Skip to main content

Advertisement

Log in

Inconsistent results from trait-based analyses of moth trends point to complex drivers of change

  • Original Research
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Trait-based approaches are advocated for their ability to predict population declines in data-deficient taxa and regions, potentially benefiting biodiversity conservation. Several reviews have, however, highlighted inconsistent results between traits studies, sometimes even for the same taxonomic group and biogeographical region. Traits studies of moths are commonplace and support this pattern of inconsistency, albeit with largely congruous results for traits relating to dietary and habitat breadth. We use the most comprehensive moth trends available, those for British macro-moths, to test the utility of traits approaches using a multi-model inference approach whilst controlling for phylogeny. We expected our results to add to the general pattern of inconsistency among moth traits studies. We found strong associations for several traits; woodland moths and those feeding on grasses and lichens or algae tend to be faring well, whereas declines were associated with univoltinism, narrow diet breadth, nocturnal flight period, overwintering as an egg, moorland habitat preference, and feeding on forbs. Abundance and distribution trends produced different outcomes, with no trait having significant associations for both measures of change. Our findings corroborate previous studies for certain traits, but for others they provide further evidence that traits analyses can yield inconclusive or contradictory results. We suggest that these inconsistencies are rooted in the complex drivers of population change, as well as incomplete knowledge of some traits. Overall, our study adds to evidence that unequivocal relationships between traits and population changes are lacking for most parameters, limiting the usefulness of trait-based approaches in predicting species declines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Traits data are available at https://doi.org/10.5285/5b5a13b6-2304-47e3-9c9d-35237d1232c6 and moth trends from Randle et al. (2019).

References

  • Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ (2011) Do species’ traits predict recent shifts at expanding range edges? Ecol Lett 14:677–689

    Article  PubMed  Google Scholar 

  • Bain CG, Bonn A, Stoneman R, Chapman S, Coupar A, Evans M, Gearey B, Howat M, Joosten H, Keenleyside C, Labadz J (2011) IUCN UK Commission of Inquiry on Peatlands. IUCN UK Peatland Programme

  • Barton K (2020) MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn

  • Bell JR, Blumgart D, Shortall CR (2020) Are insects declining and at what rate? an analysis of standardised, systematic catches of aphid and moth abundances across Great Britain. Insect Conserv Divers 13:115–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Betzholtz PE, Pettersson LB, Ryrholm N, Franzén M (2013) With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet. Proc R Soc B 280:20122305

    Article  PubMed  PubMed Central  Google Scholar 

  • Betzholtz PE, Franzén M, Forsman A (2017) Colour pattern variation can inform about extinction risk in moths. Anim Conserv 20:72–79

    Article  Google Scholar 

  • Boyes DH, Fox R, Shortall CR, Whittaker RJ (2019) Bucking the trend: the diversity of anthropocene ‘winners’ among British moths. Front Biogeogr 11:e43862

    Google Scholar 

  • Boyes DH, Evans DM, Fox R, Parsons MS, Pocock MJ (2021a) Is light pollution driving moth population declines? a review of causal mechanisms across the life cycle. Insect Conserv Divers 14:167–187

    Article  Google Scholar 

  • Boyes DH, Evans DM, Fox R, Parsons MS, Pocock MJ (2021b) Street lighting has detrimental impacts on local insect populations. Sci Adv. https://doi.org/10.1126/sciadv.abi8322

    Article  PubMed  PubMed Central  Google Scholar 

  • Burner RC, Selås V, Kobro S, Jacobsen RM, Sverdrup-Thygeson A (2021) Moth species richness and diversity decline in a 30-year time series in Norway, irrespective of species’ latitudinal range extent and habitat. J Insect Conserv 25:887–896

    Article  Google Scholar 

  • Chichorro F, Juslén A, Cardoso P (2019) A review of the relation between species traits and extinction risk. Biol Conserv 237:220–229

    Article  Google Scholar 

  • Forestry Commission (2021) Forestry Statistics 2021. Forest Research, Edinburgh https://www.forestresearch.gov.uk/tools-and-resources/statistics/forestry-statistics/. Accessed 8 October 2021

  • Conrad KF, Woiwod IP, Parsons M, Fox R, Warren MS (2004) Long-term population trends in widespread British moths. J Insect Conserv 8:119–136

    Article  Google Scholar 

  • Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP (2006) Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol Conserv 132:279–291

    Article  Google Scholar 

  • Cook PM, Tordoff GM, Davis TM, Parsons MS, Dennis EB, Fox R, Botham MS, Bourn NA (2022) Traits data for the butterflies and macro-moths of Great Britain and Ireland. Ecol. https://doi.org/10.1002/ecy.3670

    Article  Google Scholar 

  • Coulthard E, Norrey J, Shortall C, Harris WE (2019) Ecological traits predict population changes in moths. Biol Conserv 233:213–219

    Article  Google Scholar 

  • De Frenne P, Zellweger F, Rodriguez-Sanchez F, Scheffers BR, Hylander K, Luoto M, Vellend M, Verheyen K, Lenoir J (2019) Global buffering of temperatures under forest canopies. Nat Ecol Evol 3:744–749

    Article  PubMed  Google Scholar 

  • Dennis EB, Morgan BJT, Freeman SN, Brereton TM, Roy DB (2016) A generalized abundance index for seasonal invertebrates. Biom 72:1305–1314

    Article  Google Scholar 

  • Dennis EB, Morgan BJT, Freeman SN, Ridout MS, Brereton TM, Fox R, Powney GD, Roy DB (2017) Efficient occupancy model-fitting for extensive citizen-science data. PLoS ONE 12:e0174433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dennis EB, Brereton TM, Morgan BJT, Fox R, Shortall CR, Prescott T, Foster S (2019) Trends and indicators for quantifying moth abundance and occupancy in Scotland. J Insect Conserv 23:369–380

    Article  Google Scholar 

  • Diamond SE, Frame AM, Martin RA, Buckley LB (2011) Species’ traits predict phenological responses to climate change in butterflies. Ecol 92:1005–1012

    Article  Google Scholar 

  • Douglas DJ, Buchanan GM, Thompson P, Amar A, Fielding DA, Redpath SM, Wilson JD (2015) Vegetation burning for game management in the UK uplands is increasing and overlaps spatially with soil carbon and protected areas. Biol Conserv 191:243–250

    Article  Google Scholar 

  • Eskildsen A, Carvalheiro LG, Kissling WD, Biesmeijer JC, Schweiger O, Høye TT (2015) Ecological specialization matters: long-term trends in butterfly species richness and assemblage composition depend on multiple functional traits. Divers Distrib 21:792–802

    Article  Google Scholar 

  • Estrada A, Morales-Castilla I, Caplat P, Early R (2016) Usefulness of species traits in predicting range shifts. Trends Ecol Evol 31:190–203

    Article  PubMed  Google Scholar 

  • Field CD, Dise NB, Payne RJ, Britton AJ, Emmett BA, Helliwell RC, Hughes S, Jones L, Lees S, Leake JR, Leith ID (2014) The role of nitrogen deposition in widespread plant community change across semi-natural habitats. Ecosyst 17:864–877

    Article  CAS  Google Scholar 

  • Foden WB, Butchart SH, Stuart SN, Vié JC, Akçakaya HR, Angulo A, DeVantier LM, Gutsche A, Turak E, Cao L, Donner SD (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8(6):e65427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fox R (2013) The decline of moths in Great Britain: a review of possible causes. Insect Conserv Divers 6:5–19

    Article  Google Scholar 

  • Fox R, Randle Z, Hill L, Anders S, Wiffen L, Parsons MS (2011) Moths count: recording moths for conservation in the UK. J Insect Conserv 15:55–68

    Article  Google Scholar 

  • Fox R, Oliver TH, Harrower C, Parsons MS, Thomas CD, Roy DB (2014) Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes. J Appl Ecol 51:949–957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fox R, Dennis EB, Harrower CA, Blumgart D, Bell JR, Cook P, Davis AM, Evans-Hill LJ, Haynes F, Hill D, Isaac NJB, Parsons MS, Pocock MJO, Prescott T, Randle Z, Shortall CR, Tordoff GM, Tuson D, Bourn NAD (2021) The State of Britain’s Larger Moths 2021. Butterfly Conservation, Rothamsted Research and UK Centre for Ecology & Hydrology, Wareham, UK

  • Franzén M, Johannesson M (2007) Predicting extinction risk of butterflies and moths (Macrolepidoptera) from distribution patterns and species characteristics. J Insect Conserv 11:367–390

    Article  Google Scholar 

  • Franzén M, Forsman A, Betzholtz PE (2019) Variable color patterns influence continental range size and species–area relationships on islands. Ecosphere 10:e02577

    Article  Google Scholar 

  • Franzén M, Betzholtz PE, Pettersson LB, Forsman A (2020) Urban moth communities suggest that life in the city favours thermophilic multi-dimensional generalists. Proc R Soc B 287:20193014

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia RA, Araújo MB, Burgess ND, Foden WB, Gutsche A, Rahbek C, Cabeza M (2014) Matching species traits to projected threats and opportunities from climate change. J Biogeogr 41:724–735

    Article  PubMed  PubMed Central  Google Scholar 

  • Groenendijk D, Ellis WN (2011) The state of the Dutch larger moth fauna. J Insect Conserv 15:95–101

    Article  Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    Article  PubMed  CAS  Google Scholar 

  • Habel JC, Segerer A, Ulrich W, Torchyk O, Weisser WW, Schmitt T (2016) Butterfly community shifts over two centuries. Conserv Biol 30:754–762

    Article  PubMed  Google Scholar 

  • Habel JC, Ulrich W, Biburger N, Seibold S, Schmitt T (2019) Agricultural intensification drives butterfly decline. Insect Conserv Divers 12:289–295

    Google Scholar 

  • Hallmann CA, Zeegers T, van Klink R, Vermeulen R, van Wielink P, Spijkers H, van Deijk J, van Steenis W, Jongejans E (2020) Declining abundance of beetles, moths and caddisflies in the Netherlands. Insect Conserv Divers 13:127–139

    Article  Google Scholar 

  • Harrower CA, Bell JR, Blumgart D, Botham MS, Fox R, Isaac NJB, Roy DB, Shortall CR (2020) Moth trends for Britain and Ireland from the Rothamsted Insect Survey light-trap network (1968 to 2016). NERC Environ Inf Data Cent. https://doi.org/10.5285/0a7d65e8-8bc8-46e5-ab72-ee64ed851583

    Article  Google Scholar 

  • Hill MO, Mountford JO, Roy DB, Bunce RGH (1999) Ellenberg’s Indicator Values for British Plants. Institute of Terrestrial Ecology, Huntingdon, UK

    Google Scholar 

  • Hilty J, Merenlender A (2000) Faunal indicator taxa selection for monitoring ecosystem health. Biol Conserv 92:185–197

    Article  Google Scholar 

  • Hunter MD, Kozlov MV, Itämies J, Pulliainen E, Bäck J, Kyrö EM, Niemelä P (2014) Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths. Glob Change Biol 20:1723–1737

    Article  Google Scholar 

  • Kadlec T, Kotela MAAM, Novák I, Konvička M, Jarošík V (2009) Effect of land use and climate on the diversity of moth guilds with different habitat specialization. Community Ecol 10:152–158

    Article  Google Scholar 

  • Kirby KJ, Smart SM, Black HIJ, Bunce RGH, Corney PM, Smithers RJ (2005) Long term ecological change in British woodland (1971–2001). English Nat Res Rep. 653:1–139

    Google Scholar 

  • Kreyling J, Grant K, Hammerl V, Arfin-Khan MA, Malyshev AV, Peñuelas J, Pritsch K, Sardans J, Schloter M, Schuerings J, Jentsch A (2019) Winter warming is ecologically more relevant than summer warming in a cool-temperate grassland. Sci Rep 9:14632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunin WE (2008) On comparative analyses involving non-heritable traits: why half a loaf is sometimes worse than none. Evol Ecol Res 10:787–796

    Google Scholar 

  • Kyba CCM, Kuester T, Sánchez de Miguel A, Baugh K, Jechow A, Hölker F, Guanter L (2017) Artificially lit surface of earth at night increasing in radiance and extent. Sci Adv 3:e1701528

    Article  PubMed  PubMed Central  Google Scholar 

  • Littlewood NA, Dennis P, Pakeman RJ, Woodin SJ (2006) Moorland restoration aids the reassembly of associated phytophagous insects. Biol Conserv 132:395–404

    Article  Google Scholar 

  • Macgregor CJ, Thomas CD, Roy DB, Beaumont MA, Bell JR, Brereton T, Bridle JR, Dytham C, Fox R, Gotthard K, Hoffmann AA (2019) Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat Commun 10:1–10

    Article  CAS  Google Scholar 

  • MacLean SA, Beissinger SR (2017) Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob Change Biol 23:4094–4105

    Article  Google Scholar 

  • Mangels J, Fiedler K, Schneider FD, Blüthgen N (2017) Diversity and trait composition of moths respond to land-use intensification in grasslands: generalists replace specialists. Biodivers Conserv 26:3385–3405

    Article  Google Scholar 

  • Mattila N, Kaitala V, Komonen A, Kotiaho JS, Päivinen J (2006) Ecological determinants of distribution decline and risk of extinction in moths. Conserv Biol 20:1161–1168

    Article  PubMed  Google Scholar 

  • Mattila N, Kotiaho JS, Kaitala V, Komonen A (2008) The use of ecological traits in extinction risk assessments: a case study on geometrid moths. Biol Conserv 141:2322–2328

    Article  Google Scholar 

  • Mattila N, Kotiaho JS, Kaitala V, Komonen A, Päivinen J (2009) Interactions between ecological traits and host plant type explain distribution change in noctuid moths. Conserv Biol 23:703–709

    Article  PubMed  Google Scholar 

  • Merckx T, Van Dyck H (2019) Urbanization-driven homogenization is more pronounced and happens at wider spatial scales in nocturnal and mobile flying insects. Glob Ecol Biogeogr 28:1440–1455

    Article  Google Scholar 

  • Michielini JP, Dopman EB, Crone EE (2021) Changes in flight period predict trends in abundance of massachusetts butterflies. Ecol Lett 24:249–257

    Article  PubMed  Google Scholar 

  • Morecroft MD, Bealey CE, Beaumont DA, Benham S, Brooks DR, Burt TP, Critchley CNR, Dick J, Littlewood NA, Monteith DT, Scott WA (2009) The UK environmental change network: emerging trends in the composition of plant and animal communities and the physical environment. Biol Conserv 142:2814–2832

    Article  Google Scholar 

  • Nieto-Sánchez S, Gutiérrez D, Wilson RJ (2015) Long-term change and spatial variation in butterfly communities over an elevational gradient: driven by climate, buffered by habitat. Divers Distrib 21:950–961

    Article  Google Scholar 

  • Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2018) caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 1.0.1. https://CRAN.R-project.org/package=caper

  • Outhwaite CL, Gregory RD, Chandler RE, Collen B, Isaac NJ (2020) Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat Ecol Evol 4:384–392

    Article  PubMed  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nat 401:877–884

    Article  CAS  Google Scholar 

  • Paradis E, Schliep K (2019) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinform 35:526–528

    Article  CAS  Google Scholar 

  • Pearson RG, Stanton JC, Shoemaker KT, Aiello-Lammens ME, Ersts PJ, Horning N, Fordham DA, Raxworthy CJ, Ryu HY, McNees J, Akçakaya HR (2014) Life history and spatial traits predict extinction risk due to climate change. Nat Clim Chang 4:217–221

    Article  Google Scholar 

  • Pescott OL, Simkin JM, August TA, Randle Z, Dore AJ, Botham MS (2015) Air pollution and its effects on lichens, bryophytes, and lichen-feeding Lepidoptera: review and evidence from biological records. Biol J Linn Soc 115:611–635

    Article  Google Scholar 

  • Pilotto F, Kühn I, Adrian R, Alber R, Alignier A, Andrews C, Bäck J, Barbaro L, Beaumont D, Beenaerts N, Benham S (2020) Meta-analysis of multidecadal biodiversity trends in Europe. Nat Commun 11:1–11

    Article  CAS  Google Scholar 

  • Platts PJ, Mason SC, Palmer G, Hill JK, Oliver TH, Powney GD, Fox R, Thomas CD (2019) Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci Rep 9:15039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potocký P, Bartoňová A, Beneš J, Zapletal M, Konvička M (2018) Life-history traits of Central European moths: gradients of variation and their association with rarity and threats. Insect Conserv Divers 11:493–505

    Article  Google Scholar 

  • Pöyry J, Carvalheiro LG, Heikkinen RK, Kühn I, Kuussaari M, Schweiger O, Valtonen A, van Bodegom PM, Franzén M (2017) The effects of soil eutrophication propagate to higher trophic levels. Glob Ecol Biogeogr 26:18–30

    Article  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Randle Z, Evans-Hill LJ, Parsons MS, Tyner A, Bourn NAD, Davis T, Dennis EB, O’Donnell M, Prescott T, Tordoff GM, Fox R (2019) Atlas of Britain & Ireland’s Larger Moths. Pisces Publications, Florida

    Google Scholar 

  • Roth N, Hacker HH, Heidrich L, Friess N, García-Barros E, Habel JC, Thorn S, Müller J (2021) Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests. Ecography 44:1–12

    Article  Google Scholar 

  • Schöfl G (2016) reutils: Talk to the NCBI EUtils. R package version 0.2.3. https://CRAN.R-project.org/package=reutils

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Sloan TJ, Payne RJ, Anderson AR, Bain C, Chapman S, Cowie N, Gilbert P, Lindsay R, Mauquoy D, Newton AJ, Andersen R (2018) Peatland afforestation in the UK and consequences for carbon storage. Mires Peat 23:1–17

    Google Scholar 

  • Suggitt AJ, Gillingham PK, Hill JK, Huntley B, Kunin WE, Roy DB, Thomas CD (2011) Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120:1–8

    Article  Google Scholar 

  • Teder T (2020) Phenological responses to climate warming in temperate moths and butterflies: species traits predict future changes in voltinism. Oikos 129:1051–1060

    Article  Google Scholar 

  • Terry JCD, O’Sullivan JD, Rossberg AG (2022) No pervasive relationship between species size and local abundance trends. Nat Ecol Evol 6:140–144

    Article  PubMed  Google Scholar 

  • Thomsen PF, Jørgensen PS, Bruun HH, Pedersen J, Riis-Nielsen T, Jonko K, Słowińska I, Rahbek C, Karsholt O (2016) Resource specialists lead local insect community turnover associated with temperature–analysis of an 18-year full-seasonal record of moths and beetles. J Anim Ecol 85:251–261

    Article  PubMed  Google Scholar 

  • Valtonen A, Hirka A, Szőcs L, Ayres MP, Roininen H, Csóka G (2017) Long-term species loss and homogenization of moth communities in Central Europe. J Anim Ecol 86:730–738

    Article  PubMed  Google Scholar 

  • van Grunsven RH, van Deijk JR, Donners M, Berendse F, Visser ME, Veenendaal E, Spoelstra K (2020) Experimental light at night has a negative long-term impact on macro-moth populations. Curr Biol 30:R694–R695

    Article  PubMed  CAS  Google Scholar 

  • van Langevelde F, Braamburg-Annegarn M, Huigens ME, Groendijk R, Poitevin O, van Deijk JR, Ellis WN, van Grunsven RH, de Vos R, Vos RA, Franzén M (2018) Declines in moth populations stress the need for conserving dark nights. Glob Change Biol 24:925–932

    Article  Google Scholar 

  • Wagner DL (2020) Insect declines in the anthropocene. Ann Rev Entomol 65:457–480

    Article  CAS  Google Scholar 

  • Wagner DL, Fox R, Salcido DM, Dyer LA (2021) A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous. Proc Natl Acad Sci 118:e2002549117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nat 414:65–69

    Article  CAS  Google Scholar 

  • Wilson JF, Baker D, Cheney J, Cook M, Ellis M, Freestone R, Gardner D, Geen G, Hemming R, Hodgers D, Howarth S (2018) A role for artificial night-time lighting in long-term changes in populations of 100 widespread macro-moths in UK and Ireland: a citizen-science study. J Insect Conserv 22:189–196

    Article  Google Scholar 

  • Wong MK, Guénard B, Lewis OT (2019) Trait-based ecology of terrestrial arthropods. Biol Rev 94:999–1022

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the naturalists who have documented the natural history of British moths, enabling the traits database to be compiled, and the thousands of volunteers who contribute to moth recording and monitoring schemes. The Rothamsted Insect Survey, a National Capability, is funded by the Biotechnology and Biological Sciences Research Council (BBSRC) under Core Capability Grant BBS/E/C/000J0200. The NMRS is currently funded by Butterfly Conservation and Natural England.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RF and NB: conceptualized the study and together with GT, ED, PC and TD: developed ideas for analysis. ED: analysed the data. DB: summarised the literature and produced Fig. 1. GT and ED: led the writing of the manuscript, supported by RF. All authors contributed to drafts and approved the final manuscript.

Corresponding author

Correspondence to George M. Tordoff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Louise Ashton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 623 KB)

Supplementary file2 (XLSX 17 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tordoff, G.M., Dennis, E.B., Fox, R. et al. Inconsistent results from trait-based analyses of moth trends point to complex drivers of change. Biodivers Conserv 31, 2999–3018 (2022). https://doi.org/10.1007/s10531-022-02469-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-022-02469-8

Keywords

Navigation