Dynamics in plant diversity and composition on Australian alpine summits over time

Abstract

High mountain environments are often characterised by low temperatures and short growing seasons, yet support high plant endemism and biodiversity. While such ecosystems are considered among the most vulnerable to climatic warming, the impacts of climate change on diversity and composition can be complex. To develop a deeper understanding of these dynamics, changes in vegetation over time along five alpine summits that are part of the Global Observation Research Initiative in Alpine Environment (GLORIA), were assessed including species richness, α-diversity, β-diversity, vegetation and growth form cover as well as composition. The five summits of Mount Clarke in the Australian Alps were surveyed in 2004, 2011 and 2019. Despite increases in species richness over time, there was an overall decline in diversity through biotic homogenisation across the summits. Near complete vegetation cover was recorded in 2004 but increased over the 15 years via in-filling and densification, driven by increasing cover of graminoids and shrubs. Consequently, there was also a shift in species composition which was greatest at higher elevations. The results indicate that there has been a shift towards more competitive and thermophilic composition, which may have implications for flammability in a warming and drying climate. Further assessments will be required to more fully explore the effect of climate variation from climate change, and implications for conservation of this and other alpine floras globally.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Data is available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VWBZHN.

References

  1. Ababneh L, Woolfenden W (2010) Monitoring for potential effects of climate change on the vegetation of two alpine meadows in the White Mountains of California, USA. Quat Int 215:3–14. https://doi.org/10.1016/j.quaint.2009.05.013

    Article  Google Scholar 

  2. Alexander JM, Diez JM, Levine JM (2015) Novel competitors shape species’ responses to climate change. Nature 525:515–518. https://doi.org/10.1038/nature14952

    CAS  Article  PubMed  Google Scholar 

  3. Alexander JM et al (2018) Lags in the response of mountain plant communities to climate change. Glob Change Biol 24:563–579. https://doi.org/10.1111/gcb.13976

    Article  Google Scholar 

  4. Amagai Y, Kudo G, Sato K (2018) Changes in alpine plant communities under climate change: dynamics of snow-meadow vegetation in northern Japan over the last 40 years. Appl Veg Sci 21:561–571. https://doi.org/10.1111/avsc.12387

    Article  Google Scholar 

  5. Annandale B, Kirkpatrick JB (2017) Diurnal to decadal changes in the balance between vegetation and bare ground in Tasmanian fjaeldmark. Arct Antarct Alp Res 49:473–486. https://doi.org/10.1657/aaar0017-001

    Article  Google Scholar 

  6. Anthelme F, Cavieres LA, Dangles O (2014) Facilitation among plants in alpine environments in the face of climate change. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00387

    Article  PubMed  PubMed Central  Google Scholar 

  7. Artemov IA (2018) Changes in the altitudinal distribution of alpine plants in Katunskiy Biosphere Reserve (Central Altai) revealed on the basis of multiyear monitoring data. Contemp Probl Ecol. https://doi.org/10.1134/S1995425518010018

    Article  Google Scholar 

  8. Ballantyne M, Pickering CM (2015) Shrub facilitation is an important driver of alpine plant community diversity and functional composition. Biodivers Conserv 24:1859–1875. https://doi.org/10.1007/s10531-015-0910-z

    Article  Google Scholar 

  9. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeogr 19:134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  10. Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F, Logez M, Henriques-Silva R (2020) betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.5.2, https://CRAN.R-project.org/package=betapart

  11. Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  12. Björk RG, Molau U (2007) Ecology of alpine snowbeds and the impact of global change. Arct Antarct Alp Res 39:34–43. https://doi.org/10.1657/1523-0430(2007)39[34:EOASAT]2.0.CO;2

    Article  Google Scholar 

  13. Bradstock R, Penman T, Boer M, Price O, Clarke H (2014) Divergent responses of fire to recent warming and drying across south-eastern Australia. Glob Change Biol 20:1412–1428. https://doi.org/10.1111/gcb.12449

    Article  Google Scholar 

  14. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:326–349

    Article  Google Scholar 

  15. Britton AJ, Beale CM, Towers W, Hewison RL (2009) Biodiversity gains and losses: evidence for homogenisation of Scottish alpine vegetation. Biol Conserv 142:1728–1739. https://doi.org/10.1016/j.biocon.2009.03.010

    Article  Google Scholar 

  16. Cáceres Y, Llambí LD, Rada F (2015) Shrubs as foundation species in a high tropical alpine ecosystem: a multi-scale analysis of plant spatial interactions. Plant Ecol Divers 8:147–161. https://doi.org/10.1080/17550874.2014.960173

    Article  Google Scholar 

  17. Callaway RM et al (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848. https://doi.org/10.1038/nature00812

    CAS  Article  PubMed  Google Scholar 

  18. Camac JS, Williams RJ, Wahren CH, Morris WK, Morgan JW (2013) Post-fire regeneration in alpine heathland: Does fire severity matter? Austral Ecol 38:199–207. https://doi.org/10.1111/j.1442-9993.2012.02392.x

    Article  Google Scholar 

  19. Camac JS, Williams RJ, Wahren CH, Hoffmann AA, Vesk PA (2017) Climatic warming strengthens a positive feedback between alpine shrubs and fire. Glob Change Biol 23:3249–3258. https://doi.org/10.1111/gcb.13614

    Article  Google Scholar 

  20. Cannone N, Pignatti S (2014) Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Clim Change 123:201–214. https://doi.org/10.1007/s10584-014-1065-8

    Article  Google Scholar 

  21. Cannone N, Sgorbati S, Guglielmin M (2007) Unexpected impacts of climate change on alpine vegetation. Front Ecol Envir 5:360–364. https://doi.org/10.1890/1540-9295(2007)5[360:UIOCCO]2.0.CO;2

    Article  Google Scholar 

  22. Carilla J, Halloy S, Cuello S, Grau A, Malizia A, Cuesta F (2018) Vegetation trends over eleven years on mountain summits in NW Argentina. Ecol Evol 8:11554–11567. https://doi.org/10.1002/ece3.4602

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chandra S, Singh A, Singh CP, Nautiyal MC, Rawat LS (2018) Vascular plants distribution in relation to topography and environmental variables in alpine zone of Kedarnath Wild Life Sanctuary, West Himalaya. J Mt Sci 15:1936–1949. https://doi.org/10.1007/s11629-017-4738-8

    Article  Google Scholar 

  24. Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308. https://doi.org/10.1890/0012-9658

    Article  Google Scholar 

  25. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  26. Costin A (1967) Alpine ecosystems of the Australasian region. In: Wright HE, Osburn WH (eds) Arctic and alpine environments. Indiana University Press, Bloomington, pp 55–87

    Google Scholar 

  27. Costin A, Gray M, Totterdell C, Wimbush D (2000) Kosciuszko alpine flora. CSIRO Publishing, Clayton South

    Google Scholar 

  28. CSIRO DoPI (1972) Kosciuszko National Park Alpine Vegetation 1966. CSIRO Publishing, Clayton South

    Google Scholar 

  29. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. https://doi.org/10.1038/nature04514

    CAS  Article  Google Scholar 

  30. Davis CJ (2013) Towards the development of long-term winter records for the Snowy Mountains. Aust Meteorol Oceanogr J 63:303–313. https://doi.org/10.22499/2.6302.003

    Article  Google Scholar 

  31. De Boeck HJ, Bassin S, Verlinden M, Zeiter M, Hiltbrunner E (2016) Simulated heat waves affected alpine grassland only in combination with drought. New Phytol 209:531–541. https://doi.org/10.1111/nph.13601

    Article  PubMed  Google Scholar 

  32. de Witte LC, Stöcklin J (2010) Longevity of clonal plants: why it matters and how to measure it. Ann Bot 106:859–870. https://doi.org/10.1093/aob/mcq191

    Article  PubMed  PubMed Central  Google Scholar 

  33. Di Battista T, Fortuna F, Maturo F (2017) BioFTF: an R package for biodiversity assessment with the functional data analysis approach. Ecol Ind 73:726–732. https://doi.org/10.1016/j.ecolind.2016.10.032

    Article  Google Scholar 

  34. Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Global Change Biol 17:990–996. https://doi.org/10.1111/j.1365-2486.2010.02266.x

    Article  Google Scholar 

  35. Dodson JR, SaliS TD, Myers CA, Sharp AJ (1994) A thousand years of environmental change and human impact in the alpine zone at Mt. Kosciusko, New South Wales. Aust Geogr 25:77–87. https://doi.org/10.1080/00049189408703100

    Article  Google Scholar 

  36. Driscoll DA et al (2019) Impacts of feral horses in the Australian Alps and evidence-based solutions. Ecol Manag Restor 20:63–72. https://doi.org/10.1111/emr.12357

    Article  Google Scholar 

  37. Dullinger S et al (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Change 2:619–622. https://doi.org/10.1038/nclimate1514

    Article  Google Scholar 

  38. Elmendorf SC et al (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175. https://doi.org/10.1111/j.1461-0248.2011.01716.x

    Article  PubMed  Google Scholar 

  39. Elsen PR, Tingley MW (2015) Global mountain topography and the fate of montane species under climate change. Nat Clim Change 5:772–776. https://doi.org/10.1038/nclimate2656

    Article  Google Scholar 

  40. Ernakovich JG, Hopping KA, Berdanier AB, Simpson RT, Kachergis EJ, Steltzer H, Wallenstein MD (2014) Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob Change Biol 20:3256–3269. https://doi.org/10.1111/gcb.12568

    Article  Google Scholar 

  41. Erschbamer B, Kiebacher T, Mallaun M, Unterluggauer P (2009) Short-term signals of climate change along an altitudinal gradient in the South Alps. Plant Ecol 202:79–89. https://doi.org/10.1007/s11258-008-9556-1

    Article  Google Scholar 

  42. Erschbamer B, Unterluggauer P, Winkler E, Mallaun M (2011) Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia 83:387–401

    Google Scholar 

  43. Evans RA, Love RM (1957) The step-point method of sampling: a practical tool in range research. Rangel Ecol Manag 10:208–212

    Article  Google Scholar 

  44. Fernández Calzado MR, Molero Mesa J (2013) Changes in the summit flora of a Mediterranean mountain (Sierra Nevada, Spain) as a possible effect of climate change. Lazaroa 34:65–75. https://doi.org/10.5209/rev_LAZA.2013.v34.n1.41523

    Article  Google Scholar 

  45. Fox J, Weisberg S (2019) An R companion to applied regression, 3rd edn. Sage Publications Ltd., Thousand Oaks

    Google Scholar 

  46. Fraser IP, Williams RJ, Murphy BP, Camac JS, Vesk PA (2016) Fuels and landscape flammability in an Australian alpine environment. Austral Ecol 41:657–670. https://doi.org/10.1111/aec.12355

    Article  Google Scholar 

  47. Fu G, Shen ZX, Sun W, Zhong ZM, Zhang XZ, Zhou YT (2015) A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau. J Plant Growth Regul 34:57–65. https://doi.org/10.1007/s00344-014-9442-0

    CAS  Article  Google Scholar 

  48. Futschik A et al (2020) Disentangling observer error and climate change effects in long-term monitoring of alpine plant species composition and cover. J Veg Sci 31:14–25. https://doi.org/10.1111/jvs.12822

    Article  Google Scholar 

  49. Gallagher RV, Hughes L, Leishman MR (2009) Phenological trends among Australian alpine species: using herbarium records to identify climate-change indicators. Aust J Bot 57:1–9. https://doi.org/10.1071/BT08051

    Article  Google Scholar 

  50. Gao Q et al (2016) Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci Total Environ 554–555:34–41. https://doi.org/10.1016/j.scitotenv.2016.02.131

    CAS  Article  PubMed  Google Scholar 

  51. Gigauri K, Akhalkatsi M, Nakhutsrishvili G, Abdaladze O (2013) Monitoring of vascular plant diversity in a changing climate in the alpine zone of the Central Greater Caucasus. Turk J Bot 37:1104–1114. https://doi.org/10.3906/bot-1301-38

    Article  Google Scholar 

  52. Gigauri K, Akhalkatsi M, Abdaladze O, Nakhutsrishvili G (2016) Alpine plant distribution and thermic vegetation indicator on Gloria summits in the Central Greater Caucasus. Pak J Bot 48:1893–1902

    Google Scholar 

  53. Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:325–331. https://doi.org/10.1016/j.tree.2010.03.002

    Article  PubMed  Google Scholar 

  54. Gitzen RA, Millspaugh JJ, Cooper AB, Licht DS (2012) Design and analysis of long-term ecological monitoring studies. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139022422

    Google Scholar 

  55. Good R, Johnston S (2019) Rehabilitation and revegetation of the Kosciuszko summit area, following the removal of grazing: an historic review. Ecol Manage Restor 20:13–20. https://doi.org/10.1111/emr.12363

    Article  Google Scholar 

  56. Gottfried M, Pauli H, Grabherr G (1998) Prediction of vegetation patterns at the limits of plant life: a new view of the alpine-nival ecotone. Arct Alp Res 30:207–221

    Article  Google Scholar 

  57. Gottfried M et al (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change 2:111–115. https://doi.org/10.1038/nclimate1329

    Article  Google Scholar 

  58. Grabherr G, Gottfried M, Pauli H (2010) Climate change impacts in alpine environments. Geogr Compass 4:1133–1153. https://doi.org/10.1111/j.1749-8198.2010.00356.x

    Article  Google Scholar 

  59. Green K, Osborne WS (2012) Field guide to wildlife of the Australian snow-country, 2nd edn. New Holland Publishers, Chatswood

    Google Scholar 

  60. Greenland D (1999) Enso-related phenomena at long-term ecological research sites. Phys Geogr 20:491–507. https://doi.org/10.1080/02723646.1999.10642692

    Article  Google Scholar 

  61. Guisan AA et al (2019) Climate change impacts on mountain biodiversity. In: Lovejoy TE, Hannah L (eds) Biodiversity and climate change: transforming the biosphere. Yale University Press, New Haven, pp 221–233

    Google Scholar 

  62. Hamid M, Khuroo AA, Malik AH, Ahmad R, Singh CP, Dolezal J, Haq SM (2020) Early evidence of shifts in alpine summit vegetation: a case study from Kashmir Himalaya. Front Plant Sci 11:16. https://doi.org/10.3389/fpls.2020.00421

    Article  Google Scholar 

  63. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:19–20

    Google Scholar 

  64. Hennessy K, Whetton P, Smith I, Bathols J, Hutchinson M, Sharples J (2003) The impact of climate change on snow conditions in mainland Australia. CSIRO Atmospheric Research, Melbourne, Australia

    Google Scholar 

  65. Hennessy K, Lucas C, Nicholls N, Bathols J, Suppiah R, Ricketts J (2005) Climate change impacts on fire-weather in south-east Australia. CSIRO Marine and Atmospheric Research, Melbourne

    Google Scholar 

  66. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432. https://doi.org/10.2307/1934352

    Article  Google Scholar 

  67. Hock R et al (2019) High Mountain Areas. In: Pörtner HO et al (eds) IPCC Special Report on the ocean and cryosphere in a changing climate. IPCC, Geneva, p 72

    Google Scholar 

  68. Hoffmann AA, Camac JS, Williams RJ, Papst W, Jarrad FC, Wahren C (2010) Phenological changes in six Australian subalpine plants in response to experimental warming and year-to-year variation. J Ecol 98:927–937. https://doi.org/10.1111/j.1365-2745.2010.01667.x

    Article  Google Scholar 

  69. Hoffmann AA et al (2019) Impacts of recent climate change on terrestrial flora and fauna: some emerging Australian examples. Austral Ecol 44:3–27. https://doi.org/10.1111/aec.12674

    Article  Google Scholar 

  70. Holgate CM, Van Dijk AIJM, Evans JP, Pitman AJ (2020) Local and remote drivers of southeast australian drought. Geophys Res Lett. https://doi.org/10.1029/2020GL090238

    Article  Google Scholar 

  71. Hughes L (2003) Climate change and Australia: trends, projections and impacts. Austral Ecol. https://doi.org/10.1046/j.1442-9993.2003.01300.x

    Article  Google Scholar 

  72. Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362. https://doi.org/10.1890/06-2128.1

    Article  PubMed  Google Scholar 

  73. Jarrad FC, Wahren C-H, Williams RJ, Burgman MA (2008) Impacts of experimental warming and fire on phenology of subalpine open-heath species. Aust J Bot 56:617–629. https://doi.org/10.1071/BT08018

    Article  Google Scholar 

  74. Kirchoff CM (2020) Rapid assessment of future habitat suitability: a case-study of the snowy mountains endemic alpine flora using the Biodiversity and Climate Change Virtual Library (BCCVL). Austral Plant Conserv 28:5

    Google Scholar 

  75. Kirkpatrick JB, Bridle KL (2013) Natural and cultural histories of fire differ between Tasmanian and mainland Australian alpine vegetation. Aust J Bot 61:465–474. https://doi.org/10.1071/BT13128

    Article  Google Scholar 

  76. Kirkpatrick JB, Bridle KL, Dickinson KJM (2010) Decades-scale vegetation change in burned and unburned alpine coniferous heath. Aust J Bot 58:453–462. https://doi.org/10.1071/BT10138

    Article  Google Scholar 

  77. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems; with 47 tables, 2nd edn. Springer, Berlin

    Google Scholar 

  78. Körner C (2004) Mountain biodiversity, its causes and function. Ambio 33:11–17

    Article  Google Scholar 

  79. Körner C, Ohsawa M (2005) Mountain Systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends, vol 1. Island Press, Washington, pp 683–716

    Google Scholar 

  80. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732. https://doi.org/10.1111/j.1365-2699.2003.01043.x

    Article  Google Scholar 

  81. Körner C, Paulsen J, Spehn EM (2011) A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alpine Bot 121:73–78. https://doi.org/10.1007/s00035-011-0094-4

    Article  Google Scholar 

  82. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: tests in linear mixed effects models. J Stat Softw 82:1–26. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  83. Lamprecht A, Semenchuk PR, Steinbauer K, Winkler M, Pauli H (2018) Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytol 220:447–459. https://doi.org/10.1111/nph.15290

    Article  PubMed  PubMed Central  Google Scholar 

  84. Laurance WF et al (2011) The 10 Australian ecosystems most vulnerable to tipping points. Biol Conserv 144:1472–1480. https://doi.org/10.1016/j.biocon.2011.01.016

    Article  Google Scholar 

  85. Lenth R, Buerkner P, Herve M, Love J, Riebl H, Singmann H (2020) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.2-1, https://CRAN.R-project.org/package=emmeans

  86. Liberati L, Messerli S, Matteodo M, Vittoz P (2019) Contrasting impacts of climate change on the vegetation of windy ridges and snowbeds in the Swiss Alps. Alpine Bot 129:95–105. https://doi.org/10.1007/s00035-019-00223-5

    Article  Google Scholar 

  87. Lütz C (2013) Plants in Alpine regions: cell physiology of adaption and survival strategies. Plants in alpine regions: cell physiology of Adaption and Survival Strategies. Springer, Wien. https://doi.org/10.1007/978-3-7091-0136-0

  88. Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Google Scholar 

  89. Malanson GP, Fagre DB (2013) Spatial contexts for temporal variability in alpine vegetation under ongoing climate change. Plant Ecol 214:1309–1319. https://doi.org/10.1007/s11258-013-0253-3

    Article  Google Scholar 

  90. Mark AF et al (2015) Ecological responses to 52 years of experimental snow manipulation in high-alpine cushionfield, Old Man Range, South-Central New Zealand. Arct Antarct Alp Res 47:751–772. https://doi.org/10.1657/AAAR0014-098

    Article  Google Scholar 

  91. McGowan H, Callow JN, Soderholm J, McGrath G, Campbell M, Zhao JX (2018) Global warming in the context of 2000 years of Australian alpine temperature and snow cover. Sci Rep 8:8. https://doi.org/10.1038/s41598-018-22766-z

    CAS  Article  Google Scholar 

  92. Michelsen O, Syverhuset AO, Pedersen B, Holten JI (2011) The impact of climate change on recent vegetation changes on Dovrefjell, Norway. Diversity 3:91–111. https://doi.org/10.3390/d3010091

    Article  Google Scholar 

  93. Müller F, Baessler C, Schubert H, Klotz S (2010) Long-term ecological research: between theory and application. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8782-9

    Google Scholar 

  94. Myers-Smith IH et al (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett. https://doi.org/10.1088/1748-9326/6/4/045509

    Article  Google Scholar 

  95. Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, Oxford

    Google Scholar 

  96. Pauli H et al (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355. https://doi.org/10.1126/science.1219033

    CAS  Article  PubMed  Google Scholar 

  97. Pauli H et al (eds) (2015) The GLORIA field manual:standard multi-summit approach, supplementary methods and extra approaches, 5th edn. Austrian Academy of Sciences and University of Natural Resources and Life Sciences, Vienna

  98. Pepin N et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430. https://doi.org/10.1038/nclimate2563

    Article  Google Scholar 

  99. Pickering CM, Green K (2009) Vascular plant distribution in relation to topography, soils and micro-climate at five GLORIA sites in the snowy mountains, Australia. Aust J Bot 57:189–199. https://doi.org/10.1071/BT08133

    Article  Google Scholar 

  100. Pickering CM, Hill W, Green K (2008) Vascular plant diversity and climate change in the alpine zone of the Snowy Mountains, Australia. Biodivers Conserv 17:1627–1644. https://doi.org/10.1007/s10531-008-9371-y

    Article  Google Scholar 

  101. Pickering CM, Green K, Barros AA, Venn S (2014) A resurvey of late-lying snowpatches reveals changes in both species and functional composition across snowmelt zones. Alpine Bot 124:93–103. https://doi.org/10.1007/s00035-014-0140-0

    Article  Google Scholar 

  102. Porro F et al (2019) Could plant diversity metrics explain climate-driven vegetation changes on mountain summits of the GLORIA network? Biodivers Conserv 28:3575–3596. https://doi.org/10.1007/s10531-019-01837-1

    Article  Google Scholar 

  103. Quinn GP, Keough MJ (2003) Experimental design and data analysis for biologist. Cambridge University Press, Port Melbourne

    Google Scholar 

  104. Rényi A (1961) On measures of entropy and information. In: Neyman J (ed) Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, vol I. University of California Press, Berkeley, California, pp 547–561

  105. Rohde UL, Jain GC, Poddar AK, Ghosh AK (2012) Introduction to integral calculus. Wiley, Hoboken

    Google Scholar 

  106. Ross LC, Woodin SJ, Hester AJ, Thompson DBA, Birks HJB (2012) Biotic homogenization of upland vegetation: patterns and drivers at multiple spatial scales over five decades. J Veg Sci 23:755–770. https://doi.org/10.1111/j.1654-1103.2012.01390.x

    Article  Google Scholar 

  107. Rumpf SB et al (2018) Range dynamics of mountain plants decrease with elevation. Proc Natl Acad Sci USA 115:1848–1853. https://doi.org/10.1073/pnas.1713936115

    CAS  Article  PubMed  Google Scholar 

  108. Rumpf SB, Hulber K, Zimmermann NE, Dullinger S (2019) Elevational rear edges shifted at least as much as leading edges over the last century. Global Ecol Biogeogr 28:533–543. https://doi.org/10.1111/geb.12865

    Article  Google Scholar 

  109. Salick J, Fang ZD, Hart R (2019) Rapid changes in eastern Himalayan alpine flora with climate change. Am J Bot 106:520–530. https://doi.org/10.1002/ajb2.1263

    Article  PubMed  Google Scholar 

  110. Sánchez-Bayo F, Green K (2013) Australian snowpack disappearing under the influence of global warming and solar activity. Arct Antarct Alp Res 45:107–118. https://doi.org/10.1657/1938-4246-45.1.107

    Article  Google Scholar 

  111. Scherrer P, Pickering CM (2005) Recovery of alpine vegetation from grazing and drought: data from long-term photoquadrats in Kosciuszko National Park, Australia. Arct Antarct Alp Res 37:574–584. https://doi.org/10.1657/1523-0430

    Article  Google Scholar 

  112. Seddon AWR, Macias-Fauria M, Long PR, Benz D, Willis KJ (2016) Sensitivity of global terrestrial ecosystems to climate variability. Nature 531:229–232. https://doi.org/10.1038/nature16986

    CAS  Article  PubMed  Google Scholar 

  113. Shannon CE (1948) A mathematical theory of communication. Bell Labs Tech J 27:623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x

    Article  Google Scholar 

  114. Sheldon AL (1969) Equitability indices: dependence on the species count. Ecology 50:466–467. https://doi.org/10.2307/1933900

    Article  Google Scholar 

  115. Simpson EH (1949) Measurement of diversity. Nature 163:688. https://doi.org/10.1038/163688a0

    Article  Google Scholar 

  116. Slattery D, Worboys GL (2020) Kosciuszko. A Great National Park. Envirobook Publishing, Sussex Inlet

    Google Scholar 

  117. Smithers BV, Oldfather MF, Koontz MJ, Bishop J, Bishop C, Nachlinger J, Sheth SN (2020) Community turnover by composition and climatic affinity across scales in an alpine system. Am J Bot 107:239–249. https://doi.org/10.1002/ajb2.1376

    Article  PubMed  Google Scholar 

  118. Stanisci A, Frate L, Di Cella UM, Pelino G, Petey M, Siniscalco C, Carranza ML (2016) Short-term signals of climate change in Italian summit vegetation: observations at two GLORIA sites. Plant Biosyst 150:227–235. https://doi.org/10.1080/11263504.2014.968232

    Article  Google Scholar 

  119. Steinbauer MJ et al (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556:231. https://doi.org/10.1038/s41586-018-0005-6

    CAS  Article  PubMed  Google Scholar 

  120. Stöckli V, Wipf S, Nilsson C, Rixen C (2011) Using historical plant surveys to track biodiversity on mountain summits. Plant Ecol Divers 4:415–425. https://doi.org/10.1080/17550874.2011.651504

    Article  Google Scholar 

  121. Taguchi YH, Oono Y (2005) Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics 21:730–740. https://doi.org/10.1093/bioinformatics/bti067

    CAS  Article  PubMed  Google Scholar 

  122. Team RC (2020) R: a language and environment for statistical computing. Version 4.0.3. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/

  123. Tóthmérész B (1995) Comparison of different methods for diversity ordering. J Veg Sci 6:283–290. https://doi.org/10.2307/3236223

    Article  Google Scholar 

  124. Tóthmérész B (1998) On the characterization of scale-dependent diversity. Abstr Bot 22:149–156

    Google Scholar 

  125. Van Dijk AIJM et al (2013) The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour Res 49:1040–1057. https://doi.org/10.1002/wrcr.20123

    Article  Google Scholar 

  126. Venn SE, Green K (2018) Evergreen alpine shrubs have high freezing resistance in spring, irrespective of snowmelt timing and exposure to frost: an investigation from the Snowy Mountains, Australia. Plant Ecol 219:209–216. https://doi.org/10.1007/s11258-017-0789-8

    Article  Google Scholar 

  127. Venn SE, Morgan JW (2009) Patterns in alpine seedling emergence and establishment across a stress gradient of mountain summits in south-eastern Australia. Plant Ecol Divers 2:5–16. https://doi.org/10.1080/17550870802691356

    Article  Google Scholar 

  128. Venn S, Pickering CM, Green K (2012) Short-term variation in species richness across an altitudinal gradient of alpine summits. Biodivers Conserv 21:3157–3186. https://doi.org/10.1007/s10531-012-0359-2

    Article  Google Scholar 

  129. Venn SE, Pickering CM, Green K (2014) Spatial and temporal functional changes in alpine summit vegetation are driven by increases in shrubs and graminoids. AoB Plants. https://doi.org/10.1093/aobpla/plu008

    Article  PubMed  PubMed Central  Google Scholar 

  130. Venn SE, Pickering CM, Butler SA, Letten AD (2016) Using a model based fourth-corner analysis to explain vegetation change following an extraordinary fire disturbance. Oecologia 182:855–863. https://doi.org/10.1007/s00442-016-3700-8

    CAS  Article  PubMed  Google Scholar 

  131. Venn S, Kirkpatrick J, McDougall K, Walsh N, Whinam J, Williams RJ, Keith DA (2017) Alpine, sub-alpine and sub-antarctic vegetation of Australia. Australian Vegetation, 3rd edn. Cambridge University Press, Cambridge

  132. Verrall B (2018) Recovery of snow dependent plant communities in Australia from fire. Honours thesis for Griffith University School of Environment and Science, Gold Coast.

  133. Verrall B, Pickering CM (2020) Alpine vegetation in the context of climate change: a global review of past research and future directions. Sci Total Environ 748:141344. https://doi.org/10.1016/j.scitotenv.2020.141344

    CAS  Article  PubMed  Google Scholar 

  134. Vittoz P, Guisan A (2007) How reliable is the monitoring of permanent vegetation plots? A test with multiple observers. J Veg Sci 18:413–422. https://doi.org/10.1658/1100-9233(2007)18[413:HRITMO]2.0.CO;2

    Article  Google Scholar 

  135. Vittoz P, Bayfield N, Brooker R, Elston DA, Duff EI, Theurillat JP, Guisan A (2010a) Reproducibility of species lists, visual cover estimates and frequency methods for recording high-mountain vegetation. J Veg Sci 21:1035–1047. https://doi.org/10.1111/j.1654-1103.2010.01216.x

    Article  Google Scholar 

  136. Vittoz P, Camenisch M, Mayor R, Miserere L, Vust M, Theurillat JP (2010b) Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot Helv 120:139–149. https://doi.org/10.1007/s00035-010-0079-8

    Article  Google Scholar 

  137. Wahren CH, Camac JS, Jarrad FC, Williams RJ, Papst WA, Hoffmann AA (2013) Experimental warming and long-term vegetation dynamics in an alpine heathland. Aust J Bot 61:36–51. https://doi.org/10.1071/BT12234

    Article  Google Scholar 

  138. Walther GR et al (2002) Ecological responses to recent climate change. Nature 416:389–395. https://doi.org/10.1038/416389a

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. Walther GR, Beißner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548. https://doi.org/10.1658/1100-9233

    Article  Google Scholar 

  140. Wang Q, Fan X, Wang M (2016) Evidence of high-elevation amplification versus Arctic amplification. Sci Rep. https://doi.org/10.1038/srep19219

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ward-Jones J, Pulsford I, Thackway R, Bishwokarma D, Freudenberger D (2019) Impacts of feral horses and deer on an endangered woodland of Kosciuszko National Park. Ecol Manag Restor 20:37–46. https://doi.org/10.1111/emr.12353

    Article  Google Scholar 

  142. Williams R, Ashton D (1988) Cyclical Patterns of regeneration in subalpine heathland communities on the Bogong high-plains, Victoria. Aust J Bot 36:605–619. https://doi.org/10.1071/BT9880605

    Article  Google Scholar 

  143. Williams RJ, Wahren CH, Bradstock RA, Müller WJ (2006) Does alpine grazing reduce blazing? A landscape test of a widely-held hypothesis. Austral Ecol 31:925–936. https://doi.org/10.1111/j.1442-9993.2006.01655.x

    Article  Google Scholar 

  144. Williams RJ et al (2008) Large fires in Australian alpine landscapes: their part in the historical fire regime and their impacts on alpine biodiversity. Int J Wildl Fire 17:793–808. https://doi.org/10.1071/WF07154

    Article  Google Scholar 

  145. Williams RJ, Papst WA, McDougall KL (2014) Alpine ecosystems. In: Lindenmayer DB, Burns E, Thurgate N, Lowe A (eds) Biodiversity and environmental change: monitoring, challenges and directions. CSIRO Publishing, Melbourne, pp 167–212

    Google Scholar 

  146. Wilson SD, Nilsson C (2009) Arctic alpine vegetation change over 20 years. Glob Change Biol 15:1676–1684. https://doi.org/10.1111/j.1365-2486.2009.01896.x

    Article  Google Scholar 

  147. Wright G, McDougall KL, Duncan A (2010) Guide to the native ferns, conifers and flowering plants in Kosciuszko National Park. New South Wales National Parks and Wildlife Service, Sydney

    Google Scholar 

  148. Zylstra PJ (2018) Flammability dynamics in the Australian Alps. Austral Ecol 43:578–591. https://doi.org/10.1111/aec.12594

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the ngarigo and kombumerri as First Nations and Traditional Custodians of the land on which the fieldwork and desktop research for this study was conducted. We pay our respect to their Elders past and present, recognise that sovereignty was never ceded and acknowledge their continued connection to country and culture. Thank you to P. Norman, R. Stewart, G. Wright, M. Schroder, G. Cobb and J. Dodd for assisting with fieldwork, and we extend our thanks to those whom were involved in previous assessments. We would also like to thank C. Morrison for proofing the manuscript. This study was supported by funding from New South Wales National Parks and Wildlife as well as funding from Griffith University by a Research Degree scholarship for one of the authors (BV).

Funding

This manuscript is to be used in Biodiversity and Conservation and was funded by Griffith University.

Author information

Affiliations

Authors

Contributions

BV contributed to data collection in 2019, data analysis and writing. KG contributed to project design and data collection in 2004, 2011 and 2019. CMP contributed to project design, data collection in 2004, 2011 and 2019 and revised the manuscript.

Corresponding author

Correspondence to Brodie Verrall.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Daniel Sanchez Mata.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 337 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verrall, B., Green, K. & Pickering, C.M. Dynamics in plant diversity and composition on Australian alpine summits over time. Biodivers Conserv (2021). https://doi.org/10.1007/s10531-021-02171-1

Download citation

Keywords

  • Climate change biology
  • GLORIA
  • Vegetation dynamics
  • Alpha and beta diversity
  • Biotic homogenisation
  • Densification