzo CM, Argañaraz JP (2019) Elaboración de la base de datos de incendios 1987–2018 para las Sierras de Córdoba mediante imágenes Landsat. IV Congreso Nacional de Ciencia y Tecnología Ambiental Florencio Varela, Argentina. 2 al 5 de Diciembre de 2019

  • Marzluff JM, Bowman R, Donnelly R (2001) A historical perspective on urban bird research: trends, terms, and approaches. In: En Marzluff JM, Bowman R, Donnelly R (eds) Avian ecology and conservation in an urbanizing world (chap. 1). Norwell. Kluwer Academic Publisher, MA

    Chapter  Google Scholar 

  • Marzluff J, Bowman R, Donnelly R (eds) (2012) Avian Ecology and Conservation in an Urbanizing World. Springer Science and Business Media

  • Mastrangelo ME, Weyland F, Villarino SH, Barral MP, Nahuelhual L, Laterra P (2014) Concepts and methods for landscape multi functionality and a unifying framework based on ecosystem services. Landscape Ecol 29(2):345–358. https://doi.org/10.1007/s10980-013-9959-9

    Article  Google Scholar 

  • Melo MA, Silva MAGD, Piratelli AJ (2020) Improvement of vegetation structure enhances bird functional traits and habitat resilience in an area of ongoing restoration in the Atlantic Forest. An Acad Bras Ciênc 92. https://doi.org/10.1590/0001-3765202020191241

  • Moreira F, Ferreira PG, Rego FC, Bunting S (2001) Landscape changes and breeding bird assemblages in northwestern Portugal: the role of fire. Landscape Ecol 16:175–187

    Article  Google Scholar 

  • Mouchet MA, Villeger S, Mason NW, Mouillot D (2010) Ecología funcional 24(4):867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x. Medidas de diversidad funcional: una visión general de su redundancia y su capacidad para discriminar las reglas de asamblea comunitaria

  • Paritsis J, Aizen M (2008) Effects of exotic conifer plantation son the biodiversity of under story plants, epigeal beetles and birds in Nothofagus dombeyi forests. For Ecol Manag 255:1575–1583

    Article  Google Scholar 

  • Pidgeon AM, Radeloff VC, Flather CH, Lepczyk CA, Clayton MK, Hawbaker TJ, Hammer RB (2007) Associations of forest bird species richness with housing and landscape patterns across the USA. Ecol Appl 17(7):1989–2010

    Article  CAS  Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press

  • R Core Team (2017) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Radeloff VC, Stewart SI, Hawbaker TJ, Gimmi U, Pidgeon AM, Flather CH, Helmers (2010) D.P. Housing growth in and near United States protected areas limits their conservation value. Proceedings of the National Academy of Sciences, 107(2), 940–945

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Ribeiro PJ, Diggle PJ (2001) Geo R: a package for geostatistical analysis. R-News 1(2):15–18

    Google Scholar 

  • Rodewald AD, Abrams MA (2002) Floristics and avian community structure: implications for regional changes in eastern forest composition. For Sci 48:267–272

    Google Scholar 

  • Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices. Ecol Monogr 80:469–484. https://doi.org/10.1890/08-2225.1

    Article  Google Scholar 

  • Sol D, Trisos C, Múrria C, Jeliazkov A, González-Lagos C, Pigot AL, Ricotta C, Swan CM, Tobias JA, Pavoine S (2020) The worldwide impact of urbanization on avian functional diversity. Ecol Lett 23(6):962–972. https://doi.org/10.1111/ele.13495

    Article  Google Scholar 

  • St-Louis V, Pidgeon AM, Clayton MK, Locke BA, Bash D, Radeloff VC (2009) Satellite image texture and vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico. Ecography 32:468–480

    Article  Google Scholar 

  • Stotz DF, Fitzpatrick JW, Parker TA III, Moskovits DK (1996) Neotropical birds: ecology and conservation. University of Chicago Press

  • TNC (2005) Gran Chaco americano ecoregional assessment. Fundación Vida Silvestre Argentina, Fundación para el Desarrollo Sustentable del Chaco (Del Chaco) and Wildife Conservation Society Bolivia (WCS), 1st edn. The Nature Conservancy, Buenos Aires

    Google Scholar 

  • Trzcinski MK, Fahrig L, Merriam G (1999) Independent effects of forest cover and fragmentation on the distribution of forest breeding birds. 9:586–5932

  • Vaccaro AS, y Bellocq MI (2019) Diversidad taxonómica y funcional de aves: Diferencias entre hábitats antrópicos en un bosque subtropical. Ecología Austral 29(3):391–404. https://doi.org/10.25260/EA.19.29.3.0.873

    Article  Google Scholar 

  • Van’t Hul JT, Lutz RS, Mathews NE (1997) Impact of prescribed burning on vegetation and bird abundance at Matagorda Island, Texas. J Range Manag 50:346–350

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002)Modern Applied Statistics with S, Springer-Verlag

  • Verga EG, Galetto L, Peluc SI (2020) Avian responses to forest fragmentation during the breeding and non-breeding seasons. Ibis 162(4):1237–1250. https://doi.org/10.1111/ibi.12828

    Article  Google Scholar 

  • Villéger S, Miranda JR, Hernández DF, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol Appl 20:1512–1522

    Article  Google Scholar 

  • Von Müller AR, Cingolani AM, Vaieretti MV, Renison D (2012) Ecología Austral 22(3):178–187. https://doi.org/10.25260/EA.12.22.3.0.1223. Estimación de carga bovina localizada a partir de frecuencia de deposiciones en un pastizal de montaña

  • Weyland F, Baudry J, Ghersa CM (2012) A fuzzy logic method to assess the relationship between landscape patterns and bird richness of the Rolling Pampas. Landscape Ecol 27(6):869–885

    Article  Google Scholar 

  • Wood EM, Pidgeon AM, Radeloff VC, Keuler NS (2013) Image texture predicts avian density and species richness. PLoS ONE 8:e63211

    Article  CAS  Google Scholar 

  • Xu X, Xie Y, Qi K, Luo Z, Wang X (2018) Detecting the response of bird communities and biodiversity to habitat loss and fragmentation due to urbanization. Sci Total Environ 624:1561–1576

    Article  CAS  Google Scholar 

  • Zak MR, Cabido M, Hodgson JG (2004) Do subtropical seasonal forests in the Gran Chaco, Argentina, have a future? Biology Conservation. 120:589–598

  • Zhou W, Zhu J, Liu H, Liu D, Wen D (2018) Overview of wetland bird survey methods. Chin J Wildl 39(3):588–593

    Google Scholar 

Download references

Acknowledgements

We are very grateful to field assistants for their help with fieldwork and to M. Gonzalez for helping us in programming and figures design. This research was supported by CONICET (PIP-2021, #11220200101287 2021) and FONCyT (PICT 2020 #1329). This study is part of the research of L.E.S. as a doctoral fellow at the National Scientific and Technical Research Council (CONICET). L.M.B. is a researcher at CONICET and professor at the Universidad Nacional de Cordoba. G.G.P is a researcher at CONICET and INTA; L.M.S. is a researcher at (CIRN-INTA) and J.R.A. has a doctoral fellowship at CONICET.

Funding

This work was supported by CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas (PIP-2021, #11220200101287 2021) and FONCyT (PICT 2020 #1329). This study is part of the research of L.E.S. as a doctoral fellow at the National Scientific and Technical Research Council (CONICET).

Author information

Authors and Affiliations

Authors

Contributions

L.E. Silvetti, writing of original draft, Data collection and curation, formal analysis. G. Gavier-Pizarro, conceptualization, data analysis guide, writing revision and editing. L.M. Solari, bird functional diversity analysis support. J.R. Arcamone, landcover change analysis support and L.M. Bellis conceptualization, texture analysis guide, writing revision and editing.

Corresponding authors

Correspondence to Luna Emilce Silvetti or Laura Marisa Bellis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

CommunicatedBy David Hawksworth.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvetti, L.E., Gavier Pizarro, G., Solari, L.M. et al. Land use changes and bird diversity in subtropical forests: urban development as the underlying factor. Biodivers Conserv 32, 385–403 (2023). https://doi.org/10.1007/s10531-022-02533-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-022-02533-3

Keywords

Navigation