Effects of anthropogenic disturbances on biodiversity and biomass stock of Cerrado, the Brazilian savanna

Abstract

Maintaining plant biodiversity and important ecosystem services depend on the species' ability to survive and disperse after anthropogenic disturbance, loss of natural habitat, and fragmentation. The Cerrado, one of the main biodiversity conservation hotspots in the world, loses natural habitat at a very high rate and suffers from disturbances generated by land use and advancement of the agricultural frontier. Given the need to generate knowledge about land use in Cerrado biome, this study aimed to evaluate if the anthropogenic disturbance alters biodiversity indexes and the capacity to store biomass of these savanna. We installed a permanent plot (20 m × 50 m) inside each study fragment and assessed the intensity of local disturbances such as cattle grazing, earthworm extraction, Caryocar fruit harvesting, and fire. To measure habitat loss and fragmentation, we used configuration and composition metrics in local and landscapes scales. Cattle grazing caused a loss of taxonomic and phylogenetic diversity, while fragment size and Cerrado cover in landscape increased phylogenetic diversity. The patch density, shape complexity and edge density in the landscapes also had a negative influence on phylogenetic diversity. Landscapes with more Eucalyptus sp. plantation area had lower phylogenetic diversity. In addition, the percentage of Cerrado in the landscape had a negative influence on biomass while the number of patches had a positive influence. Thus, we conclude that anthropogenic disturbances in the Cerrado generates loss of taxonomic, phylogenetic diversity and alters biomass stock patterns.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abreu RCR, Hoffmann WA, Vasconcelos HL et al (2017) The biodiversity cost of carbon sequestration in tropical Savanna. Sci Adv 3:e1701284. https://doi.org/10.1126/sciadv.1701284

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ab’sáber A (2003) Dominios_de_Naturea.pdf

  3. Andrade ER, Jardim JG, Santos BA et al (2015) Effects of habitat loss on taxonomic and phylogenetic diversity of understory Rubiaceae in Atlantic forest landscapes. For Ecol Manag 349:73–84. https://doi.org/10.1016/j.foreco.2015.03.049

    Article  Google Scholar 

  4. Aranha BA (2013) Phylogenetic pattern of cerrado communities: evolution and biogeography. Ph.D. thesis, Universidade Estadual de Campinas

  5. Archibald S, Staver AC, Levin SA (2012) Evolution of human-driven fire regimes in Africa. Proc Natl Acad Sci USA 109:847–852. https://doi.org/10.1073/pnas.1118648109

    Article  PubMed  Google Scholar 

  6. Arroyo-Rodríguez V, Cavender-Bares J, Escobar F et al (2012) Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. J Ecol 100:702–711. https://doi.org/10.1111/j.1365-2745.2011.01952.x

    Article  Google Scholar 

  7. Arroyo-Rodríguez V, Rojas C, Saldaña-Vázquez RA, Stoner KE (2016) Landscape composition is more important than landscape configuration for phyllostomid bat assemblages in a fragmented biodiversity hotspot. Biol Conserv 198:84–92. https://doi.org/10.1016/j.biocon.2016.03.026

    Article  Google Scholar 

  8. Batalha MA, Cianciaruso MV, Motta-Junior J (2010) Consequences of simulated loss of open cerrado areas to bird functional diversity. Nat Conserv 8(1):1–5. https://doi.org/10.1111/j.1365-2699.2012.02715.x

    Article  Google Scholar 

  9. Batalha MA, Silva IA, Cianciaruso MV et al (2011a) Phylogeny, traits, environment, and space in cerrado plant communities at Emas National Park (Brazil). Flora: morphology. Distrib Funct Ecol Plants 206:949–956. https://doi.org/10.1016/j.flora.2011.07.004

    Article  Google Scholar 

  10. Batalha MA, Silva IA, Cianciaruso MV, De Carvalho GH (2011b) Trait diversity on the phylogeny of cerrado woody species. Oikos 120:1741–1751. https://doi.org/10.1111/j.1600-0706.2011.19513.x

    Article  Google Scholar 

  11. Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-revisited. Am J Bot 97:1296–1303. https://doi.org/10.3732/ajb.0900346

    Article  PubMed  Google Scholar 

  12. Benítez-Malvido J, Gallardo-Vásquez JC, Alvarez-Añorve MY, Avila-Cabadilla LD (2014) Influence of matrix type on tree community assemblages along tropical dry forest edges. Am J Bot 101:820–829. https://doi.org/10.3732/ajb.1300396

    Article  PubMed  Google Scholar 

  13. Beuchle R, Grecchi RC, Shimabukuro YE et al (2015) Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl Geogr 58:116–127. https://doi.org/10.1016/j.apgeog.2015.01.017

    Article  Google Scholar 

  14. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x

    Article  Google Scholar 

  15. Boscolo D, Paul Metzger J (2011) Isolation determines patterns of species presence in highly fragmented landscapes. Ecography 34:1018–1029. https://doi.org/10.1111/j.1600-0587.2011.06763.x

    Article  Google Scholar 

  16. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. J Wildl Manag 67:677

    Google Scholar 

  17. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35. https://doi.org/10.1007/s00265-010-1029-6

    Article  Google Scholar 

  18. Cadotte MW, Dinnage R, Tilman D (2012) Phylogenetic diversity promotes ecosystem stability. Ecology 93:8

    Article  Google Scholar 

  19. Carrara E, Arroyo-Rodríguez V, Vega-Rivera JH et al (2015) Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol Conserv 184:117–126. https://doi.org/10.1016/j.biocon.2015.01.014

    Article  Google Scholar 

  20. Carrié R, Andrieu E, Cunningham SA et al (2017) Relationships among ecological traits of wild bee communities along gradients of habitat amount and fragmentation. Ecography. https://doi.org/10.1111/ecog.02632

    Article  Google Scholar 

  21. Carvalho FMV, De Marco P, Ferreira LG (2009) The Cerrado into-pieces: habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol Conserv 142:1392–1403. https://doi.org/10.1016/j.biocon.2009.01.031

    Article  Google Scholar 

  22. Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA (2004) Phylogenetic overdispersion in Floridian Oak. Communities 163:823–843

    CAS  Google Scholar 

  23. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715. https://doi.org/10.1111/j.1461-0248.2009.01314.x

    Article  Google Scholar 

  24. CETEC (1995) Determinação de equações volumétricas aplicáveis ao manejo sustentado de florestas nativas no estado de Minas Gerais e outras regiões do país

  25. Chave J, Coomes D, Jansen S et al (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x

    Article  PubMed  Google Scholar 

  26. Christianini AV, Oliveira PS (2013) Edge effects decrease ant-derived benefits to seedlings in a neotropical savanna. Arthropod Plant Interact 7:191–199. https://doi.org/10.1007/s11829-012-9229-9

    Article  Google Scholar 

  27. Cianciaruso MV, Silva IA, Batalha MA (2009) Diversidades filogenética e funcional: novas abordagens para a Ecologia de comunidades. Biota Neotrop 9:93–103. https://doi.org/10.1590/S1676-06032009000300008

    Article  Google Scholar 

  28. Cisneros LM, Fagan ME, Willig MR (2015) Effects of human-modified landscapes on taxonomic, functional and phylogenetic dimensions of bat biodiversity. Divers Distrib 21:523–533. https://doi.org/10.1111/ddi.12277

    Article  Google Scholar 

  29. Cochrane MA, Laurance WF (2002) Fire as a large-scale edge effect in Amazonian forests. J Trop Ecol 18:311–325. https://doi.org/10.1017/s0266467402002237

    Article  Google Scholar 

  30. Collinge SK, Palmer TM (2002) The influences of patch shape and boundary contrast on insect response to fragmentation in California grasslands. Landsc Ecol 17:647–656. https://doi.org/10.1023/A:1021536302195

    Article  Google Scholar 

  31. Cote J, Bestion E, Jacob S et al (2017) Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography. https://doi.org/10.1111/ecog.02538

    Article  Google Scholar 

  32. Da Silva Júnior MC, Dos Santos GC (2005) 100 Árvores do Cerrado: Guia de Campo. Rede de Sementes do Cerrado

  33. de Dantas L, Batalha MA, Pausas JG (2013) Fire drives functional thresholds on the savanna-forest transition. Ecology 94:2454–2463. https://doi.org/10.1890/12-1629.1

    Article  Google Scholar 

  34. de Castro Solar RR, Barlow J, Ferreira J et al (2015) How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol Lett 18:1108–1118. https://doi.org/10.1111/ele.12494

    Article  Google Scholar 

  35. de Souza IF, Souza AF, Pizo MA, Ganade G (2010) Using tree population size structures to assess the impacts of cattle grazing and eucalypts plantations in subtropical South America. Biodivers Conserv 19:1683–1698. https://doi.org/10.1007/s10531-010-9796-y

    Article  Google Scholar 

  36. de Solar RR et al (2016) Biodiversity consequences of land-use change and forest disturbance in the Amazon: a multi-scale assessment using ant communities. Biol Conserv 197:98–107. https://doi.org/10.1016/j.biocon.2016.03.005

    Article  Google Scholar 

  37. Díaz S, Lavorel S, McIntyre S et al (2007) Plant trait responses to grazing: a global synthesis. Glob Chang Biol 13:313–341. https://doi.org/10.1111/j.1365-2486.2006.01288.x

    Article  Google Scholar 

  38. Dodonov P, Braga AL, Harper KA, Silva Matos DM (2016) Edge influence on plant litter biomass in forest and savanna in the Brazilian cerrado. Austral Ecol. https://doi.org/10.1111/aec.12420

    Article  Google Scholar 

  39. Dodonov P, Harper KA, Silva-Matos DM (2013) The role of edge contrast and forest structure in edge influence: vegetation and microclimate at edges in the Brazilian cerrado. Plant Ecol 214:1345–1359. https://doi.org/10.1007/s11258-013-0256-0

    Article  Google Scholar 

  40. Eiten G (1972) The Cerrado vegetation of Brazil. Bot Rev 38:201–327

    Article  Google Scholar 

  41. Ewers R, Didham R (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev Camb Philos Soc 81:117–142. https://doi.org/10.1017/s1464793105006949

    Article  PubMed  Google Scholar 

  42. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Environ Syst 34:487–515. https://doi.org/10.1146/132419

    Article  Google Scholar 

  43. Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21:1003–1015. https://doi.org/10.1111/j.1365-2435.2007.01326.x

    Article  Google Scholar 

  44. Gámez-Virués S, Perović DJ, Gossner MM et al (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun 6:8568. https://doi.org/10.1038/ncomms9568

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Gardner TA, Barlow J, Chazdon R et al (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12:561–582. https://doi.org/10.1111/j.1461-0248.2009.01294.x

    Article  PubMed  Google Scholar 

  46. Garland T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32. https://doi.org/10.1093/sysbio/41.1.18

    Article  Google Scholar 

  47. Gastauer M, Meira-Neto JAA (2016) An enhanced calibration of a recently released megatree for the analysis of phylogenetic diversity. Braz J Biol 76:619–628. https://doi.org/10.1590/1519-6984.20814

    CAS  Article  PubMed  Google Scholar 

  48. Gastauer M, Meira-Neto JAA (2014) Interactions, environmental sorting and chance: phylostructure of a tropical forest assembly. Folia Geobot 49:443–459. https://doi.org/10.1007/s12224-013-9181-1

    Article  Google Scholar 

  49. Gastauer M, Meira-Neto JAA (2015) Estrutura Filogenética de comunidades no Cerrado: introdução e estudo de caso. In: Felfili JM, Eisenlohr P V., De Melo MM da RF, et al. (eds) Fitossociologia no Brasil - Métodos e Estudo de Caso, Volume II. 2015, Viçosa, p 302

  50. Giehl ELH, Jarenkow JA (2015) Disturbance and stress gradients result in distinct taxonomic, functional and phylogenetic diversity patterns in a subtropical riparian tree community. J Veg Sci 26:889–901. https://doi.org/10.1111/jvs.12288

    Article  Google Scholar 

  51. Gilroy JJ, Woodcock P, Edwards FA et al (2014) Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat Clim Chang 4:503–507. https://doi.org/10.1038/nclimate2200

    Article  Google Scholar 

  52. Giroldo AB, Scariot A (2015) Land use and management affects the demography and conservation of an intensively harvested Cerrado fruit tree species. Biol Conserv 191:150–158. https://doi.org/10.1016/j.biocon.2015.06.020

    Article  Google Scholar 

  53. Gottsberger G, Silberbauer-Gottsberger I (2006) Life in the Cerrado: a South American Tropical Seasonal Ecosystemc. Pollination and Seed Dispersal, Reta, Ulm

    Google Scholar 

  54. Haddad NM, Gonzalez A, Brudvig LA et al (2017a) Experimental evidence does not support the Habitat Amount Hypothesis. Ecography. https://doi.org/10.1111/ecog.02535

    Article  Google Scholar 

  55. Haddad NM, Holt RD, Fletcher RJ et al (2017b) Connecting models, data, and concepts to understand fragmentation’s ecosystem-wide effects. Ecography 40:1–8. https://doi.org/10.1111/ecog.02974

    Article  Google Scholar 

  56. Jacoboski LI, De Mendonça-Lima A, Hartz SM (2016) Structure of bird communities in eucalyptus plantations: nestedness as a pattern of species distribution. J Biol Braz J Biol 76:583–591. https://doi.org/10.1590/1519-6984.18614

    CAS  Article  Google Scholar 

  57. Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713. https://doi.org/10.1111/j.1523-1739.2005.00702.x

    Article  Google Scholar 

  58. Kraft NJB, Ackerly DD, Monographs SE, August N (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Functional tests of trait and community assembly phylogenetic across scales in an Amazonian forest spatial. Ecol Monogr 80:401–422. https://doi.org/10.1890/09-1672.1

    Article  Google Scholar 

  59. Kuhlmann M (2012) Frutos e sementes do Cerrado atratios para fauna: guia de campo. Rede de Sementes do Cerrado, Brasília

    Google Scholar 

  60. Laurance WF, Camargo JLC, Luizão RCC et al (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biol Conserv 144:56–67. https://doi.org/10.1016/j.biocon.2010.09.021

    Article  Google Scholar 

  61. Laurance WF, Nascimento HEM, Laurance SG et al (2006) Rain forest fragmentation and the proliferation of successional trees Fearnside. Science 87:469–482

    Google Scholar 

  62. Lehmann CER, Anderson TM, Sankaran M et al (2014) Savanna vegetation-fire-climate relationships differ among continents. Science 343:548–553. https://doi.org/10.1126/science.1247355

    CAS  Article  PubMed  Google Scholar 

  63. Liu J, Wilson M, Hu G et al (2018) How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landsc Ecol 33:341–352. https://doi.org/10.1007/s10980-018-0620-5

    Article  Google Scholar 

  64. Lôbo D, Leão T, Melo FPL et al (2011) Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers Distrib 17:287–296. https://doi.org/10.1111/j.1472-4642.2010.00739.x

    Article  Google Scholar 

  65. Magnago LFS, Edwards DP, Edwards FA et al (2014) Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J Ecol 102:475–485. https://doi.org/10.1111/1365-2745.12206

    Article  Google Scholar 

  66. Magnago LFS, Magrach A, Barlow J et al (2017) Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests ? Funct Ecol. https://doi.org/10.1111/1365-2435.12752

    Article  Google Scholar 

  67. Magnago LFS, Magrach A, Barlow J et al (2016) Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests? Funct Ecol. https://doi.org/10.1111/1365-2435.12752

    Article  Google Scholar 

  68. Magnago LFS, Magrach A, Laurance WF et al (2015a) Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? Glob Chang Biol 21:3455–3468. https://doi.org/10.1111/gcb.12937

    Article  PubMed  Google Scholar 

  69. Magnago LFS, Rocha MF, Meyer L et al (2015b) Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodivers Conserv 24:2305–2318. https://doi.org/10.1007/s10531-015-0961-1

    Article  Google Scholar 

  70. Martínez LJ, Zinck JA (2004) Temporal variation of soil compaction and deterioration of soil quality in pasture areas of Colombian Amazonia. Soil Tillage Res 75:3–17. https://doi.org/10.1016/j.still.2002.12.001

    Article  Google Scholar 

  71. Matos FAR, Magnago LFS, Gastauer M et al (2016) Effects of landscape configuration and composition on phylogenetic diversity of trees in a highly fragmented tropical forest. J Ecol. https://doi.org/10.1111/1365-2745.12661

    Article  Google Scholar 

  72. McGarial K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial patern analysis program for categorical and continuous maps

  73. Melo FPL, Arroyo-Rodríguez V, Fahrig L et al (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:461–468. https://doi.org/10.1016/j.tree.2013.01.001

    Article  Google Scholar 

  74. Mitchell MGE, Suarez-Castro AF, Martinez-Harms M et al (2015) Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol Evol 30:190–198. https://doi.org/10.1016/j.tree.2015.01.011

    Article  PubMed  Google Scholar 

  75. Mittermeier RA, da Fonseca GAB, Rylands AB, Brandon K (2005) A brief history of biodiversity conservation in Brazil. Conserv Biol 19:601–607. https://doi.org/10.1111/j.1523-1739.2005.00709.x

    Article  Google Scholar 

  76. Munguía-Rosas MA, Jurado-Dzib SG, Mezeta-Cob CR et al (2014) Continuous forest has greater taxonomic, functional and phylogenetic plant diversity than an adjacent naturally fragmented forest. J Trop Ecol 30:323–333. https://doi.org/10.1017/S0266467414000194

    Article  Google Scholar 

  77. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  Article  Google Scholar 

  78. Nazareno AG, Feres JM, de Carvalho D et al (2012) serious new threat to Brazilian forests. Conserv Biol 26:5–6. https://doi.org/10.1111/j.1523-1739.2011.01798.x

    Article  PubMed  Google Scholar 

  79. Neri AV, de Campos ÉP, Duarte TG et al (2005) Regeneration of wood natives species under Eucalyptus stand of Cerrado area in the Floresta Nacional of Paraopeba, Minas Gerais, Brazil. Acta Bot Bras 19:369–376. https://doi.org/10.1590/S0102-33062005000200020

    Article  Google Scholar 

  80. Neri AV, Schaefer CEGR, Silva AF et al (2012) the Influence of soils on the floristic composition and community structure of an area of Brazilian Cerrado Vegetation. Edin J Bot 69:1–27. https://doi.org/10.1017/S0960428611000382

    Article  Google Scholar 

  81. Newbold T, Hudson LN, Hill SLL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. https://doi.org/10.1038/nature14324

    CAS  Article  PubMed  Google Scholar 

  82. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. https://doi.org/10.1093/bioinformatics/btg412

    CAS  Article  PubMed  Google Scholar 

  83. Pellegrini AFA, Socolar JB, Elsen PR, Giam X (2016) Trade-offs between savanna woody plant diversity and carbon storage in the Brazilian Cerrado. Glob Chang Biol. https://doi.org/10.1111/gcb.13259

    Article  PubMed  Google Scholar 

  84. Pivello VR, Shida CN, Meirelles ST (1999) Alien grasses in Brazilian savannas: a threat to the biodiversity. Biodivers Conserv 8:1281–1294. https://doi.org/10.1023/A:1008933305857

    Article  Google Scholar 

  85. Poisot T, Mouquet N, Gravel D (2013) Trophic complementarity drives the biodiversity-ecosystem functioning relationship in food webs. Ecol Lett 16:853–861. https://doi.org/10.1111/ele.12118

    Article  PubMed  Google Scholar 

  86. Potts SG, Petanidou T, Roberts S et al (2006) Plant-pollinator biodiversity and pollination services in a complex Mediterranean landscape. Biol Conserv 129:519–529. https://doi.org/10.1016/j.biocon.2005.11.019

    Article  Google Scholar 

  87. Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants: evidence for phylogenetic conservatism. Proc Biol Sci 268:2383–2389. https://doi.org/10.1098/rspb.2001.1801

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. R Developement Core Team (2015) R: a language and enviroment for statistic computing

  89. Ratter J et al (1997) The Brazilian Cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230. https://doi.org/10.1006/anbo.1997.0469

    Article  Google Scholar 

  90. Ribeiro EMS et al (2015) Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. J Appl Ecol 52:611–620. https://doi.org/10.1111/1365-2664.12420

    Article  Google Scholar 

  91. Ribeiro EMS, Santos BA et al (2016) Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga. Ecology 97:1583–1592. https://doi.org/10.1890/15-1122.1

    Article  PubMed  Google Scholar 

  92. Ribeiro JF, Walter BMT (1998) Fitofisionomias do Bioma Cerrado. In: Sano SM, Almeida SP (eds) Cerrado: ambiente e flora. Empraba Cerrados, Brasiília, pp 89–166

    Google Scholar 

  93. Ribeiro-Neto JD, Arnan X, Tabarelli M, Leal IR (2016) Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodivers Conserv 25:943–956. https://doi.org/10.1007/s10531-016-1099-5

    Article  Google Scholar 

  94. Rocha-Santos L, Pessoa MS, Cassano CR et al (2016) The shrinkage of a forest: landscape-scale deforestation leading to overall changes in local forest structure. Biol Conserv 196:1–9. https://doi.org/10.1016/j.biocon.2016.01.028

    Article  Google Scholar 

  95. Sala OE, Chapin FS, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770

    CAS  Article  Google Scholar 

  96. Sano SM, Semíramis A, Ribeiro JF (2008) Cerrado: ecologia e flora

  97. Santos BA, Arroyo-Rodríguez V, Moreno CE, Tabarelli M (2010) Edge-related loss of tree phylogenetic diversity in the severely fragmented brazilian atlantic forest. PLoS ONE 5:1–7. https://doi.org/10.1371/journal.pone.0012625

    CAS  Article  Google Scholar 

  98. Santos BA, Tabarelli M, Melo FPL et al (2014) Phylogenetic impoverishment of Amazonian tree communities in an experimentally fragmented forest landscape. PLoS ONE. https://doi.org/10.1371/journal.pone.0113109

    Article  PubMed  PubMed Central  Google Scholar 

  99. Schmidt IB, Ticktin T (2012) When lessons from population models and local ecological knowledge coincide: effects of flower stalk harvesting in the Brazilian savanna. Biol Conserv 152:187–195. https://doi.org/10.1016/j.biocon.2012.03.018

    Article  Google Scholar 

  100. Soares-filho B, Rajão R, Macedo M et al (2014) Cracking Brazil ’ s Forest Code. Science 344:363–364

    CAS  Article  Google Scholar 

  101. Souza-Neto AC, Cianciaruso MV, Collevatti RG (2016) Habitat shifts shaping the diversity of a biodiversity hotspot through time: insights from the phylogenetic structure of Caesalpinioideae in the Brazilian Cerrado. J Biogeogr 43:340–350. https://doi.org/10.1111/jbi.12634

    Article  Google Scholar 

  102. Swenson NG (2014) Functional and phylogenetic ecology in R. Springer, New York

    Google Scholar 

  103. Vandermeer J, Perfecto I (2007) The agricultural matrix and a future paradigm for conservation. Conserv Biol 21:274–277. https://doi.org/10.1111/j.1523-1739.2006.00582.x

    Article  PubMed  Google Scholar 

  104. Venter O, Laurance WF, Iwamura T et al (2009) BREVIA harnessing carbon payments to protect biodiversity. Smithsonian 326:2009–2009

    Google Scholar 

  105. Webb C (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155. https://doi.org/10.1086/303378

    Article  Google Scholar 

  106. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100. https://doi.org/10.1093/bioinformatics/btn358

    CAS  Article  PubMed  Google Scholar 

  107. Webb CO, Ackerly DD, McPeek M et al (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448

    Article  Google Scholar 

  108. Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183. https://doi.org/10.1111/j.1471-8286.2004.00829.x

    Article  Google Scholar 

  109. Whittingham MJ, Swetnam RD, Wilson JD et al (2005) Habitat selection by yellowhammers Emberiza citrinella on lowland farmland at two spatial scales: implications for conservation management. J Appl Ecol 42:270–280. https://doi.org/10.1111/j.1365-2664.2005.01007.x

    Article  Google Scholar 

  110. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CNPq (Grant No. 301913/2012-9), CAPES (PROAP—PPGBot-UFV, scholarships and grants) and FAPEMIG (Grant No. APQ-01309-16), Botany Graduate Program and Ecology Graduate Program of Universidade Federal de Viçosa for providing infrastructure, grants and scholarships; JAAMN holds a productivity fellowship (CNPq 307591/2016-6).

Author information

Affiliations

Authors

Corresponding author

Correspondence to João Augusto Alves Meira-Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Danna J. Leaman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 296 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coelho, A.J.P., Magnago, L.F.S., Matos, F.A.R. et al. Effects of anthropogenic disturbances on biodiversity and biomass stock of Cerrado, the Brazilian savanna. Biodivers Conserv 29, 3151–3168 (2020). https://doi.org/10.1007/s10531-020-02013-6

Download citation

Keywords

  • Cerrado fragmentation
  • Land use
  • Ecosystem services
  • Biodiversity loss
  • Ecosystem functioning