Skip to main content

Global patterns of carnivore spatial ecology research in agroecosystems

Abstract

The growing needs for agricultural expansion and intensification will likely continue to reduce and fragment the terrestrial habitats fundamental to mammalian carnivores. Recent research identified benefits of agroecosystems to carnivores recognizing their multifunctionality, mostly for common species. However, the variability of carnivore ecology investigated in agroecosystems, biases in agriculture types and species targeted, and methodological approaches may affect the available knowledge to reconcile conservation and agricultural production. To fill this gap, we conducted a systematic literature review to identify which aspects of and how is carnivore spatial ecology being investigated within agroecosystems. Of the 110 reviewed studies, most focused on agricultural crops (55%) and grasslands (47%) and half referred to monocultures. We found that 61% of the studies were conducted in Europe and North America. Eighty-four carnivore species were studied, 73% classified as Least Concern, with 67% of the studies targeting a single species and 30% focused on only seven common species. Almost all studies included some form of habitat use analysis and species’ home-range and its attributes (e.g. size, resource selection), the most common spatial ecology aspects studied. Most studies suggested that agriculture functions as food provisioning (69%) but few used direct food availability measures. Our results highlight that studies tend to be descriptive and geographically biased towards northern hemisphere and to non-forested agricultural types. We suggest that future carnivore spatial ecology research in agroecosystem should be hypotheses-driven, with greater focus on the mechanisms and processes through which agroecosystems might affect carnivore spatial ecology in particular for areas with high priority for carnivore conservation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adams WM, Aveling R, Brockington D, Dickson B, Elliott J, Hutton J et al (2004) Biodiversity conservation and the eradication of poverty. Science 306(5699):1146–1149. https://doi.org/10.1126/science.1097920

    CAS  Article  PubMed  Google Scholar 

  2. Altieri MA, Koohafkan P (2004) Globally Important Ingenious Agricultural Heritage Systems (GIAHS): extent, significance, and implications for development. http://www.fao.org/3/ap021e/ap021e.pdf. Accessed 24 June 2020

  3. Arroyo-Rodríguez V, Fahrig L, Tabarelli M et al (2020) Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol Lett 1915:13535. https://doi.org/10.1111/ele.13535

    Article  Google Scholar 

  4. Athreya V, Odden M, Linnell JDC, Krishnaswamy J, Karanth U (2013) Big cats in our backyards: persistence of large carnivores in a human dominated landscape in India. PLoS ONE 8(3):2–9. https://doi.org/10.1371/journal.pone.0057872

    CAS  Article  Google Scholar 

  5. Azhar B, Lindenmayer DB, Wood J, Fischer J, Zakaria M (2014) Ecological impacts of oil palm agriculture on forest mammals in plantation estates and smallholdings. Biodivers Conserv 23(5):1175–1191. https://doi.org/10.1007/s10531-014-0656-z

    Article  Google Scholar 

  6. Beasley JC, Devault TL, Rhodes OE (2007) Home-range attributes of raccoons in a fragmented agricultural region of northern Indiana. J Wildl Manag 71(3):844–850. https://doi.org/10.2193/2006-022

    Article  Google Scholar 

  7. Beatriz Villa C, Lopez-Forment W, Prescot C (1998) Not all Sigmodontine rodents in the sugarcane fields in coastal Veracruz, Mexico, are pests. Proc Eighteenth Vertebr Pest Conf 78:236–241

    Google Scholar 

  8. Bennett AF, Radford JQ, Haslem A (2006) Properties of land mosaics: implications for nature conservation in agricultural environments. Biol Conserv 133(2):250–264. https://doi.org/10.1016/j.biocon.2006.06.008

    Article  Google Scholar 

  9. Boitani L, Powell RA (2012) Carnivore ecology and conservation: a handbook of techniques. Oxford University Press, Oxford

    Book  Google Scholar 

  10. Borchert M, Davis FW, Kreitler J (2008) Carnivore use of an avacado orchard in southern California. Calif Fish Game 94(2):61–74

    Google Scholar 

  11. Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17(5):925–951. https://doi.org/10.1007/s10531-008-9380-x

    Article  Google Scholar 

  12. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P et al (2012) Biodiversity loss and its impact on humanity. Nature 489(7415):326–326. https://doi.org/10.1038/nature11373

    CAS  Article  Google Scholar 

  13. Caruso N, Lucherini M, Fortin D, Casanave EB (2016) Species-specific responses of carnivores to human-induced landscape changes in central Argentina. PLoS ONE 11(3):e0150488. https://doi.org/10.1371/journal.pone.0150488

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Carvalho F, Carvalho R, Mira A, Beja P (2014) Use of tree hollows by a Mediterranean forest carnivore. For Ecol Manag 315:54–62. https://doi.org/10.1016/j.foreco.2013.12.013

    Article  Google Scholar 

  15. Červinka J, Šálek M, Padyšáková E, Šmilauer P (2013) The effects of local and landscape-scale habitat characteristics and prey availability on corridor use by carnivores: a comparison of two contrasting farmlands. J Nat Conserv 21(2):105–113. https://doi.org/10.1016/j.jnc.2012.11.004

    Article  Google Scholar 

  16. Chazdon RL, Harvey CA, Komar O, Griffith DM, Ferguson BG, Martínez-Ramos M et al (2009) Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 41(2):142–153. https://doi.org/10.1111/j.1744-7429.2008.00471.x

    Article  Google Scholar 

  17. Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8(11):1175–1182. https://doi.org/10.1111/j.1461-0248.2005.00820.x

    Article  PubMed  Google Scholar 

  18. Cox RL, Underwood EC (2011) The importance of conserving biodiversity outside of protected areas in mediterranean ecosystems. PLoS ONE 6(1):1–6. https://doi.org/10.1371/journal.pone.0014508

    CAS  Article  Google Scholar 

  19. Cruz J, Sarmento P, White PCL (2015) Influence of exotic forest plantations on occupancy and co-occurrence patterns in a mediterranean carnivore guild. J Mammal 96(4):854–865. https://doi.org/10.1093/jmammal/gyv109

    Article  Google Scholar 

  20. da Silva PM, CaS A, Niemelä J, Sousa JP, Serrano ARM (2008) Diversity patterns of ground-beetles (Coleoptera: Carabidae) along a gradient of land-use disturbance. Agric Ecosyst Environ 124(3–4):270–274. https://doi.org/10.1016/j.agee.2007.10.007

    Article  Google Scholar 

  21. Daily GC, Ceballos G, Pacheco J, Suzán G, Sánchez-Azofeifa A (2003) Countryside biogeography of neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conserv Biol 17(6):1814–1826. https://doi.org/10.1111/j.1523-1739.2003.00298.x

    Article  Google Scholar 

  22. Dellinger JA, Proctor C, Steury TD, Kelly MJ, Vaughan MR (2013) Habitat selection of a large carnivore, the red wolf, in a human-altered landscape. Biol Conserv 157:324–330. https://doi.org/10.1016/j.biocon.2012.09.004

    Article  Google Scholar 

  23. Di Marco M, Boitani L, Mallon D, Hoffmann M, Iacucci A, Meijaard E et al (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Conserv Biol 28(4):1109–1118. https://doi.org/10.1111/cobi.12249

    Article  PubMed  Google Scholar 

  24. Di Minin E, Slotow R, Hunter LTB, Montesino Pouzols F, Toivonen T, Verburg PH, Moilanen A (2016) Global priorities for national carnivore conservation under land use change. Sci Rep 6:23814. https://doi.org/10.1038/srep23814

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Dobrovolski R, Loyola RD, Guilhaumon F, Gouveia SF, Diniz-Filho JAF (2013) Global agricultural expansion and carnivore conservation biogeography. Biol Conserv 165:162–170. https://doi.org/10.1016/j.biocon.2013.06.004

    Article  Google Scholar 

  26. Dotta G, Verdade LM (2011) Medium to large-sized mammals in agricultural landscapes of south-eastern Brazil. Mammalia 75(4):345–352. https://doi.org/10.1515/MAMM.2011.049

    Article  Google Scholar 

  27. Driscoll DA, Banks SC, Barton PS, Lindenmayer DB, Smith AL (2013) Conceptual domain of the matrix in fragmented landscapes. Trends Ecol Evol 28(10):605–613. https://doi.org/10.1016/j.tree.2013.06.010

    Article  PubMed  Google Scholar 

  28. Ekroos J, Ödman AM, Andersson GKS, Birkhofer K, Herbertsson L, Klatt BK et al (2016) Sparing land for biodiversity at multiple spatial scales. Front Ecol Evol 3:1–11. https://doi.org/10.3389/fevo.2015.00145

    Article  Google Scholar 

  29. Elliott S, O’Brien J, Hayden TJ (2015) Impact of human land use patterns and climatic variables on badger (Meles meles) foraging behaviour in Ireland. Mamm Res 60(4):331–342. https://doi.org/10.1007/s13364-015-0242-0

    Article  Google Scholar 

  30. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ et al (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14(2):101–112. https://doi.org/10.1111/j.1461-0248.2010.01559.x

    Article  PubMed  Google Scholar 

  31. FAO (2015) FAOSTAT Online Statistical Service. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/EL

  32. Ferreira AS, Peres CA, Bogoni JA, Cassano CR (2018) Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. Mamm Rev 48:312–327

    Article  Google Scholar 

  33. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M et al (2011) Solutions for a cultivated planet. Nature 478(7369):337–342. https://doi.org/10.1038/nature10452

    CAS  Article  PubMed  Google Scholar 

  34. Galantinho A, Mira A (2009) The influence of human, livestock, and ecological features on the occurrence of genet (Genetta genetta): a case study on Mediterranean farmland. Ecol Res 24(3):671–685. https://doi.org/10.1007/s11284-008-0538-5

    Article  Google Scholar 

  35. Gehring TM, Swihart RK (2003) Body size, niche breadth, and ecologically scaled responses to habitat fragmentation: mammalian predators in an agricultural landscape. Biol Conserv 109(2):283–295. https://doi.org/10.1016/S0006-3207(02)00156-8

    Article  Google Scholar 

  36. Gheler-Costa C, Vettorazzi CA, Pardini R, Verdade LM (2012) The distribution and abundance of small mammals in agroecosystems of southeastern Brazil. Mammalia 76(2):185–191. https://doi.org/10.1515/mammalia-2011-0109

    Article  Google Scholar 

  37. Gibbs H, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci USA 107(38):16732–16737. https://doi.org/10.1073/pnas.0910275107

    Article  PubMed  Google Scholar 

  38. Gittleman JL, Harvey PH (1982) Carnivore home-range size, metabolic needs and ecology. Behav Ecol Sociobiol 10(1):57–63. https://doi.org/10.1007/BF00296396

    Article  Google Scholar 

  39. Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 36(6):2086–2097. https://doi.org/10.1016/j.enpol.2008.02.028

    Article  Google Scholar 

  40. Grouios CP, Manne LL (2009) Utility of measuring abundance versus consistent occupancy in predicting biodiversity persistence. Conserv Biol 23(5):1260–1269. https://doi.org/10.1111/j.1523-1739.2009.01253.x

    Article  PubMed  Google Scholar 

  41. Guillera-Arroita G, Lahoz-Monfort JJ, MacKenzie DI, Wintle BA, McCarthy MA (2014) Ignoring imperfect detection in biological surveys is dangerous: a response to “fitting and interpreting occupancy models.” PLoS ONE 9(7):e99571. https://doi.org/10.1371/journal.pone.0099571

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Henle K, Alard D, Clitherow J, Cobb P, Firbank L, Kull T et al (2008) Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe: a review. Agric Ecosyst Environ 124(1–2):60–71. https://doi.org/10.1016/j.agee.2007.09.005

    Article  Google Scholar 

  43. Hipólito D, Santos-Reis M, Rosalino LM (2016) Effects of agro-forestry activities, cattle-raising practices and food-related factors in badger sett location and use in Portugal. Mammal Biol 81(2):194–200. https://doi.org/10.1016/j.mambio.2015.11.005

    Article  Google Scholar 

  44. Hortal J, Bello Fd, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst 46(1):523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400

    Article  Google Scholar 

  45. Jennings AP, Naim M, Advento AD, Aryawan AAK, Ps S, Caliman JP et al (2015) Diversity and occupancy of small carnivores within oil palm plantations in central Sumatra. Indonesia Mamm Res 60(2):181–188. https://doi.org/10.1007/s13364-015-0217-1

    Article  Google Scholar 

  46. Johnson DDP, Macdonald DW, Newman C, Morecroft MD (2001) Group size versus size in group-living territory badgers: a test of the Resource Dispersion Hypothesis. Oikos 95(2):265–274. https://doi.org/10.1034/j.1600-0706.2001.950208.x

    Article  Google Scholar 

  47. Joppa L, O’Connor B, Visconti P, Smith C, Geldmann J, Hoffmann M et al (2016) Filling in biodiversity threats gaps. Science 353:416–418. https://doi.org/10.1126/science.aaf3565

    CAS  Article  Google Scholar 

  48. Kaneko Y, Maruyama N, Macdonald DW (2006) Food habitats and habitat selection of suburban badger (Meles meles) in Japan. J Zool Lond 270:78–89. https://doi.org/10.1111/j.1469-7998.2006.00063.x

    Article  Google Scholar 

  49. Kent VT, Hill RA (2013) The importance of farmland for the conservation of the brown hyaena Parahyaena brunnea. Oryx 47(3):431–440. https://doi.org/10.1017/S0030605312001007

    Article  Google Scholar 

  50. Koh LP, Miettinen J, Liew SC, Ghazoul J (2011) Remotely sensed evidence of tropical peatland conversion to oil palm. Proc Natl Acad Sci USA 108(12):5127–5132. https://doi.org/10.1073/pnas.1018776108

    Article  PubMed  Google Scholar 

  51. Kueffer C, Kaiser-Bunbury CN (2014) Reconciling conflicting perspectives for biodiversity conservation in the Anthropocene. Front Ecol Environ 12(2):131–137. https://doi.org/10.1890/120201

    Article  Google Scholar 

  52. Kupfer JA, Malanson GP, Franklin SB (2006) Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. Glob Ecol Biogeogr 15(1):8–20. https://doi.org/10.1111/j.1466-822X.2006.00204.x

    Article  Google Scholar 

  53. Lara-Romero C, Virgós E, Escribano-Ávila G, Mangas JG, Barja I, Pardavila X (2012) Habitat selection by European badgers in Mediterranean semi-arid ecosystems. J Arid Environ 76(1):43–48. https://doi.org/10.1016/j.jaridenv.2011.08.004

    Article  Google Scholar 

  54. López-Bao J, Bruskotter J, Chapron G (2017) Finding space for large carnivores. Nat Ecol Evol 1:0140. https://doi.org/10.1038/s41559-017-0140

    Article  Google Scholar 

  55. Lyra-Jorge MC, Ciocheti G, Pivello VR (2008) Carnivore mammals in a fragmented landscape in northeast of São Paulo State. Brazil Biodivers Conserv 17(7):1573–1580. https://doi.org/10.1007/s10531-008-9366-8

    Article  Google Scholar 

  56. Mackenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modelling: inferring patterns and dynamics of species occurrence. Elsevier, Amsterdam

    Google Scholar 

  57. Magrini C, Manzo E, Zapponi L, Angelici FM, Boitani L, Cento M (2009) Weasel (Mustela nivalis) spatial ranging behaviour and habitat selection in agricultural landscape. Acta Theriol 54(2):137–146. https://doi.org/10.1007/BF03193169

    Article  Google Scholar 

  58. Marker LL, Dickman AJ, Mills MGL, Jeo RM, Macdonald DW (2008) Spatial ecology of cheetahs on north-central Namibian farmlands. J Zool 274(3):226–238. https://doi.org/10.1111/j.1469-7998.2007.00375.x

    Article  Google Scholar 

  59. Mendenhall CD, Karp DS, Meyer CFJ, Hadly EA, Daily GC (2014) Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509(7499):213–217. https://doi.org/10.1038/nature13139

    CAS  Article  PubMed  Google Scholar 

  60. Moreira-Arce D, Vergara PM, Boutin S, Carrasco G, Briones R, Soto GE, Jiménez JE (2016) Mesocarnivores respond to fine-grain habitat structure in a mosaic landscape comprised by commercial forest plantations in southern Chile. For Ecol Manag 369:135–143. https://doi.org/10.1016/j.foreco.2016.03.024

    Article  Google Scholar 

  61. Muhly TB, Semeniuk C, Massolo A, Hickman L, Musiani M (2011) Human activity helps prey win the predator–prey space race. PLoS ONE 6(3):e17050. https://doi.org/10.1371/journal.pone.0017050

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Nakashima Y, Nakabayashi M, Sukor JA (2013) Space use, habitat selection, and day-beds of the common palm civet (Paradoxurus hermaphroditus) in human-modified habitats in Sabah, Borneo. J Mammal 94(5):1169–1178. https://doi.org/10.1644/12-MAMM-A-140.1

    Article  Google Scholar 

  63. Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520(7545):45–50. https://doi.org/10.1038/nature14324

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Nogeire TM, Davis FW, Duggan JM, Crooks KR, Boydston EE (2013) Carnivore use of avocado orchards across an agricultural-wildland gradient. PLoS ONE 8(7):e68025. https://doi.org/10.1371/journal.pone.0068025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Nogeire TM, Davis FW, Crooks KR, McRae BH, Lyren LM, Boydston EE (2015) Can orchards help connect Mediterranean ecosystems? Animal movement data alter conservation priorities. Am Midl Nat 174(1):105–116. https://doi.org/10.1674/0003-0031-174.1.105

    Article  Google Scholar 

  66. Norris K (2008) Agriculture and biodiversity conservation: opportunity knocks. Conserv Lett 1(1):2–11. https://doi.org/10.1111/j.1755-263X.2008.00007.x

    Article  Google Scholar 

  67. O’Bryan CJ, Braczkowski AR, Beyer HL, Carter NH, Watson JEM, McDonald-Madden E (2018) The contribution of predators and scavengers to human well-being. Nat Ecol Evol 2(2):229–236. https://doi.org/10.1038/s41559-017-0421-2

    Article  PubMed  Google Scholar 

  68. Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Linkens G (ed) Long-term studies in ecology. Springer, New York, pp 110–135

    Chapter  Google Scholar 

  69. Prange S, Gehrt SD, Wiggers EP (2004) Influences of anthropogenic resources on raccoon (Procyon Lotor) movements and spatial distribution. J Mammal 85(3):483–490. https://doi.org/10.1644/BOS-121

    Article  Google Scholar 

  70. Rajaratnam R, Sunquist M, Rajaratnam L, Ambu L (2007) Diet and habitat selection of the leopard cat (Prionailurus bengalensis borneoensis) in an agricultural landscape in Sabah, Malaysian Borneo. J Trop Ecol 23(2):209. https://doi.org/10.1017/S0266467406003841

    Article  Google Scholar 

  71. Ramesh T, Downs CT (2015) Impact of land use on occupancy and abundance of terrestrial mammals in the Drakensberg Midlands, South Africa. J Nat Conserv 23:9–18. https://doi.org/10.1016/j.jnc.2014.12.001

    Article  Google Scholar 

  72. Rosalino LM, Santos-Reis M (2009) Fruit consumption by carnivores in Mediterranean Europe. Mamm Rev 39(1):67–78. https://doi.org/10.1111/j.1365-2907.2008.00134.x

    Article  Google Scholar 

  73. Šálek M, Kreisinger J, Sedláček F, Albrecht T (2010) Do prey densities determine preferences of mammalian predators for habitat edges in an agricultural landscape? Landsc Urban Plan 98(2):86–91. https://doi.org/10.1016/j.landurbplan.2010.07.013

    Article  Google Scholar 

  74. Šálek M, Cervinka J, Pavluvkcik P, Polkova S, Tkadlec E (2013) Forest-edge utilization by carnivores in relation to local and landscape habitat characteristics in central European farmland. Mamm Biol 79:176–182. https://doi.org/10.1016/j.mambio.2013.08.009

    Article  Google Scholar 

  75. Santos MJ, Rosalino LM, Santos-Reis M, Ustin SL (2016) Testing remotely-sensed predictors of meso-carnivore habitat use in Mediterranean ecosystems. Landsc Ecol 31(8):1–18. https://doi.org/10.1007/s10980-016-0360-3

    Article  Google Scholar 

  76. Scherr SJ, McNeely JA (2008) Biodiversity conservation and agricultural sustainability: towards a new paradigm of “ecoagriculture”landscapes. Philos Trans R Soc B 363:477–494. https://doi.org/10.1098/rstb.2007.2165

    Article  Google Scholar 

  77. Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J et al (2008) Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annu Rev Ecol Evol Syst 39(1):1–19. https://doi.org/10.1146/annurev.ecolsys.39.110707.173545

    Article  Google Scholar 

  78. Silva-Rodríguez EA, Ortega-Solís GR, Jiménez JE (2010) Conservation and ecological implications of the use of space by chilla foxes and free-ranging dogs in a human-dominated landscape in southern Chile. Austral Ecol 35(7):765–777. https://doi.org/10.1111/j.1442-9993.2009.02083.x

    Article  Google Scholar 

  79. Sollmann R, Mohamed A, Samejima H, Wilting A (2013) Risky business or simple solution: relative abundance indices from camera-trapping. Biol Conserv 159:405–412. https://doi.org/10.1016/j.biocon.2012.12.025

    Article  Google Scholar 

  80. Sutherland W (2003) Evidence-based. Conservation Discrepancy between practice and evidence led to the development of evidence-based medicine. Do we need a similar revolution for conservation? Conserv Pract 4(3):39–42. https://doi.org/10.1111/j.1526-4629.2003.tb00068.x

    Article  Google Scholar 

  81. Swanepoel LH, Somers MJ, Dalerum F (2015) Density of leopards Panthera pardus on protected and non-protected land in the Waterberg Biosphere, South Africa. Wildl Biol 21(5):263–268. https://doi.org/10.2981/wlb.00108

    Article  Google Scholar 

  82. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108(50):20260–20264. https://doi.org/10.1073/pnas.1116437108

    Article  PubMed  Google Scholar 

  83. Timo T, Lyra-Jorge M, Gheler-Costa C, Verdade L (2015) Effect of the plantation age on the use of Eucalyptus stands by medium to large-sized wild mammals in south-eastern Brazil. iForest 8(2):108–113. https://doi.org/10.3832/ifor1237-008

    Article  Google Scholar 

  84. Vanthomme H, Kolowski J, Korte L, Alonso A (2013) Distribution of a community of mammals in relation to roads and other human disturbances in Gabon, Central Africa. Conserv Biol 27(2):281–291. https://doi.org/10.1111/cobi.12017

    Article  PubMed  PubMed Central  Google Scholar 

  85. Verdade LM, Rosalino LM, Gheler-costa C, Pedroso NM, Lyra-Jorge MC (2011) Adaptation of Mesocarnivores (Mammalia: Carnivora) to Agricultural Landscapes in Mediterranean Europe and Southeastern Brazil: A Trophic Perspective. In: Rosalino LM, Gheler-costa C (eds) Middle-sized carnivores in agricultural landscapes. Nova Science Publhishers Inc, New York, pp 1–38

    Google Scholar 

  86. Verdade LM, Lyra-Jorge MC, Piña CI (2014a) Applied ecology and human dimensions in biological conservation. Springer, Berlin

    Book  Google Scholar 

  87. Verdade LM, Penteado M, Gheler-Costa C, Dotta G, Rosalino LM, Pivello VR et al (2014b) The conservation value of agriculture landscapes. In: Verdade LM, Lyra-Jorge MC, Piña CI (eds) Applied ecology and human dimension in biological conservation. Springer, Berlin, pp 91–102

    Chapter  Google Scholar 

  88. Visconti P, Pressey RL, Giorgini D, Maiorano L, Bakkenes M, Boitani L et al (2011) Future hotspots of terrestrial mammal loss. Philos Trans R Soc B 366:2693–2702. https://doi.org/10.1098/rstb.2011.0105

    Article  Google Scholar 

  89. Williams ST, Maree N, Taylor P, Belmain SR, Keith M, Swanepoel LH (2018) Predation by small mammalian carnivores in rural agro-ecosystems: an undervalued ecosystem service? Ecosyst Serv 30(1):362–371. https://doi.org/10.1016/j.ecoser.2017.12.006

    Article  Google Scholar 

Download references

Acknowledgements

GCS was funded by a doctoral grant from Fundação para a Ciência e a Tecnologia (FCT) (PD/BD/114037/2015). MJS was supported by the University Research Priority Program in Global Change and Biodiversity at the University of Zurich. MSR had support from FCT (UID/BIA/00329/2013). LMR was funded by FCT/MCTES (UID/AMB/50017/2019), through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020, and supported by the project POCI-01-0145-FEDER-028204 funded by FEDER, through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI), and by national funds (OE), through FCT/MCTES.

Funding

The study was funded by the University Research Priority Program in Global Change and Biodiversity at the University of Zurich and the Fundação para a Ciência e a Tecnologia (FCT) (PD/BD/114037/2015; UID/BIA/00329/2013; UID/AMB/50017/2019), through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020, and supported by the project POCI-01-0145-FEDER-028204 funded by FEDER, through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI), and by national funds (OE), through FCT/MCTES.

Author information

Affiliations

Authors

Contributions

GCS and LMR conceived the ideas; LMR led the literature search; GCS conducted the review process, collected and analysed the data; All authors contributed critically during the discussion of results; GCS and MJS led the writing with the contribution of all co-authors.

Corresponding author

Correspondence to Gonçalo Curveira-Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Karen E. Hodges.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 127 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Curveira-Santos, G., Santos, M.J., Santos-Reis, M. et al. Global patterns of carnivore spatial ecology research in agroecosystems. Biodivers Conserv 30, 257–273 (2021). https://doi.org/10.1007/s10531-020-02093-4

Download citation

Keywords

  • Agriculture
  • Carnivora
  • Biodiversity conservation
  • Land use
  • Landscape functionality
  • Research synthesis
  • Space use