Skip to main content

Amphibian phylogenetic diversity in the face of future climate change: not so good news for the chilean biodiversity hotspot

A Correction to this article was published on 11 August 2022

This article has been updated

Abstract

Climate change is projected to be the most extensive human-induced disturbance to occur on natural ecosystems, inducing changes in different biodiversity features including the evolutionary history of a region through the decline and loss of its phylogenetic diversity. Amphibians, given their ectothermic life cycle and critical conservation status, would potentially be exposed to extinction processes under conditions of climate change, with the corresponding loss of evolutionary history in regions of high biodiversity. This research addresses the effects of climate change on the evolutionary history of amphibians in the Chilean Biodiversity Hotspot, by estimating the PD (Phylogenetic diversity) and PE (Phylogenetic endemism) of 27 species. Using different RCP (RCP 4.5 and 8.5) and time frames (years 2050 and 2070), we create species distribution models (SDM) to evaluate the species range dynamics and the phylodiversity in the Hotspot. Also, given that Protected Areas (PA) are the main global strategy to ensure the conservation of species and their features, we evaluate the capacity of PA to conserve the evolutionary history in the Hotspot. Our results show a set of modeled species that will become extinct, or will experiment changes in their distributional ranges, inducing a clear decline of amphibian evolutionary history for the next 30 to 50 years, and a worrying low capacity of the PA to contain current and future PD and PE. Given the critical amphibian scenario, our results highlight the need for further research to improve the decision-making process in the hotspot area addressing the potential amphibian extinction risk, the lack of protection by the PA system, and the loss of evolutionary history as a key aspect of biodiversity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The datasets and codes generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Change history

References

  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin : an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38(5):541–545

  • Akçakaya HR, Butchart SH, Mace GM, Stuart SN, & Hilton Taylor (2006) Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Global Change Biol 12(11):2037–2043

    Article  Google Scholar 

  • Aragón P, Lobo JM, Olalla-Tárraga M, Rodríguez M (2010) The contribution of contemporary climate to ectothermic and endothermic vertebrate distributions in a glacial refuge. Global Ecol Biogeogr 19(1):40–49

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22(1):42–47

    PubMed  Article  Google Scholar 

  • Araujo MB, Alagador D, Cabeza M, Nogu es-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    PubMed  PubMed Central  Article  Google Scholar 

  • Araujo MB, Cabeza M, Thuiller W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biol 10:1618–1626

    Article  Google Scholar 

  • Armesto JJ, Manuschevich D, Mora A, Smith-Ramirez C, Rozzi R, Abarzúa AM, Marquet PA (2010) From the Holocene to the Anthropocene: A historical framework for land cover change in southwestern South America in the past 15,000 years. Land Use Policy 27(2):148–160

    Article  Google Scholar 

  • Asmyhr MG, Linke S, Hose G, Nipperess DA(2014) Systematic conservation planning for groundwater ecosystems using phylogenetic diversity.PLoS One, 9(12), e115132

  • Bacigalupe LD, Soto-Azat C, García‐Vera C, Barría‐Oyarzo I, Rezende EL (2017) Effects of amphibian phylogeny, climate and human impact on the occurrence of the amphibian‐killing chytrid fungus. Global Change Biol 23(9):3543–3553

    Article  Google Scholar 

  • Bacigalupe LD, Vásquez IA, Estay SA, Valenzuela-Sánchez A, Alvarado‐Rybak M, Peñafiel‐Ricaurte A, … & Soto‐Azat C(2019) The amphibian‐killing fungus in a biodiversity hotspot: identifying and validating high‐risk areas and refugia.Ecosphere, 10(5), e02724

  • Barbosa O, Villagra P (2015) Socio-ecological studies in urban and rural ecosystems in Chile. Earth stewardship. Springer, Cham, pp 297–311

    Chapter  Google Scholar 

  • Barker GM (2002) Phylogenetic diversity: a quantitative framework for measurement of priority and achievement in biodiversity conservation. Biol J Linn Soc 76(2):165–194

    Article  Google Scholar 

  • Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG, Thuiller W (2011) Impacts of climate change on the world’s most exceptional ecoregions. PNAS 108(6):2306–2311

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Beebee TJ, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125(3):271–285

    Article  Google Scholar 

  • Bivand R, Keitt T, Rowlingson B (2014) rgdal: Bindings for the Geospatial Data Abstraction Library. R package version 0.8–16. URLhttp://CRAN.R-project.org/package=rgdal.

  • Bobrowski M, Weidinger J, Schickhoff U (2021) Is new always better? frontiers in global climate datasets for modeling treeline species in the Himalayas. Atmosphere 12(5):543

    Article  Google Scholar 

  • Blaustein AR, Romansic JM, Kiesecker JM, Hatch AC (2003) Ultraviolet radiation, toxic chemicals and amphibian population declines. Divers Distrib 9(2):123–140

    Article  Google Scholar 

  • Brook BW, Akçakaya HR, Keith DA, Mace GM, Pearson RG, Araújo MB (2009) Integrating bioclimate with population models to improve forecasts of species extinctions under climate change. Biology Letters. 5: 723–725.

  • Buckley LB, Urban MC, Angilletta MJ, Crozier LG, Rissler LJ, Sears MW (2010) Can mechanism inform species’ distribution models? Ecol Lett 13(8):1041–1054

    PubMed  Google Scholar 

  • Cadotte MW, Jonathan Davies T (2010) Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Divers Distrib 16(3):376–385

    Article  Google Scholar 

  • Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanewsky CJ, Ryu Y, Wiens H (2013) J. J How does climate change cause extinction?. Proc. Royal Soc. B. 280(1750), 20121890

  • Campos FS, Lourenço-de-Moraes R, Llorente GA, Solé M(2017) Cost-effective conservation of amphibian ecology and evolution.Sci. Adv.3(6), e1602929

  • Carvalho SB, Velo-Antón G, Tarroso P, Portela AP, Barata M, Carranza S, Possingham HP (2017) Spatial conservation prioritization of biodiversity spanning the evolutionary continuum. Nat Ecol Evol 1:0151

    Article  Google Scholar 

  • Cerasoli F, D’Alessandro P, Biondi M (2022) Worldclim 2.1 versus Worldclim 1.4: Climatic niche and grid resolution affect between-version mismatches in Habitat Suitability Models predictions across Europe.Ecology and evolution, 12(2), e8430

  • Chapin Iii FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Mack MC (2000) Consequences of changing biodiversity. Nature 405(6783):234–242

    Article  Google Scholar 

  • Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LE, Sheldon BC (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320(5877):800–803

    CAS  PubMed  Article  Google Scholar 

  • Chen IC, Shiu HJ, Benedick S, Holloway JD, Chey VK, Barlow HS, Thomas CD (2009) Elevation increases in moth assemblages over 42 years on a tropical mountain. PNAS 106(5):1479–1483

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chown SL, Hoffmann AA, Kristensen TN, Angilletta Jr MJ, Stenseth NC, Pertoldi C (2010) Adapting to climate change: a perspective from evolutionary physiology. Climate Res 43(1–2):3–15

    Article  Google Scholar 

  • Collen B, Turvey ST, Waterman C, Meredith HMR, Kuhn TS, Baillie JEM et al (2011) Investing in evolutionary history: implementing a phylogenetic approach for mammal conservation. Philos Trans R Soc Lond B Biol Sci 366:2611–2622

    PubMed  PubMed Central  Article  Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025):53–58

    CAS  PubMed  Article  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105(18):6668–6672

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13(8):1030–1040

    PubMed  Google Scholar 

  • Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2018) How much does climate change threaten European forest tree species distributions? Glob Change Biol 24(3):1150–1163

    Article  Google Scholar 

  • Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23(11):619–630

    PubMed  Article  Google Scholar 

  • Environmental Systems Research Institute (2015) ArcGIS 10.3. 1

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1):1–10

    Article  Google Scholar 

  • Fajardo J, Lessmann J, Bonaccorso E, Devenish C, Muñoz J(2014) Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru).PLoS One. 9(12), e114367

  • Fielding AH, Bell JF(1997) A review of methods for the assessment of prediction errors in conservation presence/absence models.Environmental conservation,38–49

  • Foden WB, Butchart SH, Stuart SN, Vié JC, Akçakaya HR, Angulo A, … Donner SD(2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals.PloS one, 8(6), e65427

  • Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Reeves G (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445(7129):757

    CAS  PubMed  Article  Google Scholar 

  • Frishkoff LO, Karp DS, M’Gonigle LK, Mendenhall CD, Zook J, Kremen C, Daily GC (2014) Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345(6202):1343–1346

    CAS  PubMed  Article  Google Scholar 

  • Fritz SA, Rahbek C (2012) Global patterns of amphibian phylogenetic diversity. J Biogeogr 39(8):1373–1382

    Article  Google Scholar 

  • Gaston KJ, Fuller RA (2009) The sizes of species’ geographic ranges. J Appl Ecol 46(1):1–9

    Article  Google Scholar 

  • González-del-Pliego P, Freckleton RP, Edwards DP, Koo MS, Scheffers BR, Pyron RA, Jetz W (2019) Phylogenetic and trait-based prediction of extinction risk for data-deficient amphibians. Curr Biol 29(9):1557–1563

    PubMed  Article  CAS  Google Scholar 

  • González-Orozco CE, Pollock LJ, Thornhill AH, Mishler BD, Knerr N, Laffan SW, Kujala H (2016) Phylogenetic approaches reveal biodiversity threats under climate change. Nat Clim Change 6(12):1110

    Article  Google Scholar 

  • Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution models: with applications in R. Cambridge University Press

  • Gumbs R, Gray CL, Wearn OR, Owen NR(2018) Tetrapods on the EDGE: Overcoming data limitations to identify phylogenetic conservation priorities.PLoS One, 13(4), e0194680

  • Hannah L, Midgley GF, Andelman S, Araujo MB, Hughes G, Martinez-Meyer E, Pearson RG, Williams PH (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138

    Article  Google Scholar 

  • Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biol 12(12):2272–2281

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A(2004) The WorldClim interpolated global terrestrial climate surfaces. Version 1.3.

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatology: J Royal Meteorological Soc 25(15):1965–1978

    Article  Google Scholar 

  • Hocking DJ, Babbitt KJ (2014) Amphibian contributions to ecosystem services. Herpetol. Conserv Biol 9:1–17

    Google Scholar 

  • Hof C, Araújo MB, Jetz W, Rahbek C (2011) Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480(7378):516–519

    CAS  PubMed  Article  Google Scholar 

  • Hoffmann AA, Sgro CM (2018) Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: How much environmental control is needed? Integr Zool 13(4):355–371

    PubMed  PubMed Central  Article  Google Scholar 

  • Hoffmann M, Hilton-Taylor C, Angulo A, Böhm M, Brooks TM, Butchart SH, Darwall WR (2010) The impact of conservation on the status of the world’s vertebrates. Science 330(6010):1503–1509

    CAS  PubMed  Article  Google Scholar 

  • Huey RB, Kearney MR, Krockenberger A, Holtum JA, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Trans Royal Soc B: Biol Sci 367(1596):1665–1679

    Article  Google Scholar 

  • International Union for Conservation of Nature (IUCN) (2019) The IUCN Red List of Threatened Species. IUCN, Cambridge, UK. http://www.iucnredlist.org

    Google Scholar 

  • Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol 31(3):361–369

    Article  Google Scholar 

  • Jetz W, Pyron RA (2018) The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat Ecol Evol 2(5):850

    PubMed  Article  Google Scholar 

  • Jofré C, Mendez M(2011) The preservation of evolutionary value of chilean amphibians in protected areas In: Biodiversity Conservation in the Americas: Lessons and Policy Recommendations (Conservación de la Biodiversidad en las Américas: Lecciones y recomendaciones de política), en sus versiones en inglés y en español/portugués). 2011. Eugenio Figueroa (ed) Editorial FEN-Universidad de Chile. pp- 81–105

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12(4):334–350

    PubMed  Article  Google Scholar 

  • Keith DA, Akçakaya HR, Thuiller W, Midgley GF, Pearson RG, Phillips SJ, Rebelo TG (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4(5):560–563

    PubMed  PubMed Central  Article  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11):1463–1464

  • Kiesecker JM, Blaustein AR, Belden LK (2001) Complex causes of amphibian population declines. Nature 410(6829):681–684

    CAS  PubMed  Article  Google Scholar 

  • Kujala H, Moilanen A, Araujo MB, Cabeza M (2013) Conservation planning with uncertain climate change projections. PLoS ONE 8:e53315

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lee TM, Jetz W(2008) Future battlegrounds for conservation under global change. Proc. Royal Soc. B. 275(1640), 1261–1270

  • Li, Delong, Shuyao Wu, Laibao Liu, Yatong Zhang & Shuangcheng L. (2018). Vulnerability of the global terrestrial ecosystems to climate change. Global Change Biology 24(9): 4095–4106

  • Lips KR, Burrowes PA, Mendelson III, Parra-Olea G (2005) Amphibian Population Declines in Latin America: A Synthesis 1. Biotropica: The Journal of Biology and Conservation 37(2):222–226

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Loyola RD, Lemes P, Brum FT, Provete DB, Duarte LD (2014) Clade-specific consequences of climate change to amphibians in Atlantic Forest protected areas. Ecography 37(1):65–72

    Article  Google Scholar 

  • Mace GM, Gittleman JL, Purvis A (2003) Preserving the tree of life. Science 300(5626):1707–1709b

    CAS  PubMed  Article  Google Scholar 

  • Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah LE, E (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Biol Conserv 20(2):538–548

    Article  Google Scholar 

  • Marchese C (2015) Biodiversity hotspots: A shortcut for a more complicated concept. Glob Ecol Conserv 3:297–309

    Article  Google Scholar 

  • Mazel F, Pennell M, Cadotte M, Diaz S, Dalla Riva G, Grenyer R et al(2018) Is phylogenetic diversity a surrogate for functional diversity across clades and space? bioRxiv 243923; doi: https://doi.org/10.1101/243923

  • Mendelson JR, Lips KR, Gagliardo RW, Rabb GB, Collins JP, Diffendorfer JE, Wright KM (2006) Confronting amphibian declines and extinctions. Science 313:5783

    Article  Google Scholar 

  • Menéndez-Guerrero PA, Green DM, Davies TJ (2020) Climate change and the future restructuring of Neotropical anuran biodiversity. Ecography 43(2):222–235

    Article  Google Scholar 

  • Meredith HMR, Buren CV, Antwis RE (2016) Making amphibian conservation more effective. Conserv Evid 13:1–5

    Google Scholar 

  • Merow C, Allen JM, Aiello-Lammens M, Silander JA Jr (2016) Improving niche and range estimates with Maxent and point process models by integrating spatially explicit information. Global Ecol Biogeogr 25(8):1022–1036

    Article  Google Scholar 

  • Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 341(6145):504–508

    CAS  PubMed  Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca D, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    CAS  PubMed  Article  Google Scholar 

  • Newbold T, Hudson L, Hill S et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. https://doi.org/10.1038/nature14324

    CAS  Article  PubMed  Google Scholar 

  • Nolan C, Overpeck JT, Allen JR, Anderson PM, Betancourt JL, Binney HA, Jackson ST (2018) Past and future global transformation of terrestrial ecosystems under climate change. Science 361(6405):920–923

    CAS  PubMed  Article  Google Scholar 

  • Nowakowski AJ, Frishkoff LO, Thompson ME, Smith TM, Todd BD (2018) Phylogenetic homogenization of amphibian assemblages in human-altered habitats across the globe.PNAS,201714891

  • Northrup JM, Rivers JW, Yang Z, Betts MG (2019) Synergistic effects of climate and land-use change influence broad‐scale avian population declines. Glob Change Biol 25(5):1561–1575

    Article  Google Scholar 

  • Nunes AL, Fill JM, Davies SJ, Louw M, Rebelo AD, Thorp CJ, … Measey J(2019) A global meta-analysis of the ecological impacts of alien species on native amphibians. Proc. Royal Soc. B. 286(1897), 20182528

  • Nunez S, Arets E, Alkemade R, Verwer C, Leemans R (2019) Assessing the impacts of climate change on biodiversity: is below 2° C enough? Clim Change 154(3):351–365

    Article  Google Scholar 

  • Nussey DH, Clutton-Brock TH, Albon SD, Pemberton J, Kruuk LE (2005) Constraints on plastic responses to climate variation in red deer. Biol Lett 1(4):457–460

    PubMed  PubMed Central  Article  Google Scholar 

  • Owen NR, Gumbs R, Gray CL, Faith DP (2019) Global conservation of phylogenetic diversity captures more than just functional diversity. Nat Commun 10(1):1–3

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    CAS  PubMed  Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 12(5):361–371

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JP, Fernandez-Manjarrés JF, Chini L (2010) Scenarios for global biodiversity in the 21st century. Science 330(6010):1496–1501

    CAS  PubMed  Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions (MPB-49), vol 49. Princeton University Press

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, … Williams SE(2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being.Science, 355(6332)

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175

    Article  Google Scholar 

  • Pollock LJ, Thuiller W, Jetz W (2017) Large conservation gains possible for global biodiversity facets. Nature 546(7656):141

    CAS  PubMed  Article  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315(5808):95–97

    PubMed  Article  CAS  Google Scholar 

  • Possingham HP, Wilson KA, Andelman SJ, Vynne CH(2006) Protected Areas. Goals, Limitations, and Design. In:, Groom MJ, Meffe GK, Carroll CR, editors. Principles of Biol. Conserv. pp. 507– 549

  • Pounds JA (2001) Climate and amphibian declines. Nature 410(6829):639–640

    CAS  PubMed  Article  Google Scholar 

  • Poggio L, Simonetti E, Gimona A (2018) Enhancing the WorldClim data set for national and regional applications. Sci Total Environ 625:1628–1643

    CAS  PubMed  Article  Google Scholar 

  • Purvis A, Gittleman JL, Cowlishaw G, Mace GM(2000) Predicting extinction risk in declining species. Proc. Royal Soc. B. 267(1456), 1947–1952

  • Radchuk V, Reed T, Borràs A, Senar JC, Kramer-Schadt S (2019) Adaptive responses of animals to climate change are most likely insufficient. Nat Commun 10:3109

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Redding DW, Mooers AO (2015) Ranking mammal species for conservation and the loss of both phylogenetic and trait diversity. PLoS ONE 10:1–11 pmid:26630179

    Article  CAS  Google Scholar 

  • Riquelme C, Estay SA, López R, Pastore H, Soto-Gamboa M, Corti P (2018) Protected areas’ effectiveness under climate change: a latitudinal distribution projection of an endangered mountain ungulate along the Andes Range. PeerJ 6:e5222

    PubMed  PubMed Central  Article  Google Scholar 

  • Rodrigues ASL, Brooks TM, Gaston KJ (2005) Integrating phylogenetic diversity in the selection of priority areas for conservation: does it make a difference. Phylogeny and conservation 8:101–119

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60

    CAS  PubMed  Article  Google Scholar 

  • Rosauer DAN, Laffan SW, Crisp MD, Donnellan SC, Cook LG (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol Ecol 18(19):4061–4072

    PubMed  Article  Google Scholar 

  • Rosauer DF, Jetz (2015) Phylogenetic endemism in terrestrial mammals. Global Ecol Biogeogr 24(2):168–179

    Article  Google Scholar 

  • Ruiz-Aravena M, Gonzalez‐Mendez A, Estay SA, Gaitán‐Espitia JD, Barria‐Oyarzo I, Bartheld JL, Bacigalupe LD (2014) Impact of global warming at the range margins: phenotypic plasticity and behavioral thermoregulation will buffer an endemic amphibian. Ecol Evol 4(23):4467–4475

    PubMed  PubMed Central  Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Leemans R (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774

    CAS  PubMed  Article  Google Scholar 

  • Sirois-Delisle C, Kerr JT (2018) Climate change-driven range losses among bumblebee species are poised to accelerate. Sci Rep 8(1):1–10

    CAS  Article  Google Scholar 

  • Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel AN, Beukema W, De la Riva I (2019) Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363(6434):1459–1463

    CAS  PubMed  Article  Google Scholar 

  • Sinervo B, Mendez-De-La-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, Gadsden H (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328(5980):894–899

    CAS  PubMed  Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Hughes L (2004) Extinction risk from climate change. Nature 427(6970):145

    CAS  PubMed  Article  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Global Change Biol 10(12):2020–2027

    Article  Google Scholar 

  • Thuiller W, Albert C, Araujo MB, Berry PM, Cabeza M, Guisan A, Sykes MT (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol 9(3–4):137–152

    Article  Google Scholar 

  • Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470(7335):531

    CAS  PubMed  Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS 102(23):8245–8250

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tucker CM, Cadotte MW (2013) Unifying measures of biodiversity: understanding when richness and phylogenetic diversity should be congruent. Divers Distrib 19(7):845–854

    Article  Google Scholar 

  • Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA, Pavoine S (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92(2):698–715

    PubMed  Article  Google Scholar 

  • Urban MC (2015) Accelerating extinction risk from climate change. Science 348(6234):571–573

    CAS  PubMed  Article  Google Scholar 

  • Vidal MA, Díaz-Páez H(2012) Biogeography of Chilean herpetofauna: biodiversity hotspot and extinction risk.Global advances in biogeography. Rijeka: InTech,137–154

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395

    CAS  PubMed  Article  Google Scholar 

  • Warren R, VanDerWal J, Price J, Welbergen JA, Atkinson I, Ramirez-Villegas J, Lowe J (2013) Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat Clim Change 3(7):678

    Article  Google Scholar 

  • Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, Whyte KP (2020) Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci Total Environ 733:137782

    CAS  PubMed  Article  Google Scholar 

  • Whiles MR, Lips KR, Pringle CM, Kilham SS, Bixby RJ, Brenes R, Connelly S, Colon-Gaud JC, Hunte-Brown M, Huryn AD, Montgomery C, Peterson S (2006) The effects of amphibian population declines on the structure and function of neotropical stream ecosystems. Front Ecol Environ 4:27–34

    Article  Google Scholar 

  • Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G(2008) Towards an integrated framework for assessing the vulnerability of species to climate change.PLoS biology.6(12), e325

  • Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 4(28):199–204

    Article  Google Scholar 

  • Young HS, McCauley DJ, Galetti M, Dirzo R (2016) Patterns, causes, and consequences of anthropocene defaunation. Annu Rev Ecol Evol Syst 47:333–358

    Article  Google Scholar 

Download references

Acknowledgements

CA acknowledges to FONDECYT project 1211587. LJR acknowledges to CONICYT Doctoral grant 21161575. LDB acknowledges to FONDECYT project 1150029. OB acknowledges to Institute of Ecology and Biodiversity (IEB) grants ANID: ACE210006 and FB210006. NV acknowledges to Fellowship for Doctoral thesis CONICYT AT24080118 and FONDECYT project 3120208. MM acknowledges to FONDECYT-ANID 1200419. The authors declare they do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

LJR, LDB and OB conceptualized the idea and developed the methods. LJR and LDB did the analysis. LJR, OB and LDB wrote the paper. CSA, MA, CC, MM, FM, FR, MV and NV contributed with data, samples and with the final writing of the paper.

Corresponding author

Correspondence to Leonardo J. Rodriguez.

Additional information

Communicated by Dirk Sven Schmeller.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, L.J., Barbosa, O.A., Azat, C. et al. Amphibian phylogenetic diversity in the face of future climate change: not so good news for the chilean biodiversity hotspot. Biodivers Conserv 31, 2587–2603 (2022). https://doi.org/10.1007/s10531-022-02444-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-022-02444-3

Keywords

  • Climate change
  • Species distribution models
  • Global change