Skip to main content

Relict populations of Araucaria angustifolia will be isolated, poorly protected, and unconnected under climate and land-use change in Brazil

Abstract

One of Brazil’s most threatened tropical biome is the Atlantic Forest. This biome has distinct forest formations, as the Araucaria Mixed Forest, a sub-tropical ecosystem distributed through southern and southeastern Brazil, surrounded by Dense Ombrophilous Forest. The defining tree species of Araucaria Mixed Forest is Araucaria angustifolia (known as Araucaria), an endangered, relict, and historically managed conifer. Due to unsustainable exploitation during the twentieth century, the main strategy for Araucaria preservation was the creation of protected areas. However, protected areas’ coverage within Atlantic Forest remains scarce and might not prevent connectivity between species’ remnant patches. We thus evaluated the potential connectivity of projected Araucaria distribution in the present and future under climate change and current land-use, using a species distribution model with graph theory. Araucaria’s current connectivity—through the Mixed and Dense Forests—ranges entirely through the landscape, with 715 connecting arcs (212 within protected areas). However, only 7% of its current distribution is encompassed by protected areas. Under future climate change in 2085, connectivity is expected to decrease by 77% compared with current projections. In the future, Araucaria subpopulations will be concentrated at higher elevations in unprotected suitable areas. We suggest that specific regions in southern and southeastern Brazil might be targeted as priority conservation areas jointly to major existing protected areas. These areas will sustain Araucaria connectivity and protection. As a keystone species, by safeguarding Araucaria we protect the socioecological system in southern and southeast Brazil and potentially promote forest expansion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The R script to reproduce entirely the results of the study is available on the GitHub digital repository (see git github.com/masemuta/araucaria_sdm).

References

  1. Adan N, Atchison J, Reis MS, Peroni N (2016) Local knowledge, use and management of ethnovarieties of Araucaria angustifolia (Bert.) Ktze. in the plateau of Santa Catarina. Brazil Econ Bot 70:353–364. https://doi.org/10.1007/s12231-016-9361-z

    Article  Google Scholar 

  2. Anderson-Teixeira KJ, Miller AD, Mohan JE et al (2013) Altered dynamics of forest recovery under a changing climate. Glob Chang Biol 19:2001–2021. https://doi.org/10.1111/gcb.12194

    Article  PubMed  Google Scholar 

  3. Araújo MB, Anderson RP, Barbosa AM et al (2019) Standards for distribution models in biodiversity assessments. Sci Adv 5(1):4858

    Article  Google Scholar 

  4. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. https://doi.org/10.1016/j.tree.2006.09.010

    Article  PubMed  Google Scholar 

  5. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol. https://doi.org/10.1111/j.2041-210X.2011.00172.x

    Article  Google Scholar 

  6. Bellard C, Leclerc C, Leroy B et al (2014) Vulnerability of biodiversity hotspots to global change. Glob Ecol Biogeogr 23:1376–1386. https://doi.org/10.1111/geb.12228

    Article  Google Scholar 

  7. Bittencourt JVM, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small, fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil. Heredity (edinb) 99:580–591. https://doi.org/10.1038/sj.hdy.6801019

    CAS  Article  Google Scholar 

  8. Bogoni JA, Batista GO, Graipel ME, Peroni N (2020a) Good times, bad times: resource pulses influence mammal diversity in meridional Brazilian highlands. Sci Total Environ 734:139473. https://doi.org/10.1016/j.scitotenv.2020.139473

    CAS  Article  PubMed  Google Scholar 

  9. Bogoni JA, Muniz-Tagliari M, Peroni N, Peres CA (2020b) Testing the keystone plant resource role of a flagship subtropical tree species (Araucaria angustifolia) in the Brazilian Atlantic Forest. Ecol Indic 118:106778. https://doi.org/10.1016/j.ecolind.2020.106778

    Article  Google Scholar 

  10. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  11. Carnaval AC, Hickerson MJ, Haddad CFB et al (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323(80):785–789. https://doi.org/10.1126/SCIENCE.1166955

  12. Castro MB, Barbosa ACMC, Pompeu PV et al (2019) Will the emblematic southern conifer Araucaria angustifolia survive to climate change in Brazil? Biodivers Conserv 29:591–607. https://doi.org/10.1007/s10531-019-01900-x

    Article  Google Scholar 

  13. Caten CT, Lima-Ribeiro MD, da Silva Jr NJ et al. (2017) Evaluating the effectiveness of Brazilian protected areas under climate change. Trop Conserv Sci 10:194008291772202. https://doi.org/10.1177/1940082917722027

    Article  Google Scholar 

  14. da Quinteiro MMC, BR Alexandre, LMS Magalhães (2019) Brazilian pine (Araucaria angustifolia (Bertol.) Kuntze) ethnoecology in the mantiqueira atlantic forest. Floresta e Ambient 26:1–7. https://doi.org/10.1590/2179-8087.018516

    Article  Google Scholar 

  15. Chape S, Harrison J, Spalding M, Lysenko I (2005) Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos Trans R Soc Lond B 360:443–455. https://doi.org/10.1098/rstb.2004.1592

    CAS  Article  Google Scholar 

  16. Chen I-C, Hill JK, Ohlemüller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(80):1024–1026. https://doi.org/10.1126/science.1206432

    CAS  Article  PubMed  Google Scholar 

  17. de Morais PJ, Corá Segat J, Baretta D et al (2017) Soil macrofauna as a soil quality indicator in native and replanted Araucaria angustifolia forests. Artic Rev Bras Cienc Solo 41:160261. https://doi.org/10.1590/18069657rbcs20160261

    CAS  Article  Google Scholar 

  18. Dormann CF, Schymanski SJ, Cabral J et al (2012) Correlation and process in species distribution models: bridging a dichotomy. J Biogeogr 39:2119–2131. https://doi.org/10.1111/j.1365-2699.2011.02659.x

    Article  Google Scholar 

  19. Duarte LDS, Dos-Santo MMG, Hartz SM, Pillar VD (2006) Role of nurse plants in Araucaria Forest expansion over grassland in south Brazil. Austral Ecol 31:520–528. https://doi.org/10.1111/j.1442-9993.2006.01602.x

    Article  Google Scholar 

  20. Elith J, Graham CH (2009) Do they? How do they? Why do they differ? on finding reasons for differing performances of species distribution models. Ecography (cop) 32:66–77. https://doi.org/10.1111/j.1600-0587.2008.05505.x

    Article  Google Scholar 

  21. Ferro VG, Lemes P, Melo AS, Loyola R (2014) The reduced effectiveness of protected areas under climate change threatens atlantic forest tiger moths. PLoS ONE. https://doi.org/10.1371/journal.pone.0107792

    Article  PubMed  PubMed Central  Google Scholar 

  22. Foden WB, Young BE, Akçakaya HR et al (2019) Climate change vulnerability assessment of species. Wiley Interdiscip Rev Clim Chang 10:e551. https://doi.org/10.1002/wcc.551

    Article  Google Scholar 

  23. Fonseca CR, Ganade G, Baldissera R et al (2009) Towards an ecologically-sustainable forestry in the atlantic forest. Biol Conservat 142(6):1209–1219. https://doi.org/10.1016/j.biocon.2009.02.017

    Article  Google Scholar 

  24. Fourcade Y, Besnard AG, Secondi J (2018) Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob Ecol Biogeogr 27:245–256. https://doi.org/10.1111/geb.12684

    Article  Google Scholar 

  25. Garcia RA, Cabeza M, Rahbek C, Araújo MB (2014) Multiple dimensions of climate change and their implications for biodiversity. Science 344:1247579. https://doi.org/10.1126/science.1247579

    CAS  Article  PubMed  Google Scholar 

  26. GBIF (2021) GBIF: global biodiversity information facility. Occur Download. https://doi.org/10.15468/dd.nezhn5

    Article  Google Scholar 

  27. Gray CL, Hill SLL, Newbold T et al (2016) Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat Commun 7:1–7. https://doi.org/10.1038/ncomms12306

    CAS  Article  Google Scholar 

  28. Hannah L, Midgley G, Andelman S et al (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138. https://doi.org/10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2

    Article  Google Scholar 

  29. Hijmans RJ (2012) Cross-validation of species distribution models : removing spatial sorting bias and calibration with a null model. Ecology 93:679–688. https://doi.org/10.1890/11-0826.1

    Article  PubMed  Google Scholar 

  30. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  31. Iob G, Vieira EM (2008) Seed predation of Araucaria angustifolia (Araucariaceae) in the Brazilian Araucaria Forest: Influence of deposition site and comparative role of small and “large” mammals. Plant Ecol 198:185–196. https://doi.org/10.1007/s11258-007-9394-6

    Article  Google Scholar 

  32. Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest : ecological findings and conservation initiatives. New Phytol. https://doi.org/10.1111/nph.12989

    Article  PubMed  Google Scholar 

  33. Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40:1194–1199. https://doi.org/10.1002/grl.50256

    Article  Google Scholar 

  34. Lauterjung MB, Bernardi AP, Montagna T et al (2018) Phylogeography of Brazilian pine (Araucaria angustifolia): integrative evidence for pre-Columbian anthropogenic dispersal. Tree Genet Genomes 14:36. https://doi.org/10.1007/s11295-018-1250-4

    Article  Google Scholar 

  35. Liu C, White M, Newell G (2011) Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography (cop) 34:232–243. https://doi.org/10.1111/j.1600-0587.2010.06354.x

    CAS  Article  Google Scholar 

  36. Marchioro CA, Santos KL, Siminski A (2020) Present and future of the critically endangered Araucaria angustifolia due to climate change and habitat loss. For Int J Res 93:401–410. https://doi.org/10.1093/forestry/cpz066

    Article  Google Scholar 

  37. Matisziw TC, Murray AT (2009) Connectivity change in habitat networks. Landsc Ecol 24:89–100. https://doi.org/10.1007/s10980-008-9282-z

    Article  Google Scholar 

  38. Mecke R, Galileo MHM, Engels W (2001) New records of insects associated with Araucaria trees: Phytophagous coleoptera and hymenoptera and their natural enemies. Stud Neotrop Fauna Environ 36:113–124. https://doi.org/10.1076/snfe.36.2.113.2132

    Article  Google Scholar 

  39. Mello AJM, Peroni N (2015) Cultural landscapes of the Araucaria Forests in the northern plateau of Santa Catarina Brazil. J Ethnobiol Ethnomed 11:51. https://doi.org/10.1186/s13002-015-0039-x

    Article  Google Scholar 

  40. Metzger JP (2009) Conservation issues in the Brazilian Atlantic forest. Biol Conserv 142:1138–1140. https://doi.org/10.1016/J.BIOCON.2008.10.012

    Article  Google Scholar 

  41. Metzger JP, Bustamante MMC, Ferreira J et al (2019) Why Brazil needs its legal reserves. Perspect Ecol Conserv 17:91–103. https://doi.org/10.1016/j.pecon.2019.07.002

    Article  Google Scholar 

  42. Monzón J, Moyer-Horner L, Palamar MB (2011) Climate change and species range dynamics in protected areas. Bioscience 61:752–761. https://doi.org/10.1525/bio.2011.61.10.5

    Article  Google Scholar 

  43. Moreira M, Zucchi MI, Gomes JE et al (2016) Araucaria angustifolia aboveground roots presented high arbuscular mycorrhizal fungal colonization and diversity in the Brazilian Atlantic Forest. Pedosphere 26:561–566. https://doi.org/10.1016/S1002-0160(15)60065-0

    CAS  Article  Google Scholar 

  44. Neves DM, Dexter KG, Pennington RT et al (2017) Dissecting a biodiversity hotspot: the importance of environmentally marginal habitats in the Atlantic Forest Domain of South America. Divers Distrib 23:898–909. https://doi.org/10.1111/ddi.12581

    Article  Google Scholar 

  45. de Oliveira G, Lima-Ribeiro MS, Terribile LC et al (2015) Conservation biogeography of the Cerrado’s wild edible plants under climate change: linking biotic stability with agricultural expansion. Am J Bot 102:870–877. https://doi.org/10.3732/ajb.1400352

    Article  PubMed  Google Scholar 

  46. Oliveira U, Soares-Filho BS, Paglia AP et al (2017) Biodiversity conservation gaps in the Brazilian protected areas. Sci Rep 7:9141. https://doi.org/10.1038/s41598-017-08707-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Parmesan CN (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:636–637. https://doi.org/10.2307/annurev.ecolsys.37.091305.30000024

    Article  Google Scholar 

  48. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 6:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  49. Porfirio LL, Harris RMB, Lefroy EC et al (2014) Improving the use of species distribution models in conservation planning and management under climate change. PLoS ONE 9:e113749. https://doi.org/10.1371/journal.pone.0113749

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Qiao H, Soberón J, Peterson AT (2015) No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol Evol 6:1126–1136. https://doi.org/10.1111/2041-210X.12397

    Article  Google Scholar 

  51. Quantum GIS Development Team (2018) Quantum GIS geographic information system. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  52. R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  53. Reis MS, Ladio A, Peroni N (2014) Landscapes with Araucaria in South America: evidence for a cultural dimension. Ecol Soc. https://doi.org/10.5751/ES-06163-190243

    Article  Google Scholar 

  54. Reis MS, Montagna T, Mattos AG et al (2018) Domesticated landscapes in Araucaria forests, Southern Brazil: a multispecies local conservation-by-use system. Front Ecol Evol 6:11. https://doi.org/10.3389/fevo.2018.00011

    Article  Google Scholar 

  55. Rezende CL, Scarano FR, Assad ED et al (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspect Ecol Conserv. https://doi.org/10.1016/J.PECON.2018.10.002

    Article  Google Scholar 

  56. Riahi K, Rao S, Krey V et al (2011) RCP 8.5-a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. https://doi.org/10.1007/s10584-011-0149-y

    CAS  Article  Google Scholar 

  57. Robinson M, De Souza JG, Maezumi SY et al (2018) Uncoupling human and climate drivers of late Holocene vegetation change in southern Brazil. Sci Rep 8:7800. https://doi.org/10.1038/s41598-018-24429-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Rodrigues ASL, Pilgrim JD, Lamoreux JF et al (2006) The value of the IUCN red List for conservation. Trends Ecol Evol 21:71–76. https://doi.org/10.1016/j.tree.2005.10.010

    Article  PubMed  Google Scholar 

  59. Rylands AB, Brandon K (2005) Brazilian protected areas. Conserv Biol 19:612–618. https://doi.org/10.1111/j.1523-1739.2005.00711.x

    Article  Google Scholar 

  60. Scarano FR, Ceotto P (2015) Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodivers Conserv 24:2319–2331. https://doi.org/10.1007/s10531-015-0972-y

    Article  Google Scholar 

  61. Schneider LCA, da Silva MT, Agostinetto L, Siegloch AE (2018) Deforestation in mixed ombrophilous forest in the serrana region of Santa Catarina. Rev Árvore. https://doi.org/10.1590/1806-90882018000200006

    Article  Google Scholar 

  62. Souza AF (2020) A review of the structure and dynamics of araucaria mixed forests in southern Brazil and northern Argentina. N Z J Bot. https://doi.org/10.1080/0028825X.2020.1810712

    Article  Google Scholar 

  63. Souza CM, Z. Shimbo J, Rosa MR, et al (2020) Reconstructing three decades of land use and land cover changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens 12:2735. https://doi.org/10.3390/rs12172735

    Article  Google Scholar 

  64. Stefenon VM, Gailing O, Finkeldey R (2007) Genetic structure of Araucaria angustifolia (Araucariaceae) populations in Brazil: Implications for the in situ conservation of genetic resources. Plant Biol 9:516–525. https://doi.org/10.1055/s-2007-964974

    CAS  Article  PubMed  Google Scholar 

  65. Sühs RB, Giehl ELH, Peroni N (2018) Interaction of land management and araucaria trees in the maintenance of landscape diversity in the highlands of southern Brazil. PLoS ONE 13:e0206805. https://doi.org/10.1371/journal.pone.0206805

    CAS  Article  Google Scholar 

  66. Tagliari MM, Levis C, Flores BM et al (2021) Collaborative management as a way to enhance Araucaria Forest resilience. Perspect Ecol Conserv 19:131–142. https://doi.org/10.1016/J.PECON.2021.03.002

    Article  Google Scholar 

  67. Tagliari MM, Peroni N (2018) Local varieties of Araucaria angustifolia (Bertol.) Kuntze (Pinales : Araucariaceae) in southern Brazil: a brief discussion about landscape domestication. Biotemas 31:59–68. https://doi.org/10.5007/2175-7925.2018v31n3p59

    Article  Google Scholar 

  68. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD: a platform for ensemble forecasting of species distributions. Ecography (cop). https://doi.org/10.1111/j.1600-0587.2008.05742.x

    Article  Google Scholar 

  69. van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  70. Varela S, Lima-Ribeiro MS, Terribile LC (2015) A short guide to the climatic variables of the last glacial maximum for biogeographers. PLoS ONE 10:e0129037. https://doi.org/10.1371/JOURNAL.PONE.0129037

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vibrans AC, McRoberts RE, Moser P, Nicoletti AL (2013) Using satellite image-based maps and ground inventory data to estimate the area of the remaining Atlantic forest in the Brazilian state of Santa Catarina. Remote Sens Environ 130:87–95. https://doi.org/10.1016/j.rse.2012.10.023

    Article  Google Scholar 

  72. Vieilledent G, Cornu C, Cuní Sanchez A et al (2013) Vulnerability of baobab species to climate change and effectiveness of the protected area network in Madagascar: towards new conservation priorities. Biol Conserv 166:11–22. https://doi.org/10.1016/j.biocon.2013.06.007

    Article  Google Scholar 

  73. Watson JEM, Dudley N, Segan DB, Hockings M (2014) The performance and potential of protected areas. Nature 515:67–73. https://doi.org/10.1038/nature13947

    CAS  Article  PubMed  Google Scholar 

  74. Wilson OJ, Walters RJ, Mayle FE et al (2019) Cold spot microrefugia hold the key to survival for Brazil’s Critically Endangered Araucaria tree. Glob Chang Biol 25:4339–4351. https://doi.org/10.1111/gcb.14755

    Article  PubMed  Google Scholar 

  75. Wrege MS, De SVA, Fritzsons E et al (2016) Predicting current and future geographical distribution of Araucaria in Brazil for fundamental niche modeling. Environ Ecol Res 4:269–279. https://doi.org/10.13189/eer.2016.040506

    Article  Google Scholar 

  76. Zhang L, Liu S, Sun P et al (2015) Consensus forecasting of species distributions: the effects of niche model performance and niche properties. PLoS ONE 10:e0120056. https://doi.org/10.1371/journal.pone.0120056

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES—Financial Code 001 (Ph.D. scholarship for MMT and JA—88882.438725/2019 and 88882.438727/2019-01 respectively); Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq—for productivity scholarship for NP (Process 310443/2015-6) and TCLS (Process 88882.316559/2019-01).

Author information

Affiliations

Authors

Contributions

MMT: Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Data Curation, Writing—Original Draft, Writing—Review & Editing, Visualization. GV: Methodology, Software, Formal Analysis, Data Curation, Writing—Review & Editing. JA: Writing—Review & Editing, Visualization. TCLS: Methodology, Validation, Formal Analysis, Writing—Review & Editing. NP: Conceptualization, Resources, Writing—Original Draft, Writing—Review & Editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Mario M. Tagliari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Communicated by Pedro V. Eisenlohr.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 1779 kb)

Supplementary file2 (DOCX 185 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tagliari, M.M., Vieilledent, G., Alves, J. et al. Relict populations of Araucaria angustifolia will be isolated, poorly protected, and unconnected under climate and land-use change in Brazil. Biodivers Conserv 30, 3665–3684 (2021). https://doi.org/10.1007/s10531-021-02270-z

Download citation

Keywords

  • Araucaria forests
  • Ecological niche modelling
  • Future climatic changes
  • Habitat fragmentation
  • Protected areas effectiveness
  • Species connectivity