Skip to main content

Advertisement

Log in

Turtle biodiversity losses suggest coming sixth mass extinction

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Biodiversity losses in the face of climate change are among the most important issues facing humanity today. Vertebrate extinction is at an all-time high, and losses of reptiles are no exception. The turtles are a unique vertebrate group of grave conservation concern. I compared recent declines in turtle biodiversity to the losses of Testudinata (Cryptodira + Pleurodira) and non-dinosaurian reptiles during the most recent mass extinction. Fuzzy arithmetic was used because of its suitability to deal with uncertainty in these kinds of data sets and the questions that arise with comparing geological data with those from recent times. This revealed that extinctions of turtles in modern times massively exceed losses observed at the Cretaceous–Paleogene border. Further, if turtle extinctions continued at their current level, massive losses of these charismatic animals could occur within our lifetime and loss of the entire group could occur in just a few centuries. We must ask ourselves, how much more can we lose before we also disappear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

All data are publicly available from the IUCN Red List of Threatened and Endangered Species. This author was responsible for all aspects of this manuscript.

References

  • Abrahamsson M (2002) Uncertainty in quantitative risk analysis—characterization and methods of treatment. Report 1024. Department of Fire Safety Engineering, Lund University, Sweden.

  • Alroy J (2015) Current extinction rates of reptiles and amphibians. Proc Natl Acad Sci USA 112:13003–13008

    CAS  PubMed  Google Scholar 

  • Alroy J (2014) Accurate and precise estimates of origination and extinction. Paleobiology 40:374–397

    Google Scholar 

  • Archibald JD, Bryant LJ (1990) Cretaceous/Tertiary extinctions of nonmarine vertebrates: evidence from northeastern Montana. In: V.L. Sharpton, P.D. Ward (eds.) Global catastrophes in earth history: an interdisciplinary conference on lobal. Geological Society of America Special Paper 247. pp. 549–562

  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B et al (2011a) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    CAS  PubMed  Google Scholar 

  • Barnosky AD, Carrasco MA, Graham RW (2011b) Collateral mammal diversity loss associated with late quarternary megafaunal extinctions and implications for the future. Geol Soc, London, Spec Publ 358:179–189

    Google Scholar 

  • Belovsky GE, Mellison C, Larson C, Van Zandt PA (1999) Experimental studies of extinction dynamics. Science 286:1175–1177

    CAS  PubMed  Google Scholar 

  • Benton MJ (1998) The quality of the fossil record of vertebrates. In: Donovan SK, Paul RC (eds) The adequacy of the fossil record. Wiley, New York, pp 269–303

    Google Scholar 

  • Benton MJ, Dunhill AM, Lloyd GT, Marx FG (2011) Assessing the quality of the fossil record: insights from the vertebrates. Geol Soc London Spec Publ 358:63–94

    Google Scholar 

  • Bottrill MC, Hockings M, Possingham HP (2011) In pursuit of knowledge: addressing barriers to effective conservation evaluation. Ecol Soc 16:14–31

    Google Scholar 

  • Bouchard SS, Bjorndal K (2000) Sea turtles as biological transporters of nutrients and energy from marine to terrestrial ecosystems. Ecology 81:2305–2313

    Google Scholar 

  • Bhullar BS, Bever GS (2009) An archosaur-like laterosphenoid in early turtles (Reptilia: Pantestudines). Breviora 518:1–11

    Google Scholar 

  • Bryant LJ (1989) Non-dinosaurian lower vertebrates across the Cretaceous–Tertiary boundary in northeastern Montana. Univ Calif Publ Geol Sci 134:1–107

    Google Scholar 

  • Burke AC (1989) Development of the turtle carapace: implications for the evolution of the novel Bauplan. J Morphol 199:363–378

    PubMed  Google Scholar 

  • Bury RB (2006) Natural history, field ecology, conservation biology and wildlife management: time to connect the dots. Herpetol Conserv Biol 1:66–61

    Google Scholar 

  • Ceballos G, Ehrlich PR, Barnosky AD, Garcia A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253

    PubMed  PubMed Central  Google Scholar 

  • Chiari Y, Cahais V (2012) Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol 10:1–15

    Google Scholar 

  • Clemens WA (1986) Evolution of the vertebrate fauna during the Cretaceous–Tertiary transition. In: Elliot DK (ed) Dynamics of extinction. Wiley-Interscience, New York, NY, pp 63–85

    Google Scholar 

  • Cooper WS (1984) Expected time to extinction and the concept of fundamental fitness. J Theor Biol 107:603–629

    Google Scholar 

  • Costello MJ, May RM, Stork NA (2013) Can we name Earth’s species before they go extinct. Science 339:413–416

    CAS  PubMed  Google Scholar 

  • Crawford NG, Parham JF, Sellas AB, Faircloth BC, Glenn TC, Papenfuss TJ, Henderson JB, Hansen MH, Simison WB (2015) A phylogenomic analysis of turtles. Mol Phylogenet Evol 83:250–257

    PubMed  Google Scholar 

  • Diamond JM (1989) The present, past and future of human-caused extinctions. Philos Trans R Soc Lond B 325:469–477

    CAS  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton, USA

    Google Scholar 

  • Fara E, Benton MJ (2000) The fossil record of Cretaceous tetrapods. Palaios 15:161–165

    Google Scholar 

  • Field DJ, Gauthier JA, King BL, Pisani D, Lyson TR, Peterson KJ (2014) Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles. Evol Dev 16:189–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferson S, Root W, Kuhn R (1995) RAMAS risk calc: risk assessment with uncertain numbers. Applied Biomathematics, Setauket, NY. http://www.ramas.com/riskcalc.htm#fuzzy

  • Ferson S (2008) What Monte Carlo methods cannot do. Hum Ecol Risk Assess 2:990–1007

    Google Scholar 

  • Fitch WM, Ayala FJ (eds) (1995) Tempo and mode in evolution: genetics and paleontology 50 years after Simpson. National Academy Press, Washington, DC

    Google Scholar 

  • Fowle III JR, Dearfield KL (2000) Risk characterization handbook. Science Policy Council, Office of Research and Development. U.S. Environmental Protection Agency, Washington, DC, EPA, 100-B-00-002.

  • Foote M (1997) Estimating taxonomic durations and preservation probability. Paleobiology 23:278–300

    Google Scholar 

  • Hallam A (1998) Mass extinctions in Phanerozoic time. Geol Soc Lond 140:259–274

    Google Scholar 

  • Hammerschlag N, Schmitz OJ, Flecker AS, Lafferty KD, Sih A, Atwood TB, Gallagher AJ, Irschick DJ, Skubel R, Cooke SJ (2019) Ecosystem function and services of aquatic predators in the Anthropocene. Trends Ecol Evol 34:369–383

    PubMed  Google Scholar 

  • Hendrick AR, Klondaris HM, Corichi LC, Dreslik MJ, Iverson JD (2017) The effects of climate on annual variation in reproductive output in Snapping Turtles (Chelydra serpentina). Can J Zool 96:221–228

    Google Scholar 

  • Henle K, Sarre S, Wiegand K (2004) The role of density regulation in extinction processes and population viability analysis. Biodivers Conserv 13:9–52

    Google Scholar 

  • Hirayama R (1997) Chapter 8: Distribution and diversity of Cretaceous chelonioids. In: Callaway JM, Nicholls EL (eds) Ancient marine reptiles. Academic Press, New York, NY, pp 225–241

    Google Scholar 

  • Holroyd PA, Wilson GP, Hutchison JH (2014) Temporal changes within the latest Cretaceous and early Paleogene turtle faunas of northeastern Montana. Geol Soc Am Spec Pap 503:299–312

    Google Scholar 

  • Hutchison JH, Archibald JD (1986) Diversity of turtles across the Cretaceous/Tertiary boundary in Northeastern Montana. Palaeogeogr Palaeoclimatol Palaeoecol 55:1–22

    Google Scholar 

  • IUCN/SSC Red List (2019) International Union Conservation of Nature Species Survival Commission. Version 2019-2. http://www.iucnredlist.org Downloaded on 1 Jan 2020

  • Jablonski D (2002) Survival without recovery after mass extinctions. Proc Nat Acad Sci USA 99:8139–8144

    CAS  PubMed  Google Scholar 

  • Joyce WG, Lyson TR (2015) A review of the fossil record of turtles of the clade Baenidae. Bull Peabody Mus Nat Hist 56:147–183

    Google Scholar 

  • Joyce WG, Parham JF, Gauthier JA (2004) Developing a protocol for the conversion of the rank-based taxon names to phylogenetically defined clade names, as exemplified by turtles. J Paleontol 78:989–1013

    Google Scholar 

  • Kellogg WW (2019) Climate change and society: consequences of increasing atmospheric carbon dioxide. Routledge, Oxfordshire

    Google Scholar 

  • Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, Wagner DL (2015) Climate change impacts on bumblebees converge across continents. Science 349:177–180

    CAS  PubMed  Google Scholar 

  • Kitchell JA, Hoffman A (1991) Rates of species-level origination and extinction: functions of age, diversity, and history. Paleontologica 36:39–67

    Google Scholar 

  • Kriwet J, Benton MJ (2004) Neoselachian (Chondrichthyes, Elasmobranchii) diversity across the Cretaceous–Tertiary boundary. Paleogeol Paleoclimatol Palaeoecol 214:181–194

    Google Scholar 

  • Kumazawa Y, Nishida M (1999) Complete mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles. Mol Biol Evol 16:784–792

    CAS  PubMed  Google Scholar 

  • Li C, Fraser NC, Rieppel O, Wu XC (2018) A Triassic stem turtle with an edentulous beak. Nature 560:476

    CAS  PubMed  Google Scholar 

  • Lindenmayer DB, Gibbons P, Bourke M, Burgman M, Dickman CR, Ferrier S et al (2011) Improving biodiversity monitoring. Aust Ecol. https://doi.org/10.1111/j.1442-993.2011.02314.x

    Article  Google Scholar 

  • Longrich NR, Bhullar BS, Gauthier JA (2012) Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. Proc Natl Acad Sci USA 108:15253–15257

    Google Scholar 

  • Lovich JE, Ennen JR, Agha M, Gibbons JW (2018) Where have all the turtles gone, and why does it matter? Bioscience 68:771–781

    Google Scholar 

  • Lyson TR, Joyce WG, Knauss GE, Pearson DA (2011) Boremys (Testudines, Baenidae) from the latest Cretaceous and early Paleocene of North Dakota: an 11-million-year range extension and an additional K/T survivor. J Vertebr Paleontol 31:729–737

    Google Scholar 

  • MacLeod N, Rawson PF, Forcy PL, Banner FT, Boudagher-Fadel MK et al (1997) The Cretaceous–Tertiary biotic transition. J Geol Soc Lond 154:265–292

    Google Scholar 

  • McCallum ML (2007) Amphibian decline or extinction? Current declines dwarf background extinction rate. J Herpetol 2007:483–491

    Google Scholar 

  • McCallum ML (2010) Future climate change spells catastrophe for Blanchard’s Cricket Frog, Acris blanchardi (Amphibia: Anura: Hylidae). Acta Herpetologica 5:119–130

    Google Scholar 

  • McCallum ML (2015) Vertebrate biodiversity losses point to a sixth mass extinction. Biodivers Conserv 24:2408–2519

    Google Scholar 

  • McCallum ML (2019) Perspective: global country-by-country response of public interest in the environment to the papal encyclical, Laudato Si’. Biol Conserv 235:209–225

    Google Scholar 

  • McCallum ML, McCallum JL, Trauth SE (2009) Predicted climate change may spark box turtle declines. Amphibia-Reptilia 30:259–264

    Google Scholar 

  • McCallum ML, Bury GW (2013) Google search patterns suggest declining interest in the environment. Biodivers Conserv 23:1355–1367

    Google Scholar 

  • McCallum ML, Bury GW (2014) Public interest in the environment is falling: a response to Ficetola (2013). Biodivers Conserv 23:1057–1062

    Google Scholar 

  • Milner AC (1998) Timing and causes of vetebrate extinction across the Cretaceous-Tertiary boundary. In: Geological Society, vol 140. Special Publications, London, pp 247–257

  • Newell ND (1959) Adequacy of the fossil record. J Paleontol 33:488–499

    Google Scholar 

  • Nowak RS, Nowak CL, Tausch RJ (2000) Probability that a fossil absent from a sample is also absent from the paleolandscape. Quart Res 54:114–154

    Google Scholar 

  • Pimm S, Raven P, Peterson A, Sekercioglu CH, Ehrlich PR (2006) Human impacts on the rates of recent, present, and future bird extinctions. Proc Natl Acad Sci USA 103:10941–10946

    CAS  PubMed  Google Scholar 

  • Pimm SL (2002) The dodo went extinct (and other ecological myths). Ann Mo Bot Gard 89:190–198

    Google Scholar 

  • Pittock AB (2017) Climate change: turning up the heat. Routledge, Oxfordshire

    Google Scholar 

  • Platt K, Rahman S, Horne BD, Praschag P (2020) Heosemys depressa. IUCN Red List of Threatened Species, vol 2020, p. e.T39596A2929864

  • Raup DM (1991) A kill curve for Phanaerozoic marine species. Paleobiology 17:37–48

    CAS  PubMed  Google Scholar 

  • Raup DM (1992) Extinction: bad genes or bad luck? W.W. Norton & Company, New York, NY

    Google Scholar 

  • Regan HM, Colyvan M, Burgman MA (2002) A taxonomy of treatment of uncertainty for ecology and conservation biology. Ecol Appl 12:618–628

    Google Scholar 

  • Regan HM, Lupia R, Drinnan AN, Burgman MA (2001) The currency and tempo of extinction. Am Nat 157:1–10

    CAS  PubMed  Google Scholar 

  • Rhodin AG, Stanford CB, Van Dijk PP, Eisemberg C, Luiselli L, Mittermeier RA, Hudson R, Horne BD, Goode EV, Kuchling G, Walde A (2018) Global conservation status of turtles and tortoises (Order Testudines). Chelonian Conserv Biol 17:135–161

    Google Scholar 

  • Robertson DS, McKenna MC, Hope QB, Lillegraven JA (2004) Survival in the first hours of the Cenozoic. GSA Bull 116:760–768

    Google Scholar 

  • Rhodin AGJ, van Dijk PP, Iverson JB, Shaffer HB (2010) Turtles of the world, 2010 update: annotated checklist of taxonomy, synonymy, distribution and conservation status. Chelonian Res Monogr 5:89–138

    Google Scholar 

  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano D, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ (2017) Forest disturbances under climate change. Nat Clim Chang 7:395

    PubMed  PubMed Central  Google Scholar 

  • Shaver DJ, Caillouet CW Jr (2015) Reintroduction of Kemp’s Ridley (Lepidochelys kempii) sea turtle to Padre Island National Seashore, Texas and its connection to head-starting. Herpetol Conserv Biol 10:378–435

    Google Scholar 

  • Sheehan PM, Fastovsky DE (1992) Major extinction of land-dwelling vertebrates at the Cretaceous–Tertiary boundary, eastern Montana. Geology 20:556–560

    Google Scholar 

  • Signor PW, Lipps JH (1982) Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geol Soc Am Spec Pap 190:291–296

    Google Scholar 

  • Silber S, Geisler JH, Bolortsetseg M (2011) Unexpected resilience of species with temperature-dependent sex determination at the Cretaceous–Palaeogene boundary. Biol Let 7:295–298

    Google Scholar 

  • Sterli J (2010) Phylogenetic relationships among extinct and extant turtles: the position of Pleurodira and the effects of the fossils on rooting crown-group turtles. Contrib Zool 79:93–106

    Google Scholar 

  • Thomas TM, Granatosky MC, Bourque JR, Krysko KL, Moler PE, Gamble T, Suarez E, Leone E, Enge KM, Roman J (2014) Taxonomic assessment of Alligator Snapping Turtles (Chelydridate: Macrochelys), with the description of two new species from the southeastern United States. Zootaxa 3786:141–165

    PubMed  Google Scholar 

  • Tol RSJ (2018) The economic impacts of climate change. Revi Environ Econ Policy 12:4–25

    Google Scholar 

  • Turtle Taxonomy Working Group, Rhodin AGJ, Iverson JB, Bour R, Fritz U, Georges A, Shaffer HB, van Dijk PP (2017) Turtle of the world: annotated checklist and atlas of taxonomy, synonymy, distribution and conservation status. In: Rhodin AGJ, Iverson JB, van Dijk PP, Saumure RA, Buhlmann KA, Pritchard PCH, Mittermeier RA (eds) Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC turtle and freshwater turtle specialist group. Chelonian Research Monographs, vol 7. The Chelonian Research Foundation, Arlington, VT, pp 1–292

  • U.S. EPA (1992) Guidelines for exposusre assessment. U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, D.C., EPA/600/Z-92/001

  • Varela MR, Patricio AR, Anderson K, Broderick AC, DeBell L, Hawkes LA, Tilley D, Snape RT, Westoby MJ, Godley BJ (2019) Assessing climate change associated sea-level rise impacts on sea turtle nesting beaches using drones, photogrammetry and a novel GPS system. Glob Chang Biol 25:753–762

    PubMed  Google Scholar 

  • Wignall PB, Benton MJ (1999) Lazarus taxa and fossil abundance at times of biotic crisis. J Geol Soc 156:453–456

    Google Scholar 

  • Zadeh LA (1990) The birth and evolution of fuzzy logic. Int J Gen Syst 17:95–105

    Google Scholar 

Download references

Funding

The study was self-funded and it did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm L. McCallum.

Ethics declarations

Conflict of interest

The author has no conflict of interest.

Additional information

Communicated by Angus Jackson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Minimum percentage of extant turtle species that became extinct since 1500

$$\left( {N_{{\text{recent extinctions}}} /N_{{\text{extant species}}} } \right)\; \times \;{1}00$$

Point estimate

$$\left( {{9}/{258}} \right)\; \times \;{1}00\; = \;{3}.{48}\%$$

Fuzzy estimate

$${\text{Recent Extinctions}}\; = \;\left[ {{\text{N}}\;{-}\;{1}0\% ,{\text{ N}},{\text{ N}}\; + \;{1}0\% } \right]$$
$${\text{Extant species }} = \, \left[ {{\text{evaluated }}{-}{ 1}0\% ,{\text{ evaluated}},{\text{ described}},{\text{ described }} + { 1}0\% } \right]$$
$$\left( {\left[ {{8}.{1},{ 9},{ 9}.{9}} \right]/\left[ {{232}.{2},{ 258},{ 283}.{8}} \right]} \right)\; \times \;{1}00\; = \;\left[ {{2}.{85},{ 3}.{49},{ 4}.{26}} \right]\%$$

Number of extinctions expected since 1500 AD based on the marine invertebrate background extinction rate

(Nspecies/Nall species) × marine invertebrate background extinction rate × 513 years.

Point estimate

$$\left( {{258}/{14,}00,000} \right))\; \times \;\left( {0.{25}/{1}0,00,000} \right)\; \times \;{513}\; = \;0.000{18428}\; \times \;0.000000{25}\; \times \;{513}\; = \;{2}.{36}\; \times \;{1}0^{{ - {8}}}$$

Fuzzy estimate

$$\begin{gathered} \left( {\left[ {{232}.{2},{ 258},{ 283}.{8}} \right]/\left[ {{12,6}0,000,\;\;{14,}00,000,\;\;{1,}00,00,000} \right]} \right) \times \left( {0.{25}/{1}0,00,000} \right)\; \times \;{\text{513 years}}\; \hfill \\ = \;\left[ {{2}.{98}\; \times \;{1}0^{{ - {9}}} ,{ 2}.{36}\; \times \;{1}0^{{ - {8}}} ,{ 2}.{89}\; \times \;{1}0^{{ - {8}}} } \right]{\text{ expected turtle extinctions since 15}}00{\text{ AD}} \hfill \\ \end{gathered}$$

Per taxon rate of extinction (per million species years) since 1500 AD

\(\left( {N_{{{\text{extinctions}}}} /N_{{{\text{species}}}} } \right)\; \times \;\left( {{1}0^{{6}} /{\text{513 years}}} \right)\; = \;{\text{per taxon rate}}\)(the N that would go extinct in 1 MY given the available number of turtle species with potential to go extinct).

Point estimate

$$\left( {{9}.0/{258}} \right)\; \times \;\left( {{1}0^{{6}} /{513}} \right)\; = \;{\text{68 species}}/{\text{1 MY}}.$$
$$\left( {\left[ {{8}.{1},{ 9}.0,{ 9}.{9}} \right]/\left[ {{232}.{2},{ 258},{ 283}.{8}} \right)} \right)\; \times \;\left( {{1}0^{{6}} /{\text{513 years}}} \right)\; = \;\left[ {{55},{ 68},{ 83}} \right]{\text{ extinctions in 1 MY}}$$

Comparison of post-1500 extinctions to K–Pg extinction rate

$$\left( {\left[ {N_{{{\text{extinctions}}}} \; \times \;{\text{CI}}} \right]} \right)/\left( {\left[ {N_{{\text{extant species}}} } \right]\; \times \;\left( {{\text{CI}}\; \pm \;{1}0\% } \right)} \right]\; \times \;\left( {{1}0^{{6}} /{\text{T}}_{{{\text{obs}}}} } \right)\; \times \;\left( {{1}/{\text{R}}_{{{\text{K}} - {\text{Pg}}}} } \right)$$

There are three available estimates for completedness for turtles (Suppl. 1).

RK–Pg = [0.1, high estimate, high estimate × 1.1] (there are eight estimates) (0.1 was substituted for zero for RK–Pg to avoid dividing by zero).

Point estimate

$$\left( {{\text{9}\; \times \; }0.{7}0{4}} \right)/\left( {{\text{258}\; \times \;}0.{7}0{4}} \right)\; \times \;\left( {{1}0^{{6}} /{513}} \right)\; \times \;\left( {{1}/0.{73}} \right)\; = \;{99}.{\text{24 times K}} - {\text{Pg}}$$

Fuzzy estimate

$$\begin{gathered} \left( {\left( {\left[ {{8}.{1},{ 9}.0,{ 9}.{9}} \right] \, \times \, \left[ {0.{684},\;0.{7}0{4},\;0.{75}0,0.{8}0{2}} \right]} \right)/\left( {\left[ {{3297},\;{3663},\;{9547},\;{1}0{5}0{2}} \right]\; \times \;\left[ {0.{575},\;0.{7}0{4},\;0.{75}0,\;0.{825}} \right]} \right)} \right)\; \times \;\left( {{1}0^{{6}} /{\text{513 yr}}} \right)\; \times \hfill \\ \, \left( {{1}/\left[ {0.{1},0.{11},0.{73},0.{83}} \right]} \right)\; = \;\left[ {{57},{ 87},{ 658},{ 916}} \right]{\text{ times K}} - {\text{Pg}}. \hfill \\ \end{gathered}$$

Comparison of post-1500 extinctions to K–Pg extinction rate for each taxon with data deficient species included

$$\left( {\left( {\left[ {N_{{\text{taxon extinctions}}} \; \times \;{\text{CI}}} \right]\; + \;\left[ {N_{{\text{data deficient}}} } \right]} \right)/\left[ {{\text{N}}_{{\text{extant species}}} \; \times \;\left( {{\text{CI}}\; \pm \;N_{{\text{data deficient}}} } \right)} \right]} \right)\; \times \;\left( {{1}0^{{6}} /{\text{T}}_{{{\text{obs}}}} } \right)\; \times \;\left( {{1}/{\text{R}}_{{{\text{K}} - {\text{Pg}}}} } \right)$$

Point estimate

$$\left( {\left( {{9}*0.{75}0} \right)/{258}} \right)\; \times \;\left( {0.{75}0} \right)\; \times \;\left( {{1}0^{{6}} /{\text{513 yr}}} \right)\; \times \;\left( {{1}/0.{22}} \right)\; = \;{\text{174 times K}} - {\text{Pg}}$$

Fuzzy estimate

$$\begin{gathered} \left( {\left( {\left[ {{8}.{1},{ 9}.0,{ 2}0} \right] \, \times \, \left[ {0.{684}, \, 0.{7}0{4}, \, 0.{75}0, \, 0.{8}0{2}} \right]} \right)/\left( {\left[ {{247},{ 258},{ 269}} \right]\; \times \;\left[ {0.{575},0.{7}0{4},0.{75}0,0.{825}} \right]} \right)} \right)\; \times \;\left( {{1}0^{{6}} /{\text{513 yr}}} \right)\; \times \;\left( {{1}/\left[ {0.0{7}, \, 0.{22}, \, 0.{75}} \right]} \right) \hfill \\ \; = \;\left[ {{65},{ 29}0,{ 329},{ 3145}} \right]{\text{ times K}} - {\text{Pg}} \hfill \\ \end{gathered}$$

Comparison of post-1500 extinctions to K-Pg extinction rate with data deficient, and impaired species included

$$\left( {\left( {\left( {\left[ {N_{{{\text{extinctions}}}} } \right]\; \times \;{\text{CI}}} \right)\; + \;\left[ {N_{{\text{data deficient}}} } \right]\; + \;\left( {\left[ {N_{{\text{impaired species}}} } \right]\; \times \;{\text{CI}}} \right)} \right)/\left[ {N_{{\text{extant species}}} } \right]\; \times \;\left( {{\text{CI }} \pm { 1}0\% } \right)} \right)\; \times \;\left( {{1}0^{{6}} /{\text{T}}_{{{\text{obs}}}} } \right)\; \times \;\left( {{1}/_{{{\text{RK}} - {\text{Pg}}}} } \right)$$

There are three available estimates for completedness (Suppl. 1).

RK–Pg = [0.1, high estimate, high estimate × 1.1] (there are seven estimates).

Point estimate

$$\left( {\left( {{171}\; \times \;0.{75}0} \right)/\left( {{258}\; \times \;0.{75}} \right)} \right)\; \times \;\left( {{1}0^{{6}} /{513}} \right)\; \times \;\left( {{1}/0.{22}} \right)\; = \;{\text{5873 times K}} - {\text{Pg}}.$$

Fuzzy estimate

$$\begin{gathered} \left( {\left( {\left( {\left[ {{154},{ 171},{ 182}} \right]} \right) \times \, \left[ {0.{684},0.{7}0{4},0.{75}0,0.{8}0{2}} \right]} \right)/\left( {\left[ {{247},{258},{ 269}} \right] \, \times \, \left[ {0.{575},0.{7}0{4},0.{75}0,0.{825}} \right]} \right)} \right) \, \\ \quad \quad \quad \times \, \left( {{1}0^{{6}} /{\text{513 yr}}} \right) \, \times \, \left( {{1}/\left[ {0.0{7}, \, 0.{22}, \, 0.{75}} \right]} \right) \, \hfill \\ \quad \quad \quad = \, \left[ {{1234},{ 5512},{ 6256},{ 28619}} \right] \hfill \\ \end{gathered}$$

Number of extinctions expected since 1500 AD based on the marine invertebrate background extinction rate

$$\left( {N_{{\text{turtle species}}} /N_{{\text{extant species}}} } \right)\; \times \;{\text{marine invertebrate background extinction rate}}\; \times \;{\text{513 years}}$$

Point estimate

$$\left( {{258}/{14,}00,000} \right)\; \times \;\left( {0.{25}/{1}0,00,000} \right)\; \times \;{\text{513 years }} = { 2}.{36}\; \times \;{1}0^{{ - {8}}} {\text{expected turtle extinctions in 513 years}}.$$

Fuzzy estimate

$$\begin{gathered} \left( {\left[ {{232}.{2},{ 258},{ 283}.{8}} \right]/\left[ {{12,6}0,000,\;\;{14,}00,000,\;\;{1,}00,00,000} \right]} \right)\; \times \;\left( {0.{25}/{1}0,00,000} \right)\; \\ \quad \quad \quad \times \;{\text{513 years}}\; = \; \left[ {{2}.{\text{98e}}^{{ - {9}}} ,{ 2}.{\text{36e}}^{{ - {8}}} ,{ 2}.{\text{89e}}^{{ - {8}}} } \right]{\text{ turtle extinctions}} \hfill \\ \quad \quad\quad {\text{ expected in 513 years}} \hfill \\ \end{gathered}$$

Per taxon rate of extinction (per million species years) since 1980 AD

\(\left( {N_{{\text{turtle extinctions}}} /N_{{\text{turtle species}}} } \right)\; \times \;\left( {{1}0^{{6}} /{\text{513 years}}} \right)\; = \;{\text{per taxon rate}}\) (the N expected to go extinct in 1 MY given the available number of species in that taxon with potential to go extinct).

Point estimate

$$\left( {{2}/{258}} \right)\; \times \;\left( {{1}0^{{6}} /{\text{39 years}}} \right)\; = \;{2}0{\text{6 species expected to go extinct in 1 MY}}.$$
$$\left( {\left[ {{1}.{8},{ 2}.0,{ 2}.{2}} \right]/\left[ {{232}.{2},{ 258},{ 283}.{8}} \right]} \right)\; \times \;\left( {{1}0^{{6}} /{\text{39 years}}} \right)\; = \;\left[ {{168},{ 2}0{6},{ 252}} \right]{\text{ extinctions in 1 MY}}$$

Minimum post-1500 magnitude of extinction predicted per million years for each taxon

$$\left( {N_{{\text{recent turtle extinctions}}} /{\text{513 years}}} \right)\; \times \;{1}0^{{6}}$$

Point estimate

$$\left( {{9}/{513}} \right)*{1}0^{{6}} = \;{17},{544}$$

Fuzzy estimate

$$\left( {\left[ {{8}.{1},{9}.0,{9}.{9}} \right]/{513}} \right)\; \times \;\left( {{1}0^{{6}} } \right)\; = \;\left[ {{15,789},{ 17,544},{ 19,298}} \right]{\text{ extinctions in 1 MY}}$$

Years until turtle extinction based on post-1500 extinction rate

$$\left( {N_{{\text{extant species}}} \; \times \;{\text{513 years}}} \right)/{\text{ N}}_{{\text{recent turtle extinctions}}} )$$

Point estimate

$$\left( {{258}*{513}} \right)/{9}\; = \;{14},{7}0{\text{6 years}}$$

Fuzzy estimate

$$\left( {\left( {\left[ {{232}.{2},{ 258},{ 283}} \right]*{513}} \right)/\left[ {{8}.{1},{9},{9}.{9}} \right]} \right)\; = \;\left[ {{12,}0{32},{ 14,7}0{6},{ 17,923}} \right]{\text{ years}}$$

Years until total extinction based on post-1500 extinction including impaired and data deficient species as extinct

$$\left( {N_{{\text{extant turtle species}}} \; \times \;{\text{513 years}}} \right)/\left( {{\text{N}}_{{\text{recent turtle extinctions}}} \; + \;N_{{\text{impaired taxa}}} } \right)$$

Point estimate

$$\left( {{\text{258x513}}} \right)/\left( {{171}} \right) = \;{\text{774 years}}$$

Fuzzy estimate

$$\left( {\left( {\left[ {{232}.{2},\;\;{258},\;\;{283}.{8}} \right]*{513}} \right)/\left( {\left[ {{153}.{9},\;{171},\;{182}} \right]} \right)} \right)\; = \;\left[ {{654},{ 774},{ 946}} \right]{\text{ years}}$$

Minimum percentage of extant species that became extinct since 1980

$$\left( {N_{{\text{recent extinctions}}} /N_{{\text{extant species}}} } \right)\; \times \;{1}00$$

Point estimate

$$\left( {{2}/{258}} \right)\; \times \;{1}00\; = \;0.{7}\%$$

Fuzzy estimate

Recent Extinctions = [N – 10%, N, N + 10%].

Extant species = [evaluated – 10%, evaluated, described, described + 10%]

$$\left( {\left[ {{1}.{8},{ 2}.0,{ 2}.{2}} \right]/\left[ {{232}.{2},{ 258},{ 283}.{8}} \right]} \right)\; \times \;{1}00\; = \;\left[ {0.{63}, \, 0.{78}, \, 0.{95}} \right]\%$$

Comparison of post-1980 extinctions to K-Pg extinction rate

$$\left( {\left[ {N_{{\text{turtle extinctions}}} \; \times \;{\text{CI}}} \right]/\left[ {N_{{\text{extant turtle species}}} } \right)\; \times \;\left( {{\text{CI }} \pm { 1}0\% } \right)} \right])\; \times \;\left( {{1}0^{{6}} /{\text{T}}_{{{\text{obs}}}} } \right)\; \times \;\left( {{1}/{\text{R}}_{{{\text{K}} - {\text{Pg}}}} } \right)$$

There are three available estimates for completedness (Suppl. 1).

RK–Pg = [0.1, high estimate, high estimate × 1.1] (there are eight estimates) (0.1 was substituted for zero for RK–Pg to avoid dividing by zero).

Point estimate

$$\left( {{2}/{258}} \right)*\left( {{1}0^{{6}} /{39}} \right)*\left( {{1}/0.{22}} \right)\; = \;{9}0{\text{3 times K}} - {\text{Pg}}$$

Fuzzy estimate

$$\begin{gathered} \left( {\left( {\left[ {{1}.{8},{ 2}.0,{ 2}.{2}} \right]\; \times \;\left[ {0.{684}, \, 0.{7}0{4}, \, 0.{75}0, \, 0.{8}0{2}} \right]} \right)/\left( {\left[ {{232}.{2},{ 258},{ 283}.{8}} \right]\; \times \;\left[ {0.{575}, \, 0.{7}0{4}, \, 0.{75}0, \, 0.{825}} \right]} \right)} \right)\; \\ \quad \quad \quad \times \;\left( {{1}0^{{6}} /{\text{39 years}}} \right)\; \times \;\left( {{1}/\left[ {0.0{7}, \, 0.{22}, \, 0.{75}} \right]} \right) \, \hfill \\ \quad \quad \quad= \, \left[ {{78}0,{ 9}0{3},{ 1}0{38}} \right]{\text{ times K}} - {\text{Pg}} \hfill \\ \end{gathered}$$

Comparison of post-1980 extinctions to K-Pg extinction rate with impaired and data deficient species included

$$\left( {\left[ {N_{{{\text{extinctions}}}} \; \times \;{\text{CI}}} \right]/\left[ {N_{{\text{extant species}}} \; \times \;\left( {{\text{CI}}\; \pm \;{1}0\% } \right)} \right]} \right)\; \times \;\left( {{1}0^{{6}} /{\text{T}}_{{{\text{obs}}}} } \right)\; \times \;\left( {{1}/{\text{R}}_{{{\text{K}} - {\text{Pg}}}} } \right)$$

There are three available estimates for completedness (Suppl. 1).

RK–Pg = [0.1, high estimate, high estimate × 1.1] (there are eight estimates) (0.1 was substituted for zero for RK–Pg to avoid dividing by zero).

Point estimate

$$\left( {{164}/{258}} \right)*\left( {{1}0^{{6}} /{39}} \right)*\left( {{1}/0.{22}} \right)\; = \;{74},0{\text{86 times K}} - {\text{Pg}}$$

Fuzzy estimate

$$\begin{gathered} \left( {\left( {\left[ {{16}0,\;\;{164},\;\;{175}} \right]\; \times \;\left[ {0.{684}, \, 0.{7}0{4}, \, 0.{75}0, \, 0.{8}0{2}} \right]} \right)/\left( {\left[ {{232}.{2},{ 258},{ 283}.{8}} \right]\; \times \;\left[ {0.{575}, \, 0.{7}0{4}, \, 0.{75}0, \, 0.{825}} \right]} \right)} \right)\; \\ \quad \quad \quad \times \; \left( {{1}0^{{6}} /{\text{39 years}}} \right)\; \times \;\left( {{1}/\left[ {0.0{7}, \, 0.{22}, \, 0.{75}} \right]} \right) \hfill \\ \, \quad \quad \quad= \, \left[ {{15,98}0,{ 69,542},{ 78,927},{ 3,85,}0{52}} \right]{\text{ times K}} - {\text{Pg}} \hfill \\ \end{gathered}$$

Minimum post-1980 magnitude of extinction predicted per million years

$$\left( {N_{{\text{recent taxon extinctions}}} /{\text{39 years}}} \right)\; \times \;{1}0^{{6}}$$

Point estimate

$$\left( {{2}/{39}} \right)\; \times \;{1}0^{{6}} \; = \;{51},{\text{282 extinctions}}/{\text{MY}}$$
$$\left( {\left[ {{1}.{8},{ 2}.0,{ 2}.{2}} \right]/{39}} \right)\; \times \;\left( {{1}0^{{6}} } \right)\; = \;\left[ {{46},{154},{ 51,282},{ 56,41}0} \right]{\text{ extinctions}}/{\text{ MY}}$$

Years until total extinction based on post-1980 extinction rate

$$\left( {{\text{N}}_{{\text{extant taxon species}}} \; \times \;{\text{39 years}}} \right)/N_{{\text{recent extinctions}}}$$

Point estimate

$$\left( {{258}\; \times \;{39}} \right)/{2}\; = \;{5}0{\text{31 years}}$$

Fuzzy estimate

$$\left( {\left( {\left[ {{232}.{2},{ 258},{ 283}.{8}} \right]*{39}} \right)/\left[ {{1}.{8},{ 2}.0,{ 2}.{2}} \right]} \right)\; = \;\left[ {{4116},{ 5}0{31},{ 6149}} \right]\;{\text{years}}$$

Years until total extinction for each taxon based on post-1980 extinction rate including impaired species and DD species

$$\left( {N_{{\text{extant species}}} \; \times \;{\text{39 years}}} \right)/\left( {N_{{\text{recent taxon extinctions}}} \; + \;N_{{{\text{impaired }} + {\text{ DD taxa}}}} } \right)$$

Point estimate

$$\left( {{258}\; \times \;{39}} \right)/{171}\; = \;{\text{59 years}}$$
$$\left( {\left( {\left[ {{232}.{2},{ 258},{ 283}.{8}} \right]} \right)*{39}} \right)/\left[ {{153}.{9},{ 171},{182}} \right])\; = \;\left[ {{5}0,{ 59},{ 72}} \right]{\text{ years}}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCallum, M.L. Turtle biodiversity losses suggest coming sixth mass extinction. Biodivers Conserv 30, 1257–1275 (2021). https://doi.org/10.1007/s10531-021-02140-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02140-8

Keywords