Abstract
We estimated the potential distribution for 31 amphibian species inhabiting the threatened Austral Yungas under current and future climate projections (2050’s) and assessed the synergistic effects of both climate and land-use changes on the spatio-temporal patterns of species richness. Then, using ZONATION software, we assessed the role of existing protected areas (PAs) in determining the species’ representativeness and identified priority conservation areas where we expect species to persist in the face of these global threats. Overall, we estimated a general decrease in local species richness across ~ 41% of Yungas sites due to the effects of climate changes through the year 2050. Over 60% of species are forecasted to reduce drastically (more than 75%) their distributional ranges. Also, we observed a significant reduction (15.5%) in the proportion of PAs holding the potential distributional areas of species in new climate conditions. Therefore, well-informed decisions to guide conservation strategies are imperative. Our prioritization analyses showed that strategically increasing 0.7% the protection coverage (i.e. 17%, as stipulated in the Aichi targets) there are great opportunities for improving their conservation in the region, reaching on average the 19% of distributions for all species and 32.5% of those threatened and Data Deficient amphibians. Fortunately, the highest diversity of amphibians in the region does not match the places targeted for agriculture expansion in future scenarios. Here, we provided novel evidence about where future conservation efforts should focus to accomplish the long-term conservation of biodiversity in this South American hotspot.


Similar content being viewed by others
Data availability
The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials. Interested readers to other materials could to request them from the corresponding authors.
Code availability
N/A.
References
Akmentins MS, Pereyra LC, Bonduri, Yanina V et al (2014) Guía de Campo. Anfibios de las Selvas de Yungas de Argentina. Conservation Leadership Programme
Alagador D, Cerdeira JO, Araújo MB (2014) Shifting protected areas: scheduling spatial priorities under climate change. J Appl Ecol 51:703–713. https://doi.org/10.1111/1365-2664.12230
Alkishe AA, Peterson AT, Samy AM (2017) Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. PLoS One 12:e0189092. https://doi.org/10.1371/journal.pone.0189092
Alroy J (2015) Current extinction rates of reptiles and amphibians. Proc Natl Acad Sci 112:13003–13008. https://doi.org/10.1073/pnas.1508681112
Alton LA, Franklin CE (2017) Drivers of amphibian declines: effects of ultraviolet radiation and interactions with other environmental factors. Clim Chang Responses 4:6. https://doi.org/10.1186/s40665-017-0034-7
Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232. https://doi.org/10.1016/S0304-3800(02)00349-6
Andrade-Díaz M (2020) Áreas prioritarias para la conservación de la herpetofauna y su aplicación en el ordenamiento territorial de bosques en las provincias de Salta y Jujuy. Bachelor Thesis. Universidad Nacional del Litoral, Argentina
Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728. https://doi.org/10.1111/j.1365-2699.2006.01482.x
Atauchi PJ, Aucca C, Gregorio C et al (2020) Present and future potential distribution of the endangered Anairetes alpinus (Passeriformes: Tyrannidae) under global climate change scenarios. J Ornithol 161:723–738. https://doi.org/10.1007/s10336-020-01762-z
Barrionuevo J, Ponssa M (2008) Decline of three species of the genus Telmatobius (Anura: Leptodactylidae) from Tucumán Province, Argentina. Herpetologica 64:47–62
Barve N, Barve V, Jiménez-Valverde A et al (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011
Becker CG, Zamudio KR (2011) Tropical amphibian populations experience higher disease risk in natural habitats. Proc Natl Acad Sci 108:9893–9898. https://doi.org/10.1073/pnas.1014497108
Becker CG, Fonseca CR, Haddad CFB, Prado PI (2010) Habitat split as a cause of local population declines of amphibians with aquatic larvae. Conserv Biol 24:287–294. https://doi.org/10.1111/j.1523-1739.2009.01324.x
Bennett AF, Saunders DA (2010) Habitat fragmentation and landscape change. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, New York, pp 88–106
Bivand R, Lewin-Koh N, Pebesma E et al (2016) Package ‘maptools’, tools for reading and handling spatial objects. https://www.rdocumentation.org/packages/maptools/versions/1.0-1
Blaustein AR, Walls SC, Bancroft BA et al (2010) Direct and indirect effects of climate change on amphibian populations. Diversity 2:281–313. https://doi.org/10.3390/d2020281
Blendinger P, Álvarez M (2009) Aves de la Selva Pedemontana de las Yungas australes. In: Brown A, Blendinger P, Lomáscolo T, García Bes P (eds) Selva Pedemontana de las Yungas: historia natural, ecología y manejo de un ecosistema en peligro. Ediciones del Subtrópico, Buenos Aires, pp 233–272
Brown A (2009) Las Selvas Pedemontanas de las Yungas: manejo sustentable y conservación de la biodiversidad de un ecosistema prioritario del noroeste argentino. In: Brown AD, Blendinger P, Lomáscolo T, García Bes P (eds) Selva pedemontana de las Yungas, historia natural, ecología y manejo de un ecosistema en peligro. Ediciones del Subtrópico, Fundación ProYungas, Tucumán, pp 13–36
Brown A, Grau H, Malizia L, Grau A (2001) Argentina. In: Brown A, Kapelle M (eds) Bosques Nublados del Neotrópico. INBIO, Heredia, pp 623–659
Brown A, Ortiz UM, Corcuera MAJ et al (2006) La Situación Ambiental Argentina 2005. Fundación vida Silvestre Argentina, Buenos Aires
Campbell LP, Luther C, Moo-llanes D et al (2015) Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos Trans R Soc B Biol Sci 370:20140135. https://doi.org/10.1098/rstb.2014.0135
CBD (2020) Report if the Second Meeting of the Open-ended working group on the post-2020 global biodiversity framework. Held in Kunming, China on 24–29 February 2020. CBD/WG2020/2/3
Ceballos G, Ehrlich PR, Barnosky AD et al (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253. https://doi.org/10.1126/sciadv.1400253
Chamberlain S, Oldoni D, Barve V et al (2019) Rgbif: Interface to the Global Biodiversity Information Facility API. R package version 1.2.0. https://cran.r-project.org/package=rgbif
Cobos ME, Bosch RA (2018) Recent and future threats to the Endangered Cuban toad Peltophryne longinasus: potential additive impacts of climate change and habitat loss. Oryx 52:116–125. https://doi.org/10.1017/S0030605316000612
Cobos ME, Peterson AT, Barve N, Osorio-olvera L (2019) kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7:e6281. https://doi.org/10.7717/peerj.6281
Cooper N, Bielby J, Thomas GH, Purvis A (2008) Macroecology and extinction risk correlates of frogs. Glob Ecol Biogeogr 17:211–221. https://doi.org/10.1111/j.1466-8238.2007.00355.x
Corn PS (2005) Climate change and amphibians. Anim Biodivers Conserv 28:59–67
Coster SS, Babbitt KJ, Cooper A, Kovach AI (2015) Limited influence of local and landscape factors on finescale gene flow in two pond-breeding amphibians. Mol Ecol 24:742–758. https://doi.org/10.1111/mec.13062
De la Riva I, Reichle S (2014) Diversity and conservation of the amphibians of Bolivia. Herpetol Monogr 28:46–65. https://doi.org/10.1655/HERPMONOGRAPHS-D-13-00009
Di Giacomo A, De Francesco M, Coconie E (2007) Áreas importantes para la Conservación de las aves en la Argentina. Sitios prioritarios para la conservación de la biodiversidad. Temas de Naturaleza y Conservación 5:1–514. Aves Argentinas/Asociación ornitológica del Plata, Buenos Aires
Di Minin E, Veach V, Lehtomaki J et al (2014) A quick introduction to Zonation. Unigrafia OY, Helsinki
Dupin M, Reynaud P, Jarosík V et al (2011) Effects of the training dataset characteristics on the performance of nine species distribution models: application to Diabrotica virgifera virgifera. PLoS One 6:e20957. https://doi.org/10.1371/journal.pone.0020957
Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. https://doi.org/10.1111/j.1432-1033.1987.tb13499.x
Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for. Divers Distrib 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
Escalona M, Prieto-Torres DA, Rojas-Runjaic FJM (2017) Unveiling the geographic distribution of Boana pugnax (Schmidt, 1857) (Anura, Hylidae) in Venezuela: new state records, range extension, and potential distribution. Check List 13:671–681. https://doi.org/10.15560/13.5.671
Fajardo J, Corcoran D, Marquet PA et al (2020) GCM compare R: a web application to assess differences and assist in the selection of general circulation models for climate change research. Methods Ecol Evol 11:656–663. https://doi.org/10.1111/2041-210X.13360
Faleiro FV, Machado RB, Loyola RD (2013) Defining spatial conservation priorities in the face of land-use and climate change. Biol Conserv 158:248–257. https://doi.org/10.1016/j.biocon.2012.09.020
Gibbons JW, Scott DE, Ryan TJ et al (2000) The global decline of reptiles, Déjà Vu Amphibians. Bioscience 50:653–666. https://doi.org/10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2
Groves CR, Game ET, Anderson MG et al (2012) Incorporating climate change into systematic conservation planning. Biodivers Conserv 21:1651–1671. https://doi.org/10.1007/s10531-012-0269-3
Hannah L, Midgley G, Andelman S et al (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138. https://doi.org/10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2
Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. https://doi.org/10.1126/science.1244693
Hanspach J, Kühn I, Schweiger O et al (2011) Geographical patterns in prediction errors of species distribution models. Glob Ecol Biogeogr 20:779–788. https://doi.org/10.1111/j.1466-8238.2011.00649.x
Hidasi-Neto J, Joner DC, Resende F et al (2019) Climate change will drive mammal species loss and biotic homogenization in the Cerrado Biodiversity Hotspot. Perspect Ecol Conserv 17:57–63. https://doi.org/10.1016/j.pecon.2019.02.001
Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276
Hijmans R, van Etten J, Sumner M et al (2016) raster: geographic data analysis and modeling. R package version 2.3-40. https://cran.r-project.org/web/packages/raster/index.html
Hof C, Araújo M, Jetz W, Rahbek C (2011) Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480:516–519. https://doi.org/10.1038/nature10650
Indermaur L, Gehring M, Wehrle W et al (2009) Behavior-based scale definitions for determining individual space use: requirements of two amphibians. Am Nat 173:60–71. https://doi.org/10.1086/593355
IPCC (2014) Climate Change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva
IPCC (2019) Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (In press)
IUCN (2020) The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org/. Accessed 15 May 2020
IUCN UNEP-WCMC (2019) Protected Planet—the latest initiative harnessing the world database on protected areas. http://www.protectedplanet.net. Accessed 18 Sept 2019
Lavilla EO, Vaira M, Ponssa ML, Ferrari L (2000) Batracofauna de las Yungas Andinas de Argentina: una síntesis. Cuad Herpetol 14:5–26
Lemes P, Loyola RD (2013) Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PLoS One 8:e54323. https://doi.org/10.1371/journal.pone.0054323
Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789. https://doi.org/10.1111/jbi.12058
Llusia D, Márquez R, Benítez M, Amaral JP (2013) Calling behaviour under climate change: geographic and seasonal variation of calling. Glob Chang Biol 19:2655–2674. https://doi.org/10.1111/gcb.12267
Lovejoy T, Hannah L (2019) Biodiversity and climate change: transforming the biosphere. Yale University Press, Yale
Loyola R, Lemes P, Urbina-Cardona N et al (2015) Amphibians in a changing world: a global look at their conservation status. FrogLog 23:30–31
Malizia L, Pacheco S, Blundo C, Brown AD (2012) Caracterización altitudinal, uso y conservación de las Yungas Subtropicales de Argentina. Ecosistemas 21:53–73
Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. https://doi.org/10.1038/350122511
Martinuzzi S, Rivera L, Politi N et al (2018) Enhancing biodiversity conservation in existing land-use plans with widely available datasets and spatial analysis techniques. Environ Conserv 45:252–260. https://doi.org/10.1017/S0376892917000455
Medina RG, Ponssa ML, Aráoz E (2016) Environmental, land cover and land use constraints on the distributional patterns of anurans: Leptodacylus species (Anura, Leptodactylidae) from Dry Chaco. PeerJ 4:e2605. https://doi.org/10.7717/peerj.2605
Medina RG, Lira-Noriega A, Aráoz E, Ponssa ML (2020) Potential effects of climate change on a Neotropical frog genus: changes in the spatial diversity patterns of Leptodactylus (Anura, Leptodactylidae) and implications for their conservation. Clim Chang 161:535–553. https://doi.org/10.1007/s10584-020-02677-7
Menéndez-Guerrero PA, Green DM, Davies TJ (2019) Climate change and the future restructuring of Neotropical anuran biodiversity. Ecography 43:222–235. https://doi.org/10.1111/ecog.04510
Merow C, Smith MJ, Edwards TC et al (2014) What do we gain from simplicity versus complexity in species distribution models? Ecography 37:1267–1281. https://doi.org/10.1111/ecog.00845
Moilanen A, Franco AMA, Early RI et al (2005) Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc R Soc B Biol Sci 272:1885–1891. https://doi.org/10.1098/rspb.2005.3164
Moilanen A, Anderson BJ, Eigenbrod F et al (2011) Balancing alternative land uses in conservation prioritization. Ecol Appl 21:1419–1426. https://doi.org/10.1890/10-1865.1
Moilanen A, Pouzols FM, Meller L et al (2014) Spatial conservation planning methods and software ZONATION. User Manual
Morrone JJ (2014) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782:1–110
Muscarella R, Galante PJ, Soley-Guardia M et al (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol Evol 5:1198–1205. https://doi.org/10.1111/2041-210X.12261
Muths E (2003) Home range and movements of boreal toads in undisturbed habitat. Copeia 2003(1):160–165
Naimi B (2015) usdm: uncertainty analysis for species distribution models. R package version 1, 1–12. https://cran.r-project.org/web/packages/usdm/
Newbold T, Hudson LN, Hill SLL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. https://doi.org/10.1038/nature14324
Nori J, Loyola R (2015) On the worrying fate of data deficient amphibians. PLoS One 10(5):e0125055. https://doi.org/10.1371/journal.pone.0125055
Nori J, Lescano JN, Illoldi-Rangel P et al (2013) The conflict between agricultural expansion and priority conservation areas: making the right decisions before it is too late. Biol Conserv 159:507–513. https://doi.org/10.1016/j.biocon.2012.11.020
Nori J, Lemes P, Urbina-Cardona N et al (2015) Amphibian conservation, land-use changes and protected areas: a global overview. Biol Conserv 191:367–374. https://doi.org/10.1016/j.biocon.2015.07.028
Nori J, Torres R, Lescano JN et al (2016) Protected areas and spatial conservation priorities for endemic vertebrates of the Gran Chaco, one of the most threatened ecoregions of the world. Divers Distrib 22:1212–1219. https://doi.org/10.1111/ddi.12497
Nori J, Loyola R, Villalobos F (2020) Priority areas for conservation of and research focused on terrestrial vertebrates. Conserv Biol 34:1281–1291. https://doi.org/10.1111/cobi.13476
Nowakowski AJ, Thompson ME, Donnelly MA, Todd BD (2017) Amphibian sensitivity to habitat modification is associated with population trends and species traits. Glob Ecol Biogeogr 26:700–712. https://doi.org/10.1111/geb.12571
Olden JD, Poff NL (2013) Toward a mechanistic understanding and prediction of biotic homogenization. Am Nat 162:442–460. https://doi.org/10.1086/378212
Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
Owens HL, Campbell LP, Dornak LL et al (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol Model 263:10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011
Pacheco S, Brown AD (2006) La biodiversidad de la ecorregión de las Yungas ¿es sustentable a largo plazo? In: Brown AD, Martinez Ortiz U, Acerbi M, Corcuera J (eds) La Situación Ambiental Argentina 2005. Fundación Vida Silvestre, Buenos Aires, pp 59–61
Pacheco S, Malizia LR, Cayuela L (2010) Effects of climate change on subtropical forests of South America. Trop Conserv Sci 3:423–437. https://doi.org/10.1177/194008291000300407
Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Chem Technol Metall 34:102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
Pearson R, Martínez-Meyer E, Andrade Velázquez M et al (2019) Research priorities for maintaining biodiversity’s contributions to people in Latin America. UCL Open Environ 1:02. https://doi.org/10.14324/111.444/000014.V2
Pereira H, Belnap J, Brummitt N et al (2010) Global biodiversity monitoring. Front Ecol Environ 8:458–459. https://doi.org/10.1890/10.WB.22
Peterson AT, Ortega-Huerta MA, Bartley J et al (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629. https://doi.org/10.1038/416626a
Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
Peterson A, Soberón J, Pearson R et al (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton
Peterson AT, Cobos ME, Jiménez-garcía D (2018) Major challenges for correlational ecological niche model projections to future climate conditions. Ann NY Acad Sci 1429:66–77. https://doi.org/10.1111/nyas.13873
Phillips SJ, Andersonb RP, Schapired RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Potapov P, Hansen M, Kommareddy I et al (2020) Landsat analysis ready data for global land cover and land cover change mapping. Remote Sens 12:426. https://doi.org/10.3390/rs12030426
Prieto-Torres DA, Navarro-Sigüenza AG, Santiago-Alarcon D, Rojas-Soto OR (2016) Response of the endangered tropical dry forests to climate change and the role of Mexican Protected Areas for their conservation. Glob Chang Biol 22:364–379. https://doi.org/10.1111/gcb.13090
Prieto-Torres DA, Nori J, Rojas-Soto OR (2018) Identifying priority conservation areas for birds associated to endangered Neotropical dry forests. Biol Conserv 228:205–214. https://doi.org/10.1016/j.biocon.2018.10.025
Prieto-Torres DA, Lira-Noriega A, Navarro-sigüenza AG (2020) Climate change promotes species loss and uneven modification of richness patterns in the avifauna associated to Neotropical seasonally dry forests. Perspect Ecol Conserv 18:19–30. https://doi.org/10.1016/j.pecon.2020.01.002
Qiao H, Soberón J, Peterson AT (2015) No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol Evol 6:1126–1136. https://doi.org/10.1111/2041-210X.12397
R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
Ramirez-Albores J, Prieto-Torres DA, Gordillo-Martínez A et al (2020) Insights for protection of high species richness areas for the conservation of Mesoamerican endemic birds. Divers Distrib 27:18–33. https://doi.org/10.1111/ddi.13153
RBYungas (2010) Plan estratégico Reserva de Biosfera de Las Yungas sector Jujuy. Jujuy, Argentina
RBYungas (2013) Reserva de Biosfera de Las Yungas: Formulario de revisión periódica. Argentina
Rivera L, Politi N, Lizárraga L et al (2015) Áreas Prioritarias de Conservación para las especies amenazadas de Las Yungas Australes de Salta y Jujuy. Fundación CEBio. www.cebio.org.ar
Row JR, Blouin-Demers G (2006) Kernels are not accurate estimators of home-range size for herpetofauna. Copeia 2006(4):797–802
Salazar L, Nobre C, Oyama M (2007) Climate change consequences on the distribution in tropical South America. Geophys Res Lett 34:1–6. https://doi.org/10.1029/2007GL029695
Schivo F, Bauni V, Krug P, Quintana RD (2019) Distribution and richness of amphibians under different climate change scenarios in a subtropical region of South America. Appl Geogr 103:70–89. https://doi.org/10.1016/j.apgeog.2019.01.003
Schmidt MA (2014) (Des) ordenamientos territoriales salteños. Una aproximación al contexto previo al Ordenamiento Territorial de Bosques Nativos en la provincia de Salta. Mundo Agrar 15:1–26
SIPAP (2015) Estado General del Ambiente en la Provincia de Salta: Sistema Provincial de Áreas Protegidas. Salta, Argentina
SIPAP (2019) Informe General del Ambiente 2019: Programa SiPAP—Programa Guardaparques. Salta, Argentina
Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10. https://doi.org/10.17161/bi.v2i0.4
Somma DJ (2006) Interrelated modeling of land use and habitat for the design of an ecological corridor: a case study in the Yungas, Argentina. Ph.D. Thesis. Wageningen University, Wageningen, The Netherlands
Strassburg BBN, Brooks T, Feltran-Barbieri R et al (2017) Moment of truth for the Cerrado hotspot. Nat Ecol Evol 1:13–15. https://doi.org/10.1038/s41559-017-0099
Stuart S, Chanson J, Cox N et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. https://doi.org/10.1126/.58.1491.61
Tejedor-Garavito N, Álvarez E, Arango Caro S et al (2012) Evaluación del estado de conservación de los bosques montanos en los Andes tropicales. Ecosistemas 21:148–166
Todd B, Luhring T, Rothermel B, Gibbons J (2009) Effects of forest removal on amphibian migrations: implications for habitat and landscape connectivity. J Appl Ecol 46:554–561. https://doi.org/10.1111/j.1365-2664.2009.01645.x
Vaira M, Akmentins M, Attademo M et al (2012) Categorización del estado de conservación de los anfibios de la República Argentina. Cuad Herpetol 26:131–159
Vaira M, Pereyra LC, Akmentins MS, Bielby J (2017) Conservation status of amphibians of Argentina: an update and evaluation of national assessments. Amphib Reptil Conserv 11:36–44
Van Asselen S, Verburg PH (2013) Land cover change or land-use intensification: simulating land system change with a global-scale land change model. Glob Chang Biol 9:3648–3667. https://doi.org/10.1111/gcb.12331
van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. https://doi.org/10.1007/s10584-011-0148-z
Venter O, Sanderson EW, Magrach A et al (2016) Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat Commun 7:12558. https://doi.org/10.1038/ncomms12558
Verburg PH, Overmars KP (2009) Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc Ecol 24:1167–1181. https://doi.org/10.1007/s10980-009-9355-7
Vilela B, Villalobos F (2015) letsR: a new R package for data handling and analysis in macroecology. Methods Ecol Evol 6:1229–1234. https://doi.org/10.1111/2041-210X.12401
Virkkala R, Heikkinen R, Kuusela S et al (2019) Significance of protected area network in preserving biodiversity in a changing northern European climate. In: Chen WY, Seiner J, Suzuki T, Lackner M (eds) Handbook of climate change and biodiversity. Springer, Cham, pp 377–390
Wake D, Vredenburg V (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci 105:11466–11473. https://doi.org/10.1073/pnas.0801921105
Watson JE, Grantham HS, Wilson KA, Possingham HP (2011) Systematic conservation planning: past, present and future. In: Ladle RJ, Whittaker RJ (eds) Conservation biogeography. Wiley-Blackwell, Oxford, pp 136–160
Wei T, Simko V (2017) R package “corrplot”: visualization of a correlation matrix (Version 0.84). https://github.com/taiyun/corrplot
Wells K (2007) The ecology and behavior of amphibians. The University of Chicago Press, Chicago
Yu D, Liu Y, Shi P, Wu J (2019) Projecting impacts of climate change on global terrestrial ecoregions. Ecol Indic 103:114–123. https://doi.org/10.1016/j.ecolind.2019.04.006
Zank C, Becker FG, Abadie M et al (2014) Climate change and the distribution of neotropical red-bellied toads (Melanophryniscus, Anura, Amphibia): how to prioritize species and populations? PLoS One 9:e94625. https://doi.org/10.1371/journal.pone.0094625
Zwiener V, Lira-Noriega A, Grady C et al (2018) Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Glob Ecol Biogeogr 27:298–309. https://doi.org/10.1111/geb.12695
Acknowledgements
For access to collections we are indebted to M. Vaira; E. Lavilla, G. Scrocchi, and S. Kretzschmar (Fundación Miguel Lillo); J. Faivovich (Museo Bernardino Rivadavia); M. Fabrezi (IBIGEO-Museo de Ciencias Naturales de la Universidad Nacional de Salta). MSAD thanks The Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-Argentina) to support her with a doctoral fellowship and the bilateral cooperation Grant: CONICET-UNIVERSITY OF FLORIDA. We would like to thank M. Vaira and D. Baldo for their commentaries about the species and their useful suggestions in the first draft of the manuscript’s conceptualization. We also thank the three anonymous reviewers for helpful comments on previous versions of this manuscript.
Funding
The Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) (CONICET) funded MSAD’s work with a doctoral fellowship (Exp. No. 002313/14). MSAD and JMDG were also funded with a bilateral cooperation grant: CONICET-UNIVERSITY OF FLORIDA.
Author information
Authors and Affiliations
Contributions
MSAD conceived the idea for the study and compiled the database of available occurrence records. MSAD and DAP-T performed the ecological niche models and future projections, as well as the spatial prioritization analyses. MSAD, KD and DAP-T led the writing of the manuscript, with substantial contributions from all authors.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no conflicts of interest.
Additional information
Communicated by Dirk Sven Schmeller.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection: Biodiversity protection and reserves.
Supplementary Information
Below is the link to the electronic supplementary material.
Appendix S1. Projected individual distribution models of the 31 amphibian species considered in this study, currently and in 2050 year (under RCP 6.5).
Colors in maps correspond to the post-change predictions of range: new potential distributional areas (green), portions of current distribution that will be inhabitable in the future (blue), and portion of the distributions that are habitable in both present and future scenarios (red). For each species, we showed the MESS calculations for environmental conditions based on M (the training region) transferred to future climate scenarios. The black polygons within future maps represent those sites where one or more environmental variables are outside the range present of the training data, so predictions in those areas should be treated with strong caution (i.e. strict extrapolation by models). (PDF 3593 KB)
Appendix S2. Workflow and recommendations of this research as key guidelines for planning climatically resilient reserves in the Austral Yungas.
The right figure represents a schematic diagram of the methods to: (1) perform the ecological niche models (light blue box), (2) quantify the role of the current protected area system in the amphibian conservation (light green box); and (3) select the priority areas for species conservation in the Yungas (orange box). The left figure shows possible recommendations or/and strategies to be considered for the decision-makers during an eventual systematic conservation planning process in Yungas. (PNG 2510 KB)
Table S1.
List of the 31 amphibian species considered in this study that inhabits the Yungas. For each species, we provided the general information about the habitat type/lifestyle, the global distribution range, the proportion of species range within Yungas, the IUCN category, GBIF’s doi, number of occurrences, bioclimatic variables set (including their percentages of contribution) and parameter settings (feature classes and regularization multiplier values) used for modelling, as well as the performance values (partial ROC and omission rate) for obtained model. (XLSX 21 KB)
Table S2.
List of the type of Protected Areas included in the analysis of priority areas for conserving amphibians in the Yungas. (XLSX 13 KB)
Rights and permissions
About this article
Cite this article
Andrade-Díaz, M.S., Giraudo, A.R., Marás, G.A. et al. Austral Yungas under future climate and land-use changes scenarios: the importance of protected areas for long-term amphibian conservation. Biodivers Conserv 30, 3335–3357 (2021). https://doi.org/10.1007/s10531-021-02250-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10531-021-02250-3


