Abstract
Maintaining plant biodiversity and important ecosystem services depend on the species' ability to survive and disperse after anthropogenic disturbance, loss of natural habitat, and fragmentation. The Cerrado, one of the main biodiversity conservation hotspots in the world, loses natural habitat at a very high rate and suffers from disturbances generated by land use and advancement of the agricultural frontier. Given the need to generate knowledge about land use in Cerrado biome, this study aimed to evaluate if the anthropogenic disturbance alters biodiversity indexes and the capacity to store biomass of these savanna. We installed a permanent plot (20 m × 50 m) inside each study fragment and assessed the intensity of local disturbances such as cattle grazing, earthworm extraction, Caryocar fruit harvesting, and fire. To measure habitat loss and fragmentation, we used configuration and composition metrics in local and landscapes scales. Cattle grazing caused a loss of taxonomic and phylogenetic diversity, while fragment size and Cerrado cover in landscape increased phylogenetic diversity. The patch density, shape complexity and edge density in the landscapes also had a negative influence on phylogenetic diversity. Landscapes with more Eucalyptus sp. plantation area had lower phylogenetic diversity. In addition, the percentage of Cerrado in the landscape had a negative influence on biomass while the number of patches had a positive influence. Thus, we conclude that anthropogenic disturbances in the Cerrado generates loss of taxonomic, phylogenetic diversity and alters biomass stock patterns.
This is a preview of subscription content, access via your institution.



References
Abreu RCR, Hoffmann WA, Vasconcelos HL et al (2017) The biodiversity cost of carbon sequestration in tropical Savanna. Sci Adv 3:e1701284. https://doi.org/10.1126/sciadv.1701284
Ab’sáber A (2003) Dominios_de_Naturea.pdf
Andrade ER, Jardim JG, Santos BA et al (2015) Effects of habitat loss on taxonomic and phylogenetic diversity of understory Rubiaceae in Atlantic forest landscapes. For Ecol Manag 349:73–84. https://doi.org/10.1016/j.foreco.2015.03.049
Aranha BA (2013) Phylogenetic pattern of cerrado communities: evolution and biogeography. Ph.D. thesis, Universidade Estadual de Campinas
Archibald S, Staver AC, Levin SA (2012) Evolution of human-driven fire regimes in Africa. Proc Natl Acad Sci USA 109:847–852. https://doi.org/10.1073/pnas.1118648109
Arroyo-Rodríguez V, Cavender-Bares J, Escobar F et al (2012) Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. J Ecol 100:702–711. https://doi.org/10.1111/j.1365-2745.2011.01952.x
Arroyo-Rodríguez V, Rojas C, Saldaña-Vázquez RA, Stoner KE (2016) Landscape composition is more important than landscape configuration for phyllostomid bat assemblages in a fragmented biodiversity hotspot. Biol Conserv 198:84–92. https://doi.org/10.1016/j.biocon.2016.03.026
Batalha MA, Cianciaruso MV, Motta-Junior J (2010) Consequences of simulated loss of open cerrado areas to bird functional diversity. Nat Conserv 8(1):1–5. https://doi.org/10.1111/j.1365-2699.2012.02715.x
Batalha MA, Silva IA, Cianciaruso MV et al (2011a) Phylogeny, traits, environment, and space in cerrado plant communities at Emas National Park (Brazil). Flora: morphology. Distrib Funct Ecol Plants 206:949–956. https://doi.org/10.1016/j.flora.2011.07.004
Batalha MA, Silva IA, Cianciaruso MV, De Carvalho GH (2011b) Trait diversity on the phylogeny of cerrado woody species. Oikos 120:1741–1751. https://doi.org/10.1111/j.1600-0706.2011.19513.x
Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-revisited. Am J Bot 97:1296–1303. https://doi.org/10.3732/ajb.0900346
Benítez-Malvido J, Gallardo-Vásquez JC, Alvarez-Añorve MY, Avila-Cabadilla LD (2014) Influence of matrix type on tree community assemblages along tropical dry forest edges. Am J Bot 101:820–829. https://doi.org/10.3732/ajb.1300396
Beuchle R, Grecchi RC, Shimabukuro YE et al (2015) Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl Geogr 58:116–127. https://doi.org/10.1016/j.apgeog.2015.01.017
Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
Boscolo D, Paul Metzger J (2011) Isolation determines patterns of species presence in highly fragmented landscapes. Ecography 34:1018–1029. https://doi.org/10.1111/j.1600-0587.2011.06763.x
Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. J Wildl Manag 67:677
Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35. https://doi.org/10.1007/s00265-010-1029-6
Cadotte MW, Dinnage R, Tilman D (2012) Phylogenetic diversity promotes ecosystem stability. Ecology 93:8
Carrara E, Arroyo-Rodríguez V, Vega-Rivera JH et al (2015) Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol Conserv 184:117–126. https://doi.org/10.1016/j.biocon.2015.01.014
Carrié R, Andrieu E, Cunningham SA et al (2017) Relationships among ecological traits of wild bee communities along gradients of habitat amount and fragmentation. Ecography. https://doi.org/10.1111/ecog.02632
Carvalho FMV, De Marco P, Ferreira LG (2009) The Cerrado into-pieces: habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol Conserv 142:1392–1403. https://doi.org/10.1016/j.biocon.2009.01.031
Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA (2004) Phylogenetic overdispersion in Floridian Oak. Communities 163:823–843
Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715. https://doi.org/10.1111/j.1461-0248.2009.01314.x
CETEC (1995) Determinação de equações volumétricas aplicáveis ao manejo sustentado de florestas nativas no estado de Minas Gerais e outras regiões do país
Chave J, Coomes D, Jansen S et al (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
Christianini AV, Oliveira PS (2013) Edge effects decrease ant-derived benefits to seedlings in a neotropical savanna. Arthropod Plant Interact 7:191–199. https://doi.org/10.1007/s11829-012-9229-9
Cianciaruso MV, Silva IA, Batalha MA (2009) Diversidades filogenética e funcional: novas abordagens para a Ecologia de comunidades. Biota Neotrop 9:93–103. https://doi.org/10.1590/S1676-06032009000300008
Cisneros LM, Fagan ME, Willig MR (2015) Effects of human-modified landscapes on taxonomic, functional and phylogenetic dimensions of bat biodiversity. Divers Distrib 21:523–533. https://doi.org/10.1111/ddi.12277
Cochrane MA, Laurance WF (2002) Fire as a large-scale edge effect in Amazonian forests. J Trop Ecol 18:311–325. https://doi.org/10.1017/s0266467402002237
Collinge SK, Palmer TM (2002) The influences of patch shape and boundary contrast on insect response to fragmentation in California grasslands. Landsc Ecol 17:647–656. https://doi.org/10.1023/A:1021536302195
Cote J, Bestion E, Jacob S et al (2017) Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography. https://doi.org/10.1111/ecog.02538
Da Silva Júnior MC, Dos Santos GC (2005) 100 Árvores do Cerrado: Guia de Campo. Rede de Sementes do Cerrado
de Dantas L, Batalha MA, Pausas JG (2013) Fire drives functional thresholds on the savanna-forest transition. Ecology 94:2454–2463. https://doi.org/10.1890/12-1629.1
de Castro Solar RR, Barlow J, Ferreira J et al (2015) How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol Lett 18:1108–1118. https://doi.org/10.1111/ele.12494
de Souza IF, Souza AF, Pizo MA, Ganade G (2010) Using tree population size structures to assess the impacts of cattle grazing and eucalypts plantations in subtropical South America. Biodivers Conserv 19:1683–1698. https://doi.org/10.1007/s10531-010-9796-y
de Solar RR et al (2016) Biodiversity consequences of land-use change and forest disturbance in the Amazon: a multi-scale assessment using ant communities. Biol Conserv 197:98–107. https://doi.org/10.1016/j.biocon.2016.03.005
Díaz S, Lavorel S, McIntyre S et al (2007) Plant trait responses to grazing: a global synthesis. Glob Chang Biol 13:313–341. https://doi.org/10.1111/j.1365-2486.2006.01288.x
Dodonov P, Braga AL, Harper KA, Silva Matos DM (2016) Edge influence on plant litter biomass in forest and savanna in the Brazilian cerrado. Austral Ecol. https://doi.org/10.1111/aec.12420
Dodonov P, Harper KA, Silva-Matos DM (2013) The role of edge contrast and forest structure in edge influence: vegetation and microclimate at edges in the Brazilian cerrado. Plant Ecol 214:1345–1359. https://doi.org/10.1007/s11258-013-0256-0
Eiten G (1972) The Cerrado vegetation of Brazil. Bot Rev 38:201–327
Ewers R, Didham R (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev Camb Philos Soc 81:117–142. https://doi.org/10.1017/s1464793105006949
Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Environ Syst 34:487–515. https://doi.org/10.1146/132419
Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21:1003–1015. https://doi.org/10.1111/j.1365-2435.2007.01326.x
Gámez-Virués S, Perović DJ, Gossner MM et al (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun 6:8568. https://doi.org/10.1038/ncomms9568
Gardner TA, Barlow J, Chazdon R et al (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12:561–582. https://doi.org/10.1111/j.1461-0248.2009.01294.x
Garland T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32. https://doi.org/10.1093/sysbio/41.1.18
Gastauer M, Meira-Neto JAA (2016) An enhanced calibration of a recently released megatree for the analysis of phylogenetic diversity. Braz J Biol 76:619–628. https://doi.org/10.1590/1519-6984.20814
Gastauer M, Meira-Neto JAA (2014) Interactions, environmental sorting and chance: phylostructure of a tropical forest assembly. Folia Geobot 49:443–459. https://doi.org/10.1007/s12224-013-9181-1
Gastauer M, Meira-Neto JAA (2015) Estrutura Filogenética de comunidades no Cerrado: introdução e estudo de caso. In: Felfili JM, Eisenlohr P V., De Melo MM da RF, et al. (eds) Fitossociologia no Brasil - Métodos e Estudo de Caso, Volume II. 2015, Viçosa, p 302
Giehl ELH, Jarenkow JA (2015) Disturbance and stress gradients result in distinct taxonomic, functional and phylogenetic diversity patterns in a subtropical riparian tree community. J Veg Sci 26:889–901. https://doi.org/10.1111/jvs.12288
Gilroy JJ, Woodcock P, Edwards FA et al (2014) Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat Clim Chang 4:503–507. https://doi.org/10.1038/nclimate2200
Giroldo AB, Scariot A (2015) Land use and management affects the demography and conservation of an intensively harvested Cerrado fruit tree species. Biol Conserv 191:150–158. https://doi.org/10.1016/j.biocon.2015.06.020
Gottsberger G, Silberbauer-Gottsberger I (2006) Life in the Cerrado: a South American Tropical Seasonal Ecosystemc. Pollination and Seed Dispersal, Reta, Ulm
Haddad NM, Gonzalez A, Brudvig LA et al (2017a) Experimental evidence does not support the Habitat Amount Hypothesis. Ecography. https://doi.org/10.1111/ecog.02535
Haddad NM, Holt RD, Fletcher RJ et al (2017b) Connecting models, data, and concepts to understand fragmentation’s ecosystem-wide effects. Ecography 40:1–8. https://doi.org/10.1111/ecog.02974
Jacoboski LI, De Mendonça-Lima A, Hartz SM (2016) Structure of bird communities in eucalyptus plantations: nestedness as a pattern of species distribution. J Biol Braz J Biol 76:583–591. https://doi.org/10.1590/1519-6984.18614
Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713. https://doi.org/10.1111/j.1523-1739.2005.00702.x
Kraft NJB, Ackerly DD, Monographs SE, August N (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Functional tests of trait and community assembly phylogenetic across scales in an Amazonian forest spatial. Ecol Monogr 80:401–422. https://doi.org/10.1890/09-1672.1
Kuhlmann M (2012) Frutos e sementes do Cerrado atratios para fauna: guia de campo. Rede de Sementes do Cerrado, Brasília
Laurance WF, Camargo JLC, Luizão RCC et al (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biol Conserv 144:56–67. https://doi.org/10.1016/j.biocon.2010.09.021
Laurance WF, Nascimento HEM, Laurance SG et al (2006) Rain forest fragmentation and the proliferation of successional trees Fearnside. Science 87:469–482
Lehmann CER, Anderson TM, Sankaran M et al (2014) Savanna vegetation-fire-climate relationships differ among continents. Science 343:548–553. https://doi.org/10.1126/science.1247355
Liu J, Wilson M, Hu G et al (2018) How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landsc Ecol 33:341–352. https://doi.org/10.1007/s10980-018-0620-5
Lôbo D, Leão T, Melo FPL et al (2011) Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers Distrib 17:287–296. https://doi.org/10.1111/j.1472-4642.2010.00739.x
Magnago LFS, Edwards DP, Edwards FA et al (2014) Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J Ecol 102:475–485. https://doi.org/10.1111/1365-2745.12206
Magnago LFS, Magrach A, Barlow J et al (2017) Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests ? Funct Ecol. https://doi.org/10.1111/1365-2435.12752
Magnago LFS, Magrach A, Barlow J et al (2016) Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests? Funct Ecol. https://doi.org/10.1111/1365-2435.12752
Magnago LFS, Magrach A, Laurance WF et al (2015a) Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? Glob Chang Biol 21:3455–3468. https://doi.org/10.1111/gcb.12937
Magnago LFS, Rocha MF, Meyer L et al (2015b) Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodivers Conserv 24:2305–2318. https://doi.org/10.1007/s10531-015-0961-1
Martínez LJ, Zinck JA (2004) Temporal variation of soil compaction and deterioration of soil quality in pasture areas of Colombian Amazonia. Soil Tillage Res 75:3–17. https://doi.org/10.1016/j.still.2002.12.001
Matos FAR, Magnago LFS, Gastauer M et al (2016) Effects of landscape configuration and composition on phylogenetic diversity of trees in a highly fragmented tropical forest. J Ecol. https://doi.org/10.1111/1365-2745.12661
McGarial K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial patern analysis program for categorical and continuous maps
Melo FPL, Arroyo-Rodríguez V, Fahrig L et al (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:461–468. https://doi.org/10.1016/j.tree.2013.01.001
Mitchell MGE, Suarez-Castro AF, Martinez-Harms M et al (2015) Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol Evol 30:190–198. https://doi.org/10.1016/j.tree.2015.01.011
Mittermeier RA, da Fonseca GAB, Rylands AB, Brandon K (2005) A brief history of biodiversity conservation in Brazil. Conserv Biol 19:601–607. https://doi.org/10.1111/j.1523-1739.2005.00709.x
Munguía-Rosas MA, Jurado-Dzib SG, Mezeta-Cob CR et al (2014) Continuous forest has greater taxonomic, functional and phylogenetic plant diversity than an adjacent naturally fragmented forest. J Trop Ecol 30:323–333. https://doi.org/10.1017/S0266467414000194
Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858
Nazareno AG, Feres JM, de Carvalho D et al (2012) serious new threat to Brazilian forests. Conserv Biol 26:5–6. https://doi.org/10.1111/j.1523-1739.2011.01798.x
Neri AV, de Campos ÉP, Duarte TG et al (2005) Regeneration of wood natives species under Eucalyptus stand of Cerrado area in the Floresta Nacional of Paraopeba, Minas Gerais, Brazil. Acta Bot Bras 19:369–376. https://doi.org/10.1590/S0102-33062005000200020
Neri AV, Schaefer CEGR, Silva AF et al (2012) the Influence of soils on the floristic composition and community structure of an area of Brazilian Cerrado Vegetation. Edin J Bot 69:1–27. https://doi.org/10.1017/S0960428611000382
Newbold T, Hudson LN, Hill SLL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. https://doi.org/10.1038/nature14324
Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. https://doi.org/10.1093/bioinformatics/btg412
Pellegrini AFA, Socolar JB, Elsen PR, Giam X (2016) Trade-offs between savanna woody plant diversity and carbon storage in the Brazilian Cerrado. Glob Chang Biol. https://doi.org/10.1111/gcb.13259
Pivello VR, Shida CN, Meirelles ST (1999) Alien grasses in Brazilian savannas: a threat to the biodiversity. Biodivers Conserv 8:1281–1294. https://doi.org/10.1023/A:1008933305857
Poisot T, Mouquet N, Gravel D (2013) Trophic complementarity drives the biodiversity-ecosystem functioning relationship in food webs. Ecol Lett 16:853–861. https://doi.org/10.1111/ele.12118
Potts SG, Petanidou T, Roberts S et al (2006) Plant-pollinator biodiversity and pollination services in a complex Mediterranean landscape. Biol Conserv 129:519–529. https://doi.org/10.1016/j.biocon.2005.11.019
Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants: evidence for phylogenetic conservatism. Proc Biol Sci 268:2383–2389. https://doi.org/10.1098/rspb.2001.1801
R Developement Core Team (2015) R: a language and enviroment for statistic computing
Ratter J et al (1997) The Brazilian Cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230. https://doi.org/10.1006/anbo.1997.0469
Ribeiro EMS et al (2015) Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. J Appl Ecol 52:611–620. https://doi.org/10.1111/1365-2664.12420
Ribeiro EMS, Santos BA et al (2016) Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga. Ecology 97:1583–1592. https://doi.org/10.1890/15-1122.1
Ribeiro JF, Walter BMT (1998) Fitofisionomias do Bioma Cerrado. In: Sano SM, Almeida SP (eds) Cerrado: ambiente e flora. Empraba Cerrados, Brasiília, pp 89–166
Ribeiro-Neto JD, Arnan X, Tabarelli M, Leal IR (2016) Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodivers Conserv 25:943–956. https://doi.org/10.1007/s10531-016-1099-5
Rocha-Santos L, Pessoa MS, Cassano CR et al (2016) The shrinkage of a forest: landscape-scale deforestation leading to overall changes in local forest structure. Biol Conserv 196:1–9. https://doi.org/10.1016/j.biocon.2016.01.028
Sala OE, Chapin FS, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770
Sano SM, Semíramis A, Ribeiro JF (2008) Cerrado: ecologia e flora
Santos BA, Arroyo-Rodríguez V, Moreno CE, Tabarelli M (2010) Edge-related loss of tree phylogenetic diversity in the severely fragmented brazilian atlantic forest. PLoS ONE 5:1–7. https://doi.org/10.1371/journal.pone.0012625
Santos BA, Tabarelli M, Melo FPL et al (2014) Phylogenetic impoverishment of Amazonian tree communities in an experimentally fragmented forest landscape. PLoS ONE. https://doi.org/10.1371/journal.pone.0113109
Schmidt IB, Ticktin T (2012) When lessons from population models and local ecological knowledge coincide: effects of flower stalk harvesting in the Brazilian savanna. Biol Conserv 152:187–195. https://doi.org/10.1016/j.biocon.2012.03.018
Soares-filho B, Rajão R, Macedo M et al (2014) Cracking Brazil ’ s Forest Code. Science 344:363–364
Souza-Neto AC, Cianciaruso MV, Collevatti RG (2016) Habitat shifts shaping the diversity of a biodiversity hotspot through time: insights from the phylogenetic structure of Caesalpinioideae in the Brazilian Cerrado. J Biogeogr 43:340–350. https://doi.org/10.1111/jbi.12634
Swenson NG (2014) Functional and phylogenetic ecology in R. Springer, New York
Vandermeer J, Perfecto I (2007) The agricultural matrix and a future paradigm for conservation. Conserv Biol 21:274–277. https://doi.org/10.1111/j.1523-1739.2006.00582.x
Venter O, Laurance WF, Iwamura T et al (2009) BREVIA harnessing carbon payments to protect biodiversity. Smithsonian 326:2009–2009
Webb C (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155. https://doi.org/10.1086/303378
Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100. https://doi.org/10.1093/bioinformatics/btn358
Webb CO, Ackerly DD, McPeek M et al (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183. https://doi.org/10.1111/j.1471-8286.2004.00829.x
Whittingham MJ, Swetnam RD, Wilson JD et al (2005) Habitat selection by yellowhammers Emberiza citrinella on lowland farmland at two spatial scales: implications for conservation management. J Appl Ecol 42:270–280. https://doi.org/10.1111/j.1365-2664.2005.01007.x
Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x
Acknowledgements
The authors thank CNPq (Grant No. 301913/2012-9), CAPES (PROAP—PPGBot-UFV, scholarships and grants) and FAPEMIG (Grant No. APQ-01309-16), Botany Graduate Program and Ecology Graduate Program of Universidade Federal de Viçosa for providing infrastructure, grants and scholarships; JAAMN holds a productivity fellowship (CNPq 307591/2016-6).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Danna J. Leaman.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Coelho, A.J.P., Magnago, L.F.S., Matos, F.A.R. et al. Effects of anthropogenic disturbances on biodiversity and biomass stock of Cerrado, the Brazilian savanna. Biodivers Conserv 29, 3151–3168 (2020). https://doi.org/10.1007/s10531-020-02013-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10531-020-02013-6