Skip to main content

Advertisement

Log in

Landscape connectivity estimates are affected by spatial resolution, habitat seasonality and population trends

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Connectivity assessments and corridor delineation are key contributions to landscape management and biodiversity conservation. We examined the influence of three potentially crucial factors on the results of connectivity analyses, using the two subpopulations of the endangered brown bear in the Cantabrian Range (NW Spain) as a case study. First, we evaluated the spatial resolution of vegetation data, using three types of datasets ranging from coarse resolution land-cover maps to high-resolution LiDAR data. Second, the seasonal variation in the distribution of habitat resources and in the species use of the landscape. Third, multi-annual periods with different population status. The estimates of subpopulation isolation (effective distances) and the trajectory of the identified corridors were substantially influenced by (i) the spatial resolution of vegetation data; the more robust results were obtained when incorporating fine-scale LiDAR data; (ii) the season over which species occurrence data and landscape characteristics were considered; the spring mating season yielded higher connectivity estimates than any other season; (iii) the status of the populations, with higher landscape connectivity estimated for expanding populations. Our study reveals that the use of coarse-resolution data may underestimate the resistance of the non-habitat landscape matrix to species movements. The use of year-round estimates of habitat connectivity may miss the key seasonal temporal windows for species movements. Landscape resistance may be overestimated when data from periods with declining or restricted populations are used. We recommend carefully disentangling the effects of demography and landscape heterogeneity on realized species dispersal movements for improving the insights from connectivity modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

We are unwilling to archive the data associated with this paper because they contain sensitive information about individual locations of the endangered Cantabrian brown bear.

Code availability

Not applicable.

References

  • Betbeder J, Laslier M, Hubert-Moy L, Burel F, Baudry J (2017) Synthetic Aperture Radar (SAR) images improve habitat suitability models. Landscape Ecol 32:1867–1879

    Google Scholar 

  • Blazquez-Cabrera S, Ciudad C, Gastón A, Simón MA, Saura S (2019) Identification of strategic corridors for restoring landscape connectivity: application to the Iberian lynx. Anim Conserv 22:210–219

    Google Scholar 

  • Blazquez-Cabrera S, Gastón A, Beier P, Garrote G, Simón MA, Saura S (2016) Influence of separating home range and dispersal movements on characterizing corridors and effective distances. Landscape Ecol 31:2355–2366

    Google Scholar 

  • Boyle SA, Kennedy CM, Torres J, Colman K, Pérez-Estigarribia PE, de la Sancha NU (2014) High-resolution satellite imagery is an important yet underutilized resource in conservation biology. PLoS ONE 9:e86908

    PubMed  PubMed Central  Google Scholar 

  • Chetkiewicz C-LB, Boyce MS (2009) Use of resource selection functions to identify conservation corridors. J Appl Ecol 46:1036–1047

    Google Scholar 

  • Ciucci P, Tosoni E, Di Domenico G, Quattrociocchi F, Boitani L (2014) Seasonal and annual variation in the food habits of Apennine brown bears, central Italy. J Mammal 95:572–586

    Google Scholar 

  • Clevenger AP, Purroy FJ, Pelton MR (1990) Movement and activity patterns of a European brown bear in the Cantabrian Mountains, Spain. International Conference on Bear Research and Management 8:205–211

    Google Scholar 

  • Crooks KR, Sanjayan M (2006) Connectivity conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Elkin CM, Reid ML (2010) Shifts in breeding habitat selection behaviour in response to population density. Oikos 119:1070–1080

    Google Scholar 

  • Elliot NB, Cushman SA, Macdonald DW, Loveridge AJ (2014) The devil is in the dispersers: predictions of landscape connectivity change with demography. J Appl Ecol 51:1169–1178

    Google Scholar 

  • Evans MJ, Rittenhouse TAG, Hawley JE, Rego PW (2017) Black bear recolonization patterns in a human-dominated landscape vary based on housing: New insights from spatially explicit density models. Landsc Urban Plan 162:13–24

    Google Scholar 

  • Ferguson SH, Elkie PC (2004) Habitat requirements of boreal forest caribou during the travel seasons. Basic Appl Ecol 5:465–474

    Google Scholar 

  • Fernández-Gil A, Naves J, Delibes M (2006) Courtship of brown bear Ursus arctos in northern Spain: phonology, weather, habitat and durable mating areas. Wildlife Biol 12:367–373

    Google Scholar 

  • Gantchoff MG, Belant JL (2017) Regional connectivity for recolonizing American black bears (Ursus americanus) in southcentral USA. Biol Conserv 214:66–75

    Google Scholar 

  • García P, Lastra J, Marquínez J, Nores C (2007) Detailed model of shelter areas for the Cantabrian brown bear. Ecol Inform 2:297–307

    Google Scholar 

  • Gastón A, Ciudad C, Mateo-Sánchez MC, García-Viñas JI, López-Leiva C, Fernández-Landa A, Marchamalo M, Cuevas J, de la Fuente B, Fortin M-J, Saura S (2017) Species’ habitat use inferred from environmental variables at multiple scales: How much we gain from high-resolution vegetation data? Int J Appl Earth Obs Geoinf 55:1–8

    Google Scholar 

  • Gonzalez EG, Blanco JC, Ballesteros F, Alcaraz L, Palomero G, Doadrio I (2016) Genetic and demographic recovery of an isolated population of brown bear Ursus arctos L., 1758. PeerJ 4:e1928

    PubMed  PubMed Central  Google Scholar 

  • Gregório I, Barros T, Pando D, Morante J, Fonseca C, Ferreira E (2020) Paths for colonization or exodus? New insights from the brown bear (Ursus arctos) population of the Cantabrian Mountains. PLoS ONE 15(1):e0227302

    PubMed  PubMed Central  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1:e1500052

    PubMed  PubMed Central  Google Scholar 

  • Keller JK, Smith CR (2014) Improving GIS-based Wildlife-Habitat Analysis. Springer Briefs in Ecology, Springer, New York

    Google Scholar 

  • Lamamy C, Bombieri G, Zarzo-Arias A, González-Bernardo E, Penteriani V (2019) Can landscape characteristics help explain the different trends of Cantabrian brown bear subpopulations? Mammal Res 64:559–567

    Google Scholar 

  • Louvrier J, Duchamp C, Lauret V, Marboutin E, Cubaynes S, Choquet R, Miquel C, Gimenez O (2018) Mapping and explaining wolf recolonization in France using dynamic occupancy models and opportunistic data. Ecography 41:647–660

    Google Scholar 

  • Maiorano L, Boitani L, Chiaverini L, Ciucci P (2017) Uncertainties in the identification of potential dispersal corridors: The importance of behaviour, sex, and algorithm. Basic Appl Ecol 21:66–75

    Google Scholar 

  • Martínez Cano I, Taboada FG, Naves J, Fernández-Gil A, Wiegand T (2016) Decline and recovery of a large carnivore: environmental change and long-term trends in an endangered brown bear population. Proc R Soc B 283:20161832

    PubMed  Google Scholar 

  • Mateo-Sánchez MC, Cushman SA, Saura S (2014) Connecting endangered brown bear subpopulations in the Cantabrian Range (north-western Spain). Anim Conserv 17:430–440

    Google Scholar 

  • Mateo-Sánchez MC, Gastón A, Ciudad C, García-Viñas JI, Cuevas J, López-Leiva C, Fernández-Landa A, Algeet-Abarquero N, Marchamalo M, Fortin M-J, Saura S (2016) Seasonal and temporal changes in species use of the landscape: How do they impact the inferences from multi-scale habitat modeling? Landscape Ecol 31:1261–1276

    Google Scholar 

  • McFarland TM, Grzybowski JA, Mathewson HA, Morrison ML (2015) Presence-only species distribution models to predict suitability over a long-term study for a species with a growing population. Wildl Soc Bull 39:218–224

    Google Scholar 

  • McGarigal K, Wan HY, Zeller KA, Timm BC, Cushman SA (2016) Multi-scale habitat selection modeling: a review and outlook. Landscape Ecol 31:1161–1175

    Google Scholar 

  • McRae BH, Kavanagh DM (2011) Linkage mapper connectivity analysis software, the nature conservancy. Seattle. http://www.circuitscape.org/linkagemapper.

  • Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100–103

    CAS  PubMed  Google Scholar 

  • Milanesi P, Holderegger R, Bollmann K, Gugerli F, Zellweger F (2017) Three-dimensional habitat structure and landscape genetics: A step forward in estimating functional connectivity. Ecology 98:393–402

    CAS  PubMed  Google Scholar 

  • Mui AB, Caverhill B, Johnson B, Fortin M-J, He Y (2017) Using multiple metrics to estimate seasonal landscape connectivity for Blanding’s turtles (Emydoidea blandingii) in a fragmented landscape. Landscape Ecol 32:531–546

    Google Scholar 

  • Naves J, Fernández-Gil A, Rodríguez C, Delibes M (2006) Brown bear food habits at the border of its range: a long-term study. J Mammal 87:899–908

    Google Scholar 

  • Naves J, Wiegand T, Revilla E, Delibes M (2003) Endangered species constrained by natural and human factors: the case of brown bears in northern Spain. Conserv Biol 17:1276–1289

    Google Scholar 

  • Neumann W, Martinuzzi S, Estes AB, Pidgeon AM, Dettki H, Ericsson G, Radeloff VC (2015) Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Mov Ecol 3:8

    PubMed  PubMed Central  Google Scholar 

  • Osipova L, Okello MM, Njumbi SJ, Ngene S, Western D, Hayward MW, Balkenhol N (2018) Using step-selection functions to model landscape connectivity for African elephants: accounting for variability across individuals and seasons. Anim Conserv. https://doi.org/10.1111/acv.12432

    Article  Google Scholar 

  • Palomero G, Blanco JC, Ballesteros F, García-Serrano F, Herrero J, Nores C (2011) Récord de osas con crías en el occidente cantábrico. Quercus 301:20–25

    Google Scholar 

  • Panzacchi M, Van Moorter B, Strand O, Saerens M, Kivimäki I, St. Clair CC, Herfindal I, Boitani L, (2016) Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths. J Anim Ecol 85:32–42

    PubMed  Google Scholar 

  • Penteriani V, Zarzo-Arias A, Bombieri G, Cañedo D, Díaz García J, Delgado MM, Peón Torre P, Fernández Otero M, Vázquez García P, Vázquez VM, Sánchez Corominas T (2018) Density and reproductive characteristics of female brown bears in the Cantabrian Mountains, NW Spain. Eur Zool J 85:313–321

    Google Scholar 

  • Pérez T, Naves J, Vázquez JF, Fernández-Gil A, Seijas J, Albornoz J, Revilla E, Delibes M, Domínguez A (2014) Estimating the population size of the endangered Cantabrian brown bear through genetic sampling. Wildlife Biol 20:300–309

    Google Scholar 

  • Pullinger MG, Johnson CJ (2010) Maintaining or restoring connectivity of modified landscapes: Evaluating the least-cost path model with multiple sources of ecological information. Landscape Ecol 25:1547–1560

    Google Scholar 

  • Reid JM, Travis JMJ, Daunt F, Burthe SJ, Wanless S, Dytham C (2018) Population and evolutionary dynamics in spatially structured seasonally varying environments. Biol Rev 93:1578–1603

    PubMed  Google Scholar 

  • Samelius G, Andrén H, Liberg O, Linnell JDC, Odden J, Ahlqvist P, Segerström P, Sköld K (2011) Spatial and temporal variation in natal dispersal by Eurasian lynx in Scandinavia. J Zool 286:120–130

    Google Scholar 

  • San Miguel A, Ballesteros F, Blanco JC, Palomero G (2012) Manual de buenas prácticas para la gestión de corredores oseros en la Cordillera Cantábrica. Ministerio de Agricultura, Alimentación y Medio Ambiente. Serie especies amenazadas. Madrid, Fundación Oso Pardo

    Google Scholar 

  • Støen OG, Zedrosser A, Saebø S, Swenson JE (2006) Inversely density-dependent natal dispersal in brown bears Ursus arctos. Oecologia 48:356–364

    Google Scholar 

  • Swenson JE, Sandegren F, Söderberg A (1998) Geographic expansion of an increasing brown bear population: evidence for presaturation dispersal. J Anim Ecol 67:819–826

    Google Scholar 

  • Tattoni C, Rizzolli F, Pedrini P (2012) Can LiDAR data improve bird habitat suitability models? Ecol Modell 245:103–110

    Google Scholar 

  • Tremblay MA, St. Clair CC, (2009) Factors affecting the permeability of transportation and riparian corridors to the movements of songbirds in an urban landscape. J Appl Ecol 46:1314–1322

    Google Scholar 

  • UICN (2013) Directrices. Gran Conector Ecológico: Sierras del Norte de Portugal - Cordillera Cantábrica – Pirineos – Macizo Central – Alpes Occidentales. Comité Español de UICN. España

  • Zeller KA, Jennings MK, Vickers TW, Ernest HB, Cushman SA, Boyce WM (2018) Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Divers Distrib 24:868–879

    Google Scholar 

  • Zeller KA, McGarigal K, Cushman SA, Beier P, Vickers TW, Boyce WM (2017) Sensitivity of resource selection and connectivity models to landscape definition. Landscape Ecol 32:835–855

    Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797

    Google Scholar 

  • Zellweger F, Morsdorf F, Purves RS, Braunisch V, Bollmann K (2014) Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment. Biodivers Conserv 23:289–307

    Google Scholar 

  • Ziółkowska E, Ostapowicz K, Radeloff VC, Kuemmerle T, Sergiel A, Zwijacz-Kozica T, Zięba F, Selva N (2016) Assessing differences in connectivity assessments based on habitat versus movement models for brown bears in the Carpathians. Landscape Ecol 31:1863–1882

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Fundación Oso Pardo and to the Regional Administrations involved in brown bear management (Junta de Castilla y León, Principado de Asturias, Gobierno de Cantabria, and Xunta de Galicia) for providing data. Two anonymous referees and the editors provided useful comments that improved an earlier version of the article.

Funding

This research was supported by GEFOUR (funded by the Spanish Ministry of Economy and Competitiveness, reference AGL2012-31099), WOODNET (ERA-Net BiodivERsA, with the national funder Spanish Ministry of Economy and Competitiveness, reference PCIN-2016–042) and DIABOLO (funded by the EU’s Horizon 2020 programme under grant agreement No 633464) projects.

Author information

Authors and Affiliations

Authors

Contributions

CC, MCMS, AG and SS conceived the ideas and designed methodology; CC and SBC analysed the data; CC and SS led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Carlos Ciudad.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest and that this material has not been submitted for publication elsewhere.

Additional information

Communicated by David Hawksworth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5173 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciudad, C., Mateo-Sánchez, M.C., Gastón, A. et al. Landscape connectivity estimates are affected by spatial resolution, habitat seasonality and population trends. Biodivers Conserv 30, 1395–1413 (2021). https://doi.org/10.1007/s10531-021-02148-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02148-0

Keywords

Navigation