Anthills as habitat islands in a sea of temperate pasture

Abstract

Ants can shape vegetation as seed dispersers and ecosystem engineers. When anthills are long-lasting, they are known to change soil and vegetation characteristics. However, it is unclear whether plant species traits and species composition vary between ant guilds and between parts of individual anthills. We compared different aspects of soil and vegetation (composition, seedling abundance, and functional traits) between anthills and the surrounding mesophilous pasture in Czechia. This pasture hosts eight ant species, which belong to both seed dispersers and non-dispersers. Where feasible, we divided anthills into centres and margins for the analyses. Anthills (area 90.5–4051.7 cm2; 5–19 plant species) displayed different and more heterogeneous (less similar within anthill plot type) vegetation composition when compared to the surrounding area, with more seedlings and several species restricted to anthills. Further, anthills were more functionally diverse and exhibited several differences in traits, both at the community and intraspecific level. Anthill centres had higher surface temperatures in hot sunny days, higher levels of phosphorus and pH than margins, while margins had higher moisture and carbon content than surrounding vegetation. Further, anthill vegetation differed between ant guilds with more myrmecochorous species found at nests of seed dispersers. Overall heterogeneity in this mesophilous pasture was enhanced by the presence of anthills. Further, the anthills themselves are heterogeneous due to variable sizes, persistence, and differences between their centres and margins on long-lasting anthills. Anthills can thus enhance plant diversity by maintaining disturbed microsites and enhancing the growth of seedlings and less competitive plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Primary data are included as electronic supplementary material.

References

  1. Barton BJ, Kirschbaum CD, Bach CE (2009) The impacts of ant mounds on sedge meadow and shrub carr vegetation in a prairie fen. Nat Areas J 29:293–300. https://doi.org/10.3375/043.029.0308

    Article  Google Scholar 

  2. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  3. Beattie AJ, Culver DC (1983) The nest chemistry of two seed-dispersing ant species. Oecologia 56:99–103. https://doi.org/10.1007/BF00378223

    Article  PubMed  Google Scholar 

  4. Blomqvist MM, Olff H, Blaauw MB, Bongers T, Van Der Putten WH (2000) Interactions between above- and belowground biota: importance for small-scale vegetation mosaics in a grassland ecosystem. Oikos 90:582–598. https://doi.org/10.1034/j.1600-0706.2000.900316.x

    Article  Google Scholar 

  5. Cammeraat ELH, Risch AC (2008) The impact of ants on mineral soil properties and processes at different spatial scales. J Appl Entomol 132:285–294. https://doi.org/10.1111/j.1439-0418.2008.01281.x

    CAS  Article  Google Scholar 

  6. Coenen-Stass D, Schaarschidt B, Laprecht I (1980) Temperature distribution and calorimetric determination of heat production in the nest of the wood ant, Formica polyctena (Hymenoptera, Formicidae). Ecology 61:238–244. https://doi.org/10.2307/1935180

    Article  Google Scholar 

  7. Danihelka J, Chrtek J, Kaplan Z (2012) Checklist of vascular plants of the Czech Republic. Preslia 84:647–811

    Google Scholar 

  8. Dauber J, Wolters V (2000) Microbial activity and functional diversity in the mounds of three different ant species. Soil Biol Biochem 32:93–99. https://doi.org/10.1016/S0038-0717(99)00135-2

    CAS  Article  Google Scholar 

  9. Dauber J, Rommeler A, Wolters V (2006) The ant Lasius flavus alters the viable seed bank in pastures. Eur J Soil Biol 42:S157–S163. https://doi.org/10.1016/j.ejsobi.2006.06.002

    Article  Google Scholar 

  10. De Almeida T, Blight O, Mesléard F, Bulot A, Provost E, Dutoit T (2020) Harvester ants as ecological engineers for Mediterranean grassland restoration: impacts on soil and vegetation. Biol Conserv 245:108547. https://doi.org/10.1016/j.biocon.2020.108547

    Article  Google Scholar 

  11. Dean WRJ, Milton SJ, Klotz S (1997) The role of ant nest-mounds in maintaining small-scale patchiness in dry grasslands in Central Germany. Biodivers Conserv 6:1293–1307. https://doi.org/10.1023/A:1018313025896

    Article  Google Scholar 

  12. Dostál P, Březnová M, Kozlíčková V, Herben T, Kovář P (2005) Ant-induced soil modification and its effect on plant below-ground biomass. Pedobiologia 49:127–137. https://doi.org/10.1016/j.pedobi.2004.09.004

    CAS  Article  Google Scholar 

  13. Ehrle A, Andersen AN, Levick SR, Schumacher J, Trumbore SE, Michalzik B (2017) Yellow-meadow ant (Lasius flavus) mound development determines soil properties and growth responses of different plant functional types. Eur J Soil Biol 81:83–93. https://doi.org/10.1016/j.ejsobi.2017.06.006

    Article  Google Scholar 

  14. Farji-Brener AG, Lescano MN (2017) Refuse dumps from leaf-cutting ant nests reduce the intensity of above-ground competition among neighboring plants in a Patagonian steppe. Acta Oecol 85:136–140. https://doi.org/10.1016/j.actao.2017.10.009

    Article  Google Scholar 

  15. Farji-Brener AG, Werenkraut V (2017) The effects of ant nests on soil fertility and plant performance: a meta-analysis. J Anim Ecol 86:866–877. https://doi.org/10.1111/1365-2656.12672

    Article  PubMed  Google Scholar 

  16. Fibich P, Vítová A, Macek P, Lepš J (2013) Establishment and spatial associations of recruits in meadow gaps. J Veg Sci 24:496–505. https://doi.org/10.1111/j.1654-1103.2012.01486.x

    Article  Google Scholar 

  17. Folgarait P (1998) Ant biodiversity to ecosystem functioning: a review. Biodivers Conserv 7:1121–1244. https://doi.org/10.1023/A:1008891901953

    Article  Google Scholar 

  18. Folgarait P, Perelman S, Gorosito N, Pizzio R, Fernández J (2002) Effects of Camponotus punctulatus ant on plant community composition and soil properties across land-use histories. Plant Ecol 163:1–13. https://doi.org/10.1023/A:1020323813841

    Article  Google Scholar 

  19. Frouz J (2000) The effect of nest moisture on daily temperature regime in the nests of Formica polyctena wood ants. Insectes Soc 47:229–235. https://doi.org/10.1007/PL00001708

    Article  Google Scholar 

  20. Frouz J, Jílková V (2008) The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol News 11:191–199

    Google Scholar 

  21. Frouz J, Kalcik J, Cudlin P (2005) Accumulation of phosphorus in nests of red wood ants Formica s. str. Ann Zool Fennici 42:269–275

    Google Scholar 

  22. Gómez C, Espadaler X (1998) Myrmecochorous dispersal distances: a world survey. J Biogeogr 25:573–580. https://doi.org/10.1046/j.1365-2699.1998.2530573.x

    Article  Google Scholar 

  23. Gorb S, Gorb E, Sindarovskaya Y (1997) Interaction between the non-myrmecochorous herb Galium aparine and the ant Formica polyctena. Plant Ecol 131:215–221. https://doi.org/10.1023/A:1009789202189

    Article  Google Scholar 

  24. Grime JP (1988) The C-S-R model of primary plant strategies—origins, implications and tests. In: Gottlieb LD, Jain SK (eds) Plant evolutionary biology. Springer, Dordrecht

    Google Scholar 

  25. Herben T, Chytrý M, Klimešová J (2016) A quest for species-level indicator values for disturbance. J Veg Sci 27:628–636. https://doi.org/10.1111/jvs.12384

    Article  Google Scholar 

  26. Holec M, Frouz J (2006) The effect of two ant species Lasius niger and Lasius flavus on soil properties in two contrasting habitats. Eur J Soil Biol 42:213–217. https://doi.org/10.1016/j.ejsobi.2006.07.033

    Article  Google Scholar 

  27. Holec M, Frouz J, Pokorný R (2006) The influence of different vegetation patches on the spatial distribution of nests and the epigeic activity of ants (Lasius niger) on a spoil dump after brown coal mining (Czech Republic). Eur J Soil Biol 42:158–165. https://doi.org/10.1016/j.ejsobi.2005.12.005

    Article  Google Scholar 

  28. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Heidelberg

    Google Scholar 

  29. Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Evol Syst 13:201–228

    Article  Google Scholar 

  30. Jarešová I, Kovář P (2004) Interactions between ants and plants during vegetation succession in the abandoned ore-washery sedimentation basin in Chvaletice. In: Kovář P (ed) Natural recovery of human-made deposits in landscape (biotic interactions and ore/ash–slag artificial ecosystems). Academia, Prague

    Google Scholar 

  31. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. https://doi.org/10.2307/3545850

    Article  Google Scholar 

  32. Kelemen A, Lazzaro L, Besnyoi V, Albert ÁJ, Konečná M, Dobay G, Memelink I, Adamec V, Götzenberger L, De Bello F, Le Bagousse-Pinguet Y, Lepš J (2015) Net outcome of competition and facilitation in a wet meadow changes with plant’s life stage and community productivity. Preslia 87:347–361

    Google Scholar 

  33. King TJ (1977a) The plant ecology of ant-hills in calcareous grasslands: II Succession on the mounds. J Ecol 65:257–278. https://doi.org/10.2307/2259078

    Article  Google Scholar 

  34. King TJ (1977b) The plant ecology of ant-hills in calcareous grasslands: I. Patterns of species in relation to ant-hills in Southern England. J Ecol 65:235–256. https://doi.org/10.2307/2259077

    Article  Google Scholar 

  35. King TJ (1977c) The plant ecology of ant-hills in calcareous grasslands: III. Factors affecting the population sizes of selected species. J Ecol 65:279–315. https://doi.org/10.2307/2259079

    Article  Google Scholar 

  36. King TJ (1981) Ant-hill vegetation in acidic grasslands in the Gower Peninsula, South Wales. New Phytol 88:559–571. https://doi.org/10.1111/j.1469-8137.1981.tb04100.x

    Article  Google Scholar 

  37. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, Van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel AK, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA traitbase: a database of life-history traits of Northwest European flora. J Ecol 96:1266–1274

    Article  Google Scholar 

  38. Klimešová J, Danihelka J, Chrtek J, de Bello F, Herben T (2017) CLO-PLA: a database of clonal and bud-bank traits of the Central European flora. Ecology 98:1179. https://doi.org/10.1002/ecy.1745

    Article  PubMed  Google Scholar 

  39. Klotz S, Kühn I, Durka W (eds) (2002) BIOLFLOR - Eine datenbank zu biologisch-ökologischen merkmalen der gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  40. Konečná M, Štech M, Lepš J (2018): Myrmecochory. www.pladias.cz

  41. Kopáček J, Borovec J, Hejzlar J, Porcal P (2001) Spectrophotometric determination of iron, aluminum, and phosphorus in soil and sediment extracts after their nitric and perchloric acid digestion. Commun Soil Sci Plant Anal. 32:1431–⁠1443. https://doi.org/10.1081/CSS-100104203

    Article  Google Scholar 

  42. Kovář P, Kovářová M, Dostál R, Herben T (2001) Vegetation of ant-hills in a mountain grassland: effects of mound history and of dominant ant species. Plant Ecol 156:215–227. https://doi.org/10.1023/A:1012648615867

    Article  Google Scholar 

  43. Kovář P, Vojtíšek P, Zentsová I (2013) Ants as ecosystem engineers in natural restoration of human made habitats. J Landsc Ecol 6:18–31. https://doi.org/10.2478/v10285-012-0061-9

    Article  Google Scholar 

  44. Laliberte E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. https://doi.org/10.1890/08-2244.1

    Article  PubMed  Google Scholar 

  45. Leite PAM, Carvalho MC, Wilcox BP (2018) Good ant, bad ant? Soil engineering by ants in the Brazilian Caatinga differs by species. Geoderma 323:65–73. https://doi.org/10.1016/j.geoderma.2018.02.040

    Article  Google Scholar 

  46. Lenoir L (2009) Effects of ants on plant diversity in semi-natural grasslands. Arthropod Plant Interact 3:163–172. https://doi.org/10.1007/s11829-009-9066-7

    Article  Google Scholar 

  47. Oostermeijer JGB (1989) Myrmecochory in Polygala vulgaris L., Luzula campestris (L.) DC. and Viola curtisii Forster in a Dutch dune area. Oecologia 78:302–311. https://doi.org/10.1007/BF00379102

    CAS  Article  PubMed  Google Scholar 

  48. R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  49. Raunkiaer C (1934) The life forms of plants and statistical plant geography. Oxford University Press, London

    Google Scholar 

  50. Rosengren R, Fortelius W, Lindstrom K, Luther A (1987) Phenology and causation of nest heating and thermoregulation in red wood ants of the Formica rufa group studied in coniferous forest habitats in southern Finland. Ann Zool Fennici 24:147–155

    Google Scholar 

  51. Rothanzl J, Kotoučouvá M, Hrabinová I, Plačková I, Herben T (2007) Genetic differentiation of Agrostis capillaris in a grassland system with stable heterogeneity due to terricolous ants. J Ecol 95:197–207. https://doi.org/10.1111/j.1365-2745.2006.01181.x

    Article  Google Scholar 

  52. Rudolphi J (2009) Ant-mediated dispersal of asexual moss propagules. Bryologist 112:73–79. https://doi.org/10.1639/0007-2745-112.1.73

    Article  Google Scholar 

  53. Sádlo J, Chytrý M, Pergl J, Pyšek P (2018) Plant dispersal strategies: a new classification based on the multiple dispersal modes of individual species. Preslia 90:1–22. https://doi.org/10.23855/preslia.2018.001

    Article  Google Scholar 

  54. Schütz M, Kretz C, Dekoninck L, Iravani M, Risch AC (2008) Impact of Formica exsecta Nyl. on seed bank and vegetation patterns in a subalpine grassland ecosystem. J Appl Entomol 132:295–305. https://doi.org/10.1111/j.1439-0418.2008.01293.x

    Article  Google Scholar 

  55. Sebastià MT, Puig L (2008) Complex vegetation responses to soil disturbances in mountain grassland. Plant Ecol 199:77–88. https://doi.org/10.1007/s11258-008-9413-2

    Article  Google Scholar 

  56. Seifert B (2018) The Ants of Central and North Europe. Lutra Verlags – und Vertriebsgesellschaft, Tauer, Germany

  57. Sernander R (1906) Entwurf einer Monographie der europäischen Myrmekochoren. K Sven vetenskapsakademiens Handl 41:1–410

    Google Scholar 

  58. Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using Canoco 5. Cambridge University Press, Cambridge

    Google Scholar 

  59. ter Braak C, Šmilauer P (2012) Canoco reference manual and user’s guide: software of ordination (version 5.0). Microcomputer Power (Ithaca, NY)

  60. Wu H, Lu X, Wu D, Yin X (2010) Biogenic structures of two ant species Formica sanguinea and Lasius flavus altered soil C, N and P distribution in a meadow wetland of the Sanjiang Plain, China. Appl Soil Ecol 46:321–328. https://doi.org/10.1016/j.apsoil.2010.10.011

    Article  Google Scholar 

  61. Zhao M, Yu Y, Shi Y, Mou X, Degen A (2020) Mound-building ant increases the proportion of Gramineae in above-ground vegetation and soil seed bank in alpine meadows. J Veg Sci 31:867–876. https://doi.org/10.1111/jvs.12907

    Article  Google Scholar 

Download references

Acknowledgements

Miloslav Trojan is gratefully acknowledged for help with experiment establishment and maintaining, Lebeda family for toleration of our experiment on their pasture and Marie Trojanová, Adam Dressler, Nina Fahs and Markéta Applová for help with data collection. Further we thank Nicholas Alexander Pardikes for editing our English and Jan Dressler for being the first reader. We also thank Martina Lisnerová for her help with the scheme of the experimental design in program Inkscape. The research was supported by the Czech Science Foundation—GACR 20-02901S.

Funding

The research was supported by the Czech Science Foundation – GACR 20-02901S.

Author information

Affiliations

Authors

Contributions

MK, JL and PP designed the experiment. MK collected the data with the help of PB and AL. MK analysed the data with help of PF, JL, PB and AL. MK wrote the first draft of the manuscript with JL and other authors contributed to the draft improvement. PP determined the ants and helped with ant linked aspects of the manuscript. All the authors revised the text and agreed upon the final version.

Corresponding author

Correspondence to Marie Konečná.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Nigel E. Stork.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 110 kb)

Supplementary material 1 (PDF 909 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konečná, M., Blažek, P., Fibich, P. et al. Anthills as habitat islands in a sea of temperate pasture. Biodivers Conserv 30, 1081–1099 (2021). https://doi.org/10.1007/s10531-021-02134-6

Download citation

Keywords

  • Ecosystem engineers
  • Ant guilds
  • Myrmecochory
  • Disturbances
  • Heterogeneity
  • Functional traits