Amado Filho GM, Maneveldt G, Manso RCC et al (2007) Structure of rhodolith beds from 4 to 55 meters deep along the southern coast of Espírito Santo State, Brazil. Cienc Mar 33:399–410. https://doi.org/10.7773/cm.v33i4.1148
Article
Google Scholar
Amado-Filho GM, Moura RL, Bastos AC et al (2012) Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS ONE 7:e35171. https://doi.org/10.1371/journal.pone.0035171
CAS
Article
PubMed
PubMed Central
Google Scholar
Appeltans W, Ahyong ST, Anderson G et al (2012) The magnitude of global marine species diversity. Curr Biol 22:2189–2202. https://doi.org/10.1016/j.cub.2012.09.036
CAS
Article
PubMed
Google Scholar
Armstrong DA (2013) Factorplot: improving presentation of simple contrasts in generalized linear models. R J 5:4. https://doi.org/10.32614/RJ-2013-021
Article
Google Scholar
Bahia RG, Abrantes DP, Brasileiro PS et al (2010) Rhodolith bed structure along a depth gradient on the northern coast of Bahia state, Brazil. Braz J Oceanogr 58:323–337. https://doi.org/10.1590/S1679-87592010000400007
Article
Google Scholar
Barbera C, Bordehore C, Borg JA et al (2003) Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat Conserv 13:S65–S76. https://doi.org/10.1002/aqc.569
Article
Google Scholar
Basso D, Babbini L, Ramos-Esplá AA, Salomidi M (2017) Mediterranean rhodolith beds. In: Riosmena-Rodríguez R, Nelson W, Aguirre J (eds) Rhodolith/Maërl Beds: a global perspective. Springer, Cham, pp 281–298
Chapter
Google Scholar
Beech T, Dowd M, Field C et al (2008) A stochastic approach to marine reserve design: incorporating data uncertainty. Ecol Inform 3:321–333. https://doi.org/10.1016/j.ecoinf.2008.09.001
Article
Google Scholar
Bernard G, Romero-Ramirez A, Tauran A et al (2019) Declining maerl vitality and habitat complexity across a dredging gradient: insights from in situ sediment profile imagery (SPI). Sci Rep 9:16463. https://doi.org/10.1038/s41598-019-52586-8
CAS
Article
PubMed
PubMed Central
Google Scholar
BIOMAERL team (1999) Final Report, BIOMAERL project, EC Contract No. MAS3-CT95–0020. University Marine Biological Station, Millport
Birkett DA, Maggs CA, Dring MJ (1998) Maerl (volume V). An overview of dynamics and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science. (UK Marine SACs Project). 116p
Bittner L, Payri CE, Maneveldt GW et al (2011) Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes. Mol Phylogenet Evol 61:697–713. https://doi.org/10.1016/j.ympev.2011.07.019
CAS
Article
PubMed
Google Scholar
Bosence DWJ (1976) Ecological studies on two unattached coralline algae from Western Ireland. Palaeontology 19:365–395
Google Scholar
Bosence DWJ (1983) The occurrence and ecology of recent rhodoliths—a review. In: Peryt Tadeusz M (ed) Coated grains. Springer, Berlin, pp 225–242
Chapter
Google Scholar
Büdenbender J, Riebesell U, Form A (2011) Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Mar Ecol Prog Ser 441:79–87. https://doi.org/10.3354/meps09405
CAS
Article
Google Scholar
Buhl-Mortensen L, Buhl-Mortensen P, Dolan MJF, Gonzalez-Mirelis G (2015) Habitat mapping as a tool for conservation and sustainable use of marine resources: some perspectives from the MAREANO programme, Norway. J Sea Res 100:46–61. https://doi.org/10.1016/j.seares.2014.10.014
Article
Google Scholar
Cabioch J (1974) Un fond de maerl de l’Archipel de Madère et son peuplement végétal. Bull Soc Phycol Fr 19:74–82
Google Scholar
Carro B, Lopez L, Peña V et al (2014) DNA barcoding allows the accurate assessment of European maerl diversity: a proof-of-concept study. Phytotaxa 190:176. https://doi.org/10.1146/phytotaxa.190.1.12
Article
Google Scholar
Cogan CB, Todd BJ, Lawton P, Noji TT (2009) The role of marine habitat mapping in ecosystem-based management. ICES J Mar Sci 66:2033–2042. https://doi.org/10.1093/icesjms/fsp214
Article
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772. https://doi.org/10.1038/nmeth.2109
CAS
Article
PubMed
PubMed Central
Google Scholar
De Grave S, Whitaker A (1999) A census of maërl beds in Irish waters. Aquat Conserv 9:303–311
Article
Google Scholar
Dutertre M, Grall J, Ehrhold A, Hamon D (2015) Environmental factors affecting maerl bed structure in Brittany (France). Eur J Phycol 50:371–383. https://doi.org/10.1080/09670262.2015.1063698
Article
Google Scholar
Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667. https://doi.org/10.1046/j.1529-8817.2001.00195.x
Article
Google Scholar
Foster MS, Riosmena-Rodriguez R, Steller DL, Woelkerling WJ (1997) Living rhodolith beds in the Gulf of California and their implications for paleoenvironmental interpretation. In: Johnson ME, Ledesma-Vázquez J (eds) Pliocene carbonates and related facies flanking the Gulf of California, Baja California, Mexico. Geological Society of America
Foster MS, Amado Filho GM, Kamenos NA, et al (2013) Rhodoliths and rhodolith beds. in Research and Discoveries: The Revolution of Science through Scuba, 143–155. Smithson Contrib Mar Sci
Gagnon P, Matheson K, Stapleton M (2012) Variation in rhodolith morphology and biogenic potential of newly discovered rhodolith beds in Newfoundland and Labrador (Canada). Bot Mar. https://doi.org/10.1515/bot-2011-0064
Article
Google Scholar
Gartner A, Tuya F, Lavery PS, McMahon K (2013) Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms. J Exp Mar Biol Ecol 439:143–151. https://doi.org/10.1016/j.jembe.2012.11.009
Article
Google Scholar
Gerovasileiou V, Smith CJ, Sevastou K et al (2019) Habitat mapping in the European Seas—is it fit for purpose in the marine restoration agenda? Mar Policy 106:103521. https://doi.org/10.1016/j.marpol.2019.103521
Article
Google Scholar
Gouy M, Guindon S, Gascuel O (2010) Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. https://doi.org/10.1093/molbev/msp259
CAS
Article
PubMed
Google Scholar
Graham DJ, Midgley NG (2000) Graphical representation of particle shape using triangular diagrams: an Excel spreadsheet method. Earth Surf Process Landf 25:1473–1477. https://doi.org/10.1002/1096-9837(200012)25:13%3c1473::AID-ESP158%3e3.0.CO;2-C
Article
Google Scholar
Grall J, Hall-Spencer JM (2003) Problems facing maerl conservation in Brittany. Aquat Conserv 13:S55–S64. https://doi.org/10.1002/aqc.568
Article
Google Scholar
Hall-Spencer J (2000) Scallop dredging has profound, long-term impacts on maerl habitats. ICES J Mar Sci 57:1407–1415. https://doi.org/10.1006/jmsc.2000.0918
Article
Google Scholar
Hall-Spencer J, Bamber R (2007) Efectos del cultivo de salmón sobre crustáceos bénticos effects of salmon farming on benthic Crustacea. Cienc Mar 33:14. https://doi.org/10.7773/cm.v33i4.1166
Article
Google Scholar
Hall-Spencer JM, Grall J, Moore PG, Atkinson RJA (2003) Bivalve fishing and maerl-bed conservation in France and the UK?retrospect and prospect. Aquat Conserv 13:S33–S41. https://doi.org/10.1002/aqc.566
Article
Google Scholar
Hall-Spencer J, White N, Gillespie E et al (2006) Impact of fish farms on maerl beds in strongly tidal areas. Mar Ecol Prog Ser 326:1–9. https://doi.org/10.3354/meps326001
Article
Google Scholar
Harris PT, Baker EK (2020) Habitat mapping and marine management. In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat, 2nd edn. Elsevier Science, Oxford, p 10176
Google Scholar
Harris PT, Baker EK (2020) Why map benthic habitats? In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat, 2nd edn. Elsevier Science, Oxford, p 1076
Google Scholar
Hauton C, Hall-Spencer JM, Moore PG (2003) An experimental study of the ecological impacts of hydraulic bivalve dredging on maerl. ICES J Mar Sci 60:381–392. https://doi.org/10.1016/S1054-3139(03)00015-8
Article
Google Scholar
Hernandez-Kantun JJ, Hall-Spencer JM, Grall J et al (2017) North Atlantic Rhodolith Beds. In: Riosmena-Rodríguez R, Aguirre J, Nelson W (eds) Rhodolith/Maërl beds: a global perspective. Springer, Cham, pp 265–279
Chapter
Google Scholar
Instituto Hidrográfico (2003) Dinâmica sedimentar da costa sul da ilha da Madeira. Instituto Hidrográfico, Lisboa
Google Scholar
Instituto Hidrográfico (2007) Dinâmica sedimentar da costa sul da ilha da Madeira (Cabo Girão à Ponta de São Lourenço). Instituto Hidrográfico, Lisboa
Google Scholar
Instituto Hidrográfico (2008) Caracterização dos depósitos sedimentares da plataforma insular sul da ilha do Porto Santo. Instituto Hidrográfico, Lisboa
Google Scholar
Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363
Article
PubMed
Google Scholar
Issaris Y, Katsanevakis S, Pantazi M et al (2012) Ecological mapping and data quality assessment for the needs of ecosystem-based marine spatial management: case study Greek Ionian Sea and the adjacent gulfs. Mediterr Mar Sci 13:297. https://doi.org/10.12681/mms.312
Article
Google Scholar
Johnson ME, da Silva CM, Santos A et al (2011) Rhodolith transport and immobilization on a volcanically active rocky shore: middle miocene at Cabeço das Laranjas on Ilhéu de Cima (Madeira Archipelago, Portugal). Palaeogeogr Palaeoclimatol Palaeoecol 300:113–127. https://doi.org/10.1016/j.palaeo.2010.12.014
Article
Google Scholar
Johnson ME, Baarli BG, Cachão M et al (2012) Rhodoliths, uniformitarianism, and Darwin: pleistocene and recent carbonate deposits in the Cape Verde and Canary archipelagos. Palaeogeogr Palaeoclimatol Palaeoecol 329–330:83–100. https://doi.org/10.1016/j.palaeo.2012.02.019
Article
Google Scholar
Johnson ME, Ledesma-Vázquez J, Ramalho RS et al (2017) Taphonomic range and sedimentary dynamics of modern and fossil rhodolith beds: Macaronesian realm (North Atlantic Ocean). In: Riosmena-Rodríguez R, Nelson W, Aguirre J (eds) Rhodolith/Maërl beds: a global perspective. Springer, Boca Raton, pp 221–261
Chapter
Google Scholar
Kamenos N, Moore P, Hall-Spencer J (2004) Nursery-area function of maerl grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates. Mar Ecol Prog Ser 274:183–189. https://doi.org/10.3354/meps274183
Article
Google Scholar
Keegan BF (1974) The macrofauna of maërl substrates on the West Coast of Ireland. Cah Biol Mar 15:513–530. https://doi.org/10.21411/CBM.A.DE0F11E1.
Article
Google Scholar
Levring T (1974) The marine algae of the Archipelago of Madeira. Bol Mus Munic Funchal 28:5–111
Google Scholar
Lugilde J, Peña V, Bárbara I (2016) The order corallinales sensu lato (Rhodophyta) in the Iberian Atlantic: current state of knowledge. Anales Jard Bot Madrid 73:038. https://doi.org/10.3989/ajbm.2424
Article
Google Scholar
Lundblad ER, Wright DJ, Miller J et al (2006) A benthic terrain classification scheme for American Samoa. Mar Geod 29:89–111. https://doi.org/10.1080/01490410600738021
Article
Google Scholar
Manea E, Bianchelli S, Fanelli E et al (2020) Towards an ecosystem-based marine spatial planning in the deep Mediterranean Sea. Sci Total Environ 715:136884. https://doi.org/10.1016/j.scitotenv.2020.136884
CAS
Article
PubMed
Google Scholar
Martin S, Clavier J, Guarini J-M et al (2005) Comparison of Zostera marina and maerl community metabolism. Aquat Bot 83:161–174. https://doi.org/10.1016/j.aquabot.2005.06.002
CAS
Article
Google Scholar
Martin S, Clavier J, Chauvaud L, Thouzeau G (2007) Community metabolism in temperate maerl beds. I. Carbon and carbonate fluxes. Mar Ecol Prog Ser 335:19–29. https://doi.org/10.3354/meps335019
CAS
Article
Google Scholar
Martin CS, Giannoulaki M, De Leo F et al (2015) Coralligenous and maërl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Sci Rep. https://doi.org/10.1038/srep05073
Article
PubMed
PubMed Central
Google Scholar
Micallef A, Le Bas TP, Huvenne VAI et al (2012) A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data. Cont Shelf Res 39–40:14–26. https://doi.org/10.1016/j.csr.2012.03.008
Article
Google Scholar
Nelson WA (2009) Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60:787. https://doi.org/10.1071/MF08335
CAS
Article
Google Scholar
Noisette F, Duong G, Six C et al (2013) Effects of elevated CO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. J Phycol 49:746–757. https://doi.org/10.1111/jpy.12085
CAS
Article
PubMed
Google Scholar
QGIS.org, 2021. QGIS Geographic information system. QGIS Association. http://www.qgis.org
Otero-Ferrer F, Mannarà E, Cosme M et al (2019) Early-faunal colonization patterns of discrete habitat units: a case study with rhodolith-associated vagile macrofauna. Estuar Coast Shelf Sci 218:9–22. https://doi.org/10.1016/j.ecss.2018.11.020
Article
Google Scholar
Otero-Ferrer F, Cosme M, Tuya F et al (2020) Effect of depth and seasonality on the functioning of rhodolith seabeds. Estuar Coast Shelf Sci 235:106579. https://doi.org/10.1016/j.ecss.2019.106579
Article
Google Scholar
Pardo C, Lopez L, Peña V et al (2014) A multilocus species delimitation reveals a striking number of species of coralline algae forming maerl in the OSPAR maritime area. PLoS ONE 9:e104073. https://doi.org/10.1371/journal.pone.0104073
CAS
Article
PubMed
PubMed Central
Google Scholar
Peña V, Bárbara I (2008) Maërl community in the north-western Iberian Peninsula: a review of floristic studies and long-term changes. Aquat Conserv 18:339–366. https://doi.org/10.1002/aqc.847
Article
Google Scholar
Peña V, Bárbara I (2009) Distribution of the Galician maerl beds and their shape classes (Atlantic Iberian Peninsula): proposal of areas in future conservation actions. Journal Cah Biol Mar 50:353
Peña V, Bárbara I (2010) Seasonal patterns in the maërl community of shallow European Atlantic beds and their use as a baseline for monitoring studies. Eur J Phycol 45:327–342. https://doi.org/10.1080/09670261003586938
CAS
Article
Google Scholar
Peña V, Bárbara I, Grall J et al (2014) The diversity of seaweeds on maerl in the NE Atlantic. Mar Biodivers 44:533–551. https://doi.org/10.1007/s12526-014-0214-7
Article
Google Scholar
Peña V, De Clerck O, Afonso-Carrillo J et al (2015) An integrative systematic approach to species diversity and distribution in the genus Mesophyllum (Corallinales, Rhodophyta) in Atlantic and Mediterranean Europe. Eur J Phycol 50:20–36. https://doi.org/10.1080/09670262.2014.981294
CAS
Article
Google Scholar
Peña V, Pardo C, López L et al (2015) Phymatolithon lusitanicum sp. nov. (Hapalidiales, Rhodophyta): the third most abundant maerl-forming species in the Atlantic Iberian Peninsula. Cryptogam Algologie 36:429–459. https://doi.org/10.7872/crya/v36.iss4.2015.429
Article
Google Scholar
Petit J, Prudent G (2010) Climate change and biodiversity in the European Union overseas entities. IUCN, Gland
Google Scholar
Quartau R, Ramalho RS, Madeira J et al (2018) Gravitational, erosional and depositional processes on volcanic ocean islands: Insights from the submarine morphology of Madeira Archipelago. Earth Planet Sci Lett 482:288–299. https://doi.org/10.1016/j.epsl.2017.11.003
CAS
Article
Google Scholar
R Core Team (2021) R: a language and environment for statistical computing. Austria, Vienna
Google Scholar
Ratnasingham S, Hebert PDN (2007) BARCODING: bold: the barcode of life data system (http://www.barcodinglife.org): BARCODING. Mol Ecol Notes 7:355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
Rebelo AC, Johnson ME, Quartau R et al (2018) Modern rhodoliths from the insular shelf of Pico in the Azores (Northeast Atlantic Ocean). Estuar Coast Shelf Sci 210:7–17. https://doi.org/10.1016/j.ecss.2018.05.029
Article
Google Scholar
Ribeiro C (2008) Comparison of rocky reef fish communities among protected, unprotected and artificial habitats in Madeira Island costal waters using underwater visual techniques. PhD, Universidade de Lisboa, Faculdade de Ciências
Google Scholar
Ribeiro C, Neves P (2020) Habitat mapping of Cabo Girão Marine Park (Madeira island): a tool for conservation and management. J Coast Conserv 24:22. https://doi.org/10.1007/s11852-019-00724-9
Article
Google Scholar
Riera R, Delgado JD, Rodríguez M et al (2012) Macrofaunal communities of threatened subtidal maërl seabeds on Tenerife (Canary Islands, north-east Atlantic Ocean) in summer. Acta Oceanol Sin 31:98–105. https://doi.org/10.1007/s13131-012-0181-4
Article
Google Scholar
Riera R, Rodríguez M, Ramos E et al (2013) Hard and soft-bottom macrozoobenthos in subtidal communities around an inactive harbour area (Gran Canaria, Canary Islands). Vie et Milieu 63:23–34
Google Scholar
Riosmena-Rodríguez R, Nelson W, Aguirre J (eds) (2017) Rhodolith/Maërl beds: a global perspective. Springer, Cham
Google Scholar
Roberts CM (2001) Effects of marine reserves on adjacent fisheries. Science 294:1920–1923. https://doi.org/10.1126/science.294.5548.1920
CAS
Article
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. https://doi.org/10.1093/bioinformatics/btg180
CAS
Article
PubMed
Google Scholar
Rosas-Alquicira EF, Riosmena-Rodríguez R, Couto RP, Neto AI (2009) New additions to the Azorean algal flora, with ecological observations on rhodolith formations. Cah Biol Mar 50:143–151
Google Scholar
Rösler A, Perfectti F, Peña V, Braga JC (2016) Phylogenetic relationships of corallinaceae (Corallinales, Rhodophyta): taxonomic implications for reef-building corallines. J Phycol 52:412–431. https://doi.org/10.1111/jpy.12404
CAS
Article
PubMed
Google Scholar
Sala I, Caldeira RMA, Estrada-Allis SN et al (2013) Lagrangian transport pathways in the northeast Atlantic and their environmental impact: Lagrangian pathways in the Atlantic. Limnol Oceanogr Fluids Environ 3:40–60. https://doi.org/10.1215/21573689-2152611
Article
Google Scholar
Saldanha L (1968) Sur la capture de Anarchias grassi (Roule, 1916) dans l’archipel de Madère (Pisces, Anguilliformi, Muraenidae). Arq Mus Bocage II:17–19
Google Scholar
Sanz-Lázaro C, Belando MD, Marín-Guirao L et al (2011) Relationship between sedimentation rates and benthic impact on Maërl beds derived from fish farming in the Mediterranean. Mar Environ Res 71:22–30. https://doi.org/10.1016/j.marenvres.2010.09.005
CAS
Article
PubMed
Google Scholar
Schoenrock KM, Bacquet M, Pearce D et al (2018) Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta). J Phycol 54:690–702. https://doi.org/10.1111/jpy.12774
CAS
Article
PubMed
Google Scholar
Schories D, Niedzwiedz G (2012) Precision, accuracy, and application of diver-towed underwater GPS receivers. Environ Monit Assess 184:2359–2372. https://doi.org/10.1007/s10661-011-2122-7
Article
PubMed
Google Scholar
Sciberras M, Rizzo M, Mifsud JR et al (2009) Habitat structure and biological characteristics of a maerl bed off the northeastern coast of the Maltese Islands (central Mediterranean). Mar Biodivers 39:251–264. https://doi.org/10.1007/s12526-009-0017-4
Article
Google Scholar
Smale DA, Kendrick GA, Harvey ES et al (2012) Regional-scale benthic monitoring for ecosystem-based fisheries management (EBFM) using an autonomous underwater vehicle (AUV). ICES J Mar Sci 69:1108–1118. https://doi.org/10.1093/icesjms/fss082
Article
Google Scholar
Sneed ED, Folk RL (1958) Pebbles in the lower Colorado River, Texas a study in particle morphogenesis. J Geol 66:114–150
Article
Google Scholar
Sordo L, Santos R, Barrote I, Silva J (2018) High CO2 decreases the long-term resilience of the free-living coralline algae Phymatolithon lusitanicum. Ecol Evol 8:4781–4792. https://doi.org/10.1002/ece3.4020
Article
PubMed
PubMed Central
Google Scholar
Sordo L, Santos R, Barrote I, Silva J (2019) Temperature amplifies the effect of high CO2 on the photosynthesis, respiration, and calcification of the coralline algae Phymatolithon lusitanicum. Ecol Evol 9:11000–11009. https://doi.org/10.1002/ece3.5560
Article
PubMed
PubMed Central
Google Scholar
Sordo L, Santos R, Barrote I et al (2020) Seasonal photosynthesis, respiration, and calcification of a temperate Maërl bed in Southern Portugal. Front Mar Sci 7:136. https://doi.org/10.3389/fmars.2020.00136
Article
Google Scholar
Souto J, Reverter-Gil O, Ostrovsky AN (2014) New species of Bryozoa from Madeira associated with rhodoliths. Zootaxa 3795:135. https://doi.org/10.11646/zootaxa.3795.2.3
Article
PubMed
Google Scholar
SRA (2014) Estratégia Marinha para a subdivisão da Madeira. Secretaria Regional do Ambiente e dos Recursos Naturais, Funchal
Google Scholar
Steller D, Cáceres-Martínez C (2009) Coralline algal rhodoliths enhance larval settlement and early growth of the Pacific calico scallop Argopecten ventricosus. Mar Ecol Prog Ser 396:49–60. https://doi.org/10.3354/meps08261
Article
Google Scholar
Steller DL, Foster MS (1995) Environmental factors influencing distribution and morphology of rhodoliths in Bahía Concepción, B.C.S México. J Exp Mar Biol Ecol 194:201–212. https://doi.org/10.1016/0022-0981(95)00086-0
Article
Google Scholar
Steller DL, Riosmena-Rodríguez R, Foster MS, Roberts CA (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat Conserv Mar Freshw Ecosyst 13:S5–S20. https://doi.org/10.1002/aqc.564
Article
Google Scholar
Steneck RS (1986) The ecology of coralline algal crusts: convergent patterns and adaptative strategies. Annu Rev Ecol Syst 17:273–303. https://doi.org/10.1146/annurev.es.17.110186.001421
Article
Google Scholar
Subsurface Development Team (2021) Subsurface. https://subsurface-divelog.org/. Accessed 01 June 2021
Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197
CAS
Article
PubMed
PubMed Central
Google Scholar
Teichert S (2015) Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci Rep 4:6972. https://doi.org/10.1038/srep06972
CAS
Article
Google Scholar
The digiKam team (2021) Digikam. https://www.digikam.org/. Accessed 01 June 2021
van der Heijden LH, Kamenos NA (2015) Reviews and syntheses: calculating the global contribution of coralline algae to total carbon burial. Biogeosciences 12:6429–6441. https://doi.org/10.5194/bg-12-6429-2015
Article
Google Scholar
Wang Y, Naumann U, Eddelbuettel D, et al (2021) mvabund: Statistical methods for analysing multivariate abundance data. R package version 4.1.12. https://cran.r-project.org/web/packages/mvabund/index.html. Accessed 01 June 2021
Ware S, Downie A-L (2020) Challenges of habitat mapping to inform marine protected area (MPA) designation and monitoring: an operational perspective. Mar Policy 111:103717. https://doi.org/10.1016/j.marpol.2019.103717
Article
Google Scholar
Weisscher FCM (1983) Marine algae from Selvagem pequena (Salvage Islands) (Cancap-Project contributions no. 19). Bol Mus Munic Funchal 35:41–80
Google Scholar
Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392. https://doi.org/10.1086/622910
Article
Google Scholar
Wilson S, Blake C, Berges JA, Maggs CA (2004) Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biol Conserv 120:279–289. https://doi.org/10.1016/j.biocon.2004.03.001
Article
Google Scholar
Yoon HS, Hackett JD, Bhattacharya D (2002) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci 99:11724–11729. https://doi.org/10.1073/pnas.172234799
CAS
Article
PubMed
PubMed Central
Google Scholar