Skip to main content
Log in

How complete are insect inventories? An assessment of the british butterfly database highlighting the influence of dynamic distribution shifts on sampling completeness

Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Much recent scientific, media and public attention has focussed on the evidence for and consequences of declines in insect biodiversity. Reliable, complete inventories can be used to estimate insect trends accurately, but incomplete data may distort assessments of biodiversity change. Thus, it is essential to understand the completeness of insect inventories. Assessing the database of Great Britain butterfly occurrences, likely the most complete database for any group of insects in the world (with 10,046,366 records for 58 butterfly species), we found that only 62% of the cells have complete inventories at the finest scale evaluated. The dynamic nature of butterfly distributions in response to climate change could explain this result, as the distribution of completeness values is related to the increasing occurrence of some species at higher latitudes as a consequence of recent range expansions. The exceptional quantity of information collected in Great Britain about this appealing group of insects is insufficient to provide a complete picture. Consequently, we cannot expect to build complete inventories for less popular taxa, especially in less comprehensively sampled countries, and will require other techniques to understand the full extent of global biodiversity loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All the data used to obtain the results shown are available as supplementary material.

References

  • Altwegg R, Nichols JD (2019) Occupancy models for citizen-science data. Methods Ecol Evol 10:8–21

    Article  Google Scholar 

  • Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millennium atlas of butterflies in Britain and Ireland. Oxford University Press, Oxford

    Google Scholar 

  • Ball-Damerow JE, Brenskelle L, Barve N et al (2019) Research applications of primary biodiversity databases in the digital age. PLoS ONE 14(9):e0215794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballesteros-Mejia L, Kitching IJ, Jetz W, Nagel P, Beck J (2013) Mapping the biodiversity of tropical insects: species richness and inventory completeness of African sphingid moths. Global Ecol Biogeogr 22:586–595

    Article  Google Scholar 

  • Barua M, Gurdak DJ, Ahmed RA, Tamuly J (2012) Selecting flagships for invertebrate conservation. Biodivers Conserv 21:1457–1476

    Article  Google Scholar 

  • Beck J, Ballesteros-Mejia L, Buchmann CM et al (2012) What’s on the horizon for macroecology? Ecography 35:673–683

    Article  Google Scholar 

  • Beck J, Ballesteros-Mejia L, Nagel P, Kitching IJ (2013) Online solutions and the Wallacean shortfall what does GBIF contribute to our knowledge of species ranges? Divers Distrib 19:1043–1050

    Article  Google Scholar 

  • Brakefield PM (1982) Ecological studies on the butterfly Maniola jurtina in Britain: I. Adult behaviour, microdistribution and dispersal. J Anim Ecol 51:713–726

    Article  Google Scholar 

  • Brown JH, Lomolino MV (1998) Biogeography, 2nd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Bruno D, Sánchez-Fernández D, Millán A, Ros RS, Sánchez-Gomez P, Velasco J (2012) Assessing the quality and usefulness of different taxonomic groups inventories in a semiarid Mediterranean region. Biodiv Conserv 21:1561–1575

    Article  Google Scholar 

  • Callaghan CT, Rowley JJL, Cornwell WK, Poore AGB, Major RE (2019a) Improving big citizen science data: moving beyond haphazard sampling. PLoS Biol 17:e3000357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callaghan CT, Poore AGB, Major RE, Rowley JJL, Cornwell WK (2019b) Optimizing future biodiversity sampling by citizen scientists. Proc R Soc B 286:20191487

    Article  PubMed  Google Scholar 

  • Cardoso P, Barton PS, Birkhofer K et al (2020) Scientists’ warning to humanity on insect extinctions. Biol Conserv 9:108426

    Article  Google Scholar 

  • Carvalheiro LG, Kunin WE, Keil P et al (2013) Species richness declines and biotic homogenization have slowed down for NW-European pollinators and plants. Ecol Letters 16:870–878

    Article  Google Scholar 

  • Chao A, Colwell RK, Chih-Wei L, Gotelli NJ (2009) Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90:1125–1133

    Article  PubMed  Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Cox CB, Moore PD (2004) Biogeography: an ecological and evolutionary approach. Blackwell, Oxford

    Google Scholar 

  • Dapporto D, Ciolli G, Dennis RLH, Fox R, Shreeve TG (2015) A new procedure for extrapolating turnover regionalization at mid-small spatial scales applied to British butterflies. Methods Ecol Evol 6:1287–1297

    Article  Google Scholar 

  • Dennis RLH, Thomas CD (2000) Bias in butterfly distribution maps: the influence of hot spots and recorder’s home range. J Insect Conserv 4:73–77

    Article  Google Scholar 

  • Dennis RLH, Sparks TH, Hardy PB (1999) Bias in butterfly distribution maps: the effects of sampling effort. J Insect Conserv 3:33–42

    Article  Google Scholar 

  • Dennis RLH, Shreeve TG, Sparks THL, Honore JE (2002) A comparison of geographical and neighbourhood models for improving atlas databases. The case of the French butterfly atlas. Biol Conserv 108:143–159

    Article  Google Scholar 

  • Dennis RLH, Shreeve TG (2003) Gains and losses of French butterflies: tests of predictions, under-recording and regional extinction from data in a new atlas. Biol Conserv 110:131–139

    Article  Google Scholar 

  • Dennis EB, Morgan BJT, Freeman SN, Ridout MS, Brereton TM, Fox R, Powney GD, Roy DB (2017) Efficient occupancy model-fitting for extensive citizen-science data. PLoS ONE 12:e0174433

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards JL, Lane MA, Nielsen ES (2000) Interoperability of biodiversity databases: biodiversity information on every desktop. Science 289:2312–2314

    Article  CAS  PubMed  Google Scholar 

  • Fattorini S (2013) Regional insect inventories require long time, extensive spatial sampling and good will. PLoS ONE 8:e62118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forister ML, Pelton EM, Black SH (2019) Declines in insect abundance and diversity: we know enough to act now. Conserv Sci Prac 1:e80

    Article  Google Scholar 

  • Fox R, Dennis RLH (2010) Winter survival of Vanessa atalanta (Linnaeus, 1758) (Lepidoptera: Nymphalidae): a new resident butterfly for Britain and Ireland? Entomologist’s Gazette 61:94–103

    Google Scholar 

  • Fox R, Bereton TM, Asher J et al (2015) The state of the UK’s butterflies 2015. Butterfly Conservation and the Centre for Ecology & Hydrology, Wareham

    Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    Article  CAS  PubMed  Google Scholar 

  • Girardello M, Chapman A, Dennis R, Kaila L, Borges PAV, Santangeli A (2019) Gaps in butterfly inventory data: a global analysis of the completeness of butterfly inventory data. Biol Conserv 236:289–295

    Article  Google Scholar 

  • Goulson D (2019) The insect apocalypse, and why it matters. Curr Biol 29:R967-971

    Article  CAS  PubMed  Google Scholar 

  • Griffiths GH, Eversham BC, Roy DB (1999) Integrating species and habitat data for nature conservation in Great Britain: data sources and methods. Glob Ecol Biogeogr 8:329–345

    Article  Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    Article  PubMed  PubMed Central  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisande C, Lobo JM (2019) Discriminating well surveyed spatial units from exhaustive biodiversity databases. R package version. 2.0. http://cran.r-project.org/web/packages/KnowBR.

  • Habel JC, Samways MJ, Schmitt T (2019) Mitigating the precipitous decline of terrestrial European insects: requirements for a new strategy. Biodiv Conserv 28:1343–1360

    Article  Google Scholar 

  • Harvey JA, Heinen R, de Kroon H et al (2020) International scientists formulate a roadmap for insect conservation and recovery. Nature Ecol Evol 4:174–176

    Article  Google Scholar 

  • Heath J, Pollard E, Thomas JA (1984) Atlas of butterflies in Britain and Ireland. Viking, Harmondsworth

    Google Scholar 

  • Hengeveld R (1992) Dynamic biogeography. Cambridge University Press, Cambridge

    Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Change Biol 12:450–455

    Article  Google Scholar 

  • Hill J, Thomas C, Fox R, Telfer M, Willis S, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc Biol Sci 269:2163–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkinson P, Evans J, Gregory RD (2000) National-scale conservation assessment at an appropriate resolution. Diver Distrib 6:195–204

    Article  Google Scholar 

  • Hortal J, Lobo JM (2005) An ED-based protocol for optimal sampling of biodiversity. Biodiv Conserv 14:2913–2947

    Article  Google Scholar 

  • Hortal J, Lobo JM, Jiménez-Valverde A (2007) Limitations of biodiversity databases: case study on seed-plant diversity in Tenerife (Canary Islands). Conserv Biol 21:853–863

    Article  PubMed  Google Scholar 

  • Isaac NJB, van Strien AJ, August TA, de Zeeuw MP, Roy DB (2014) Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol Evol 5:1052–1060

    Article  Google Scholar 

  • Lewandowski EJ, Oberhauser KS (2017) Butterfly citizen scientists in the United States increase their engagement in conservation. Biol Conserv 208:106–112

    Article  Google Scholar 

  • Lobo JM, Martín-Piera F (2002) Searching for a predictive model for Iberian dung beetle species richness (Col., Scarabaeinae) using spatial and environmental variables. Conserv Biol 16:158–173

    Article  Google Scholar 

  • Lobo JM, Hortal J, Yela JL, Millán A, Sánchez-Fernández D, García-Roselló E, González-Dacosta J, Heine J, González-Vilas L, Guisande C (2018) KnowBR: an application to map the geographical variation of survey effort and identify well-surveyed areas from biodiversity databases. Ecol Ind 91:241–248

    Article  Google Scholar 

  • Lomolino MV, Heaney LR (2004) Frontiers of biogeography: new directions in the geography of nature. Sinauer Associates, Inc., Publishers Sunderland, Massachusetts

    Google Scholar 

  • MacGregor CJ, Thomas CD, Roy DB et al (2019) Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat Commun 10:4455

    Article  PubMed  PubMed Central  Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA, Pollack KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Academic Press, New York

    Google Scholar 

  • Mallet J (1986) Dispersal and gene flow in a butterfly with home range behavior: Heliconius erato (Lepidoptera: Nymphalidae). Oecologia 68:210–217

    Article  PubMed  Google Scholar 

  • Menéndez R, González Megías A, Hill JK, Braschler B, Willis SG, Collingham Y, Fox R, Roy DB, Thomas CD (2006) Species richness changes lag behind climate change. Proc R Soc B 273:1465–1470

    Article  PubMed  Google Scholar 

  • Montgomery GA, Dunn RR, Fox R, Jongejans E, Leather SR, Saunders ME, Shortall CR, Tingley MW, Wagner DL (2020) Is the insect apocalypse upon us? How to find out. Biol Conserv 241:108327

    Article  Google Scholar 

  • Meyer C, Kreft H, Guralnick R, Jetz W (2015) Global priorities for an effective information basis of biodiversity distributions. Nat Commun 6:8221

    Article  PubMed  PubMed Central  Google Scholar 

  • Norberg A, Abrego N, Blanchet FG et al (2019) A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol Monogr 89:e01370

    Article  Google Scholar 

  • Outhwaite CL, Chandler RE, Powney GD, Collen B, Gregory RD, Isaac NJ (2018) Prior specification in Bayesian occupancy modelling improves analysis of species occurrence data. Ecol Ind 93:333–343

    Article  Google Scholar 

  • Ovaskainen O, Roy DB, Fox R, Anderson BJ (2016) Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods Ecol Evol 7:428–436

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pereira HM, Ferrier S, Walters M et al (2013) Essential biodiversity variables. Science 339:277–278

    Article  CAS  PubMed  Google Scholar 

  • Peterson TA, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological Niches and geographic distributions. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Pocock MJO, Roy HE, Preston CD, Roy DB (2015) The Biological Records Centre: a pioneer of citizen science. Biol J Linn Soc 115:475–493

    Article  Google Scholar 

  • Powney GD, Isaac NJB (2015) Beyond maps: a review of the applications of biological records. Biol J Linn Soc 115:532–542

    Article  Google Scholar 

  • Pyke GH, Ehrlich PR (2010) Biological collections and ecological/environmental research: a review, some observations and a look to the future. Biol Rev 85:247–266

    Article  PubMed  Google Scholar 

  • Ripple WJ, Wolf C, Newsome TM, Barnard P, Moomaw WR (2020) World scientists’ warning of a climate emergency. Bioscience 70:8–12

    Article  Google Scholar 

  • Romo H, Garcia-Barros E, Lobo JM (2006) Identifying recorder-induced geographic bias in an Iberian butterfly database. Ecography 29:873–885

    Article  Google Scholar 

  • Sánchez-Fernández D, Lobo JM, Abellán P, Ribera I, Millán A (2008) Bias in freshwater biodiversity sampling: the case of Iberian water beetles. Divers Distrib 14:754–762

    Article  Google Scholar 

  • Santos AMC, Jones OR, Quicke DLJ, Hortal J (2010) Assessing the reliability of biodiversity databases: identifying evenly inventoried island parasitoid faunas (Hymenoptera: Ichneumonoidea) worldwide. Insect Conserv Diver 3:72–82

    Article  Google Scholar 

  • Saunders ME, Janes JK, O’Hanlon JC (2020) Moving On from the insect apocalypse narrative: engaging with evidence-based insect conservation. Bioscience 70:80–89

    Article  Google Scholar 

  • Soberón J, Jiménez R, Golubov J, Koleff P (2007) Assessing completeness of biodiversity databases at different spatial scales. Ecography 30:152–160

    Article  Google Scholar 

  • Thompson GG, Withers PC, Pianka ER, Thompson SA (2003) Assessing biodiversity with species accumulation curves; inventories of small reptiles by pit-trapping in Western Australia. Austral Ecol 28:361–383

    Article  Google Scholar 

  • Troudet J, Grandcolas P, Blin A, Vignes-Lebbe R, Legendre F (2017) Taxonomic bias in biodiversity data and societal preferences. Sci Rep 7:9132

    Article  PubMed  PubMed Central  Google Scholar 

  • Turrini T, Dörler D, Richter A, Heigl F, Bonn A (2018) The threefold potential of environmental citizen science—generating knowledge, creating learning opportunities and enabling civic participation. Biol Conserv 225:176–186

    Article  Google Scholar 

  • Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol 72:888–897

    Article  Google Scholar 

  • Varela S, Anderson RP, García-Valdés R, Fernández-González F (2014) Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37:1084–1091

    Google Scholar 

  • Wagner DL, Fox R, Salcido DM, Dyer LA (2021) A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc Natl Acad Sci USA 118:e2002549117

    Article  PubMed  Google Scholar 

  • Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

    Article  CAS  PubMed  Google Scholar 

  • Whittaker RJ, Araújo MB, Jepson P, Ladle RJ, Watson JEM, Willis KJ (2005) Conservation biogeography: assessment and prospect. Diver Distrib 11:3–23

    Article  Google Scholar 

  • Yang W, Ma K, Kreft H (2013) Geographical sampling bias in a large distributional database and its effects on species richness–environment models. J Biogeogr 40:1415–1426

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to all of the volunteers who have contributed to the Butterflies for the New Millennium project, which is run by Butterfly Conservation with support from Natural England. D. S-F was supported by a postdoctoral grant from the University of Murcia (Spain). We also thank Leonardo Dapporto and an anonymous reviewer for their helpful comments on an earlier draft of this manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge M. Lobo.

Ethics declarations

Conflict of interest

The authors declared that, there is no conflict of interest with regard to this article.

Additional information

Communicated by Nigel E. Stork.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (XLSX 415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Fernández, D., Fox, R., Dennis, R.L.H. et al. How complete are insect inventories? An assessment of the british butterfly database highlighting the influence of dynamic distribution shifts on sampling completeness. Biodivers Conserv 30, 889–902 (2021). https://doi.org/10.1007/s10531-021-02122-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02122-w

Keywords

Navigation