Skip to main content

Advertisement

Log in

Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Recent growth of investments in wind energy and power industries has increased concerns about the associated adverse impacts on wildlife. In particular, flying vertebrates are especially at risk, both directly, through an extra mortality rate due to collision with turbines and electrocution, and indirectly through habitat loss or fragmentation. In this study, we propose a modelling approach that combines species distribution models and data managed in geographic information systems to predict and quantify the effects of wind turbines and power lines on the breeding habitat of a soaring migratory bird, the black stork Ciconia nigra, in Italy. The species is recolonizing the country, where it had been driven to extinction in the Middle Age by human persecution. Today, infrastructures such as those considered in our study might in fact hamper this recolonization. Our results show a high probability of presence of the species in several areas in Italy. The most important variables in influencing habitat suitability for C. nigra are the mean temperature of May followed by the distance from urban areas, inland wetlands and hydrographic network. Exposure to wind turbine collision and electrocution resulted to be potentially high. In particular, in Northern Italy the main potential risk of mortality for C. nigra is posed by power lines, whereas in southern regions the species might be mostly threatened by wind turbines. Our approach makes it possible to detect suitable areas that, although not yet colonized by the species, would imply a high mortality risk should the species colonize them in the future. The tool we provide may therefore prove useful to conservationists and landscape planners in order to mitigate the impact of human infrastructures on this species and encourage a more sustainable planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexandrou O, Bakaloudis DE, Papakosta MA, Vlachos CG (2016) Breeding density, spacing of nest-sites and breeding performance of black storks Ciconia nigra in Dadia-Lefkimi-Soufli Forest National Park, north-eastern Greece. Northwest J Zool 12:7–13

    Google Scholar 

  • Algar AC, Kharouba HM, Young ER, Kerr JT (2009) Predicting the future of species diversity: macroecological theory climate change and direct tests of alternative forecasting methods. Ecography 32:22–33

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Ancillotto L, Mori E, Bosso L, Agnelli P, Russo D (2019) The Balkan long-eared bat (Plecotus kolombatovici) occurs in Italy—first confirmed record and potential distribution. Mamm Biol 96:61–67. https://doi.org/10.1016/j.mambio.2019.03.014

    Article  Google Scholar 

  • Arnett EB, May RF (2016) Mitigating wind energy impacts on wildlife: approaches for multiple taxa. Hum Wildl Interactions 10:5

    Google Scholar 

  • Bakaloudis DE, Vlachos CG, Holloway GJ (2005) Nest spacing and breeding performance in Short-toed Eagle Circaetus gallicus in northeast Greece. Bird Study 52:330–338

    Article  Google Scholar 

  • Barbet-Massin M, Thuiller W, Jiguet F (2010) How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography 33:878–886

    Article  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012a) Selecting pseudo-absences for species distribution models: how where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Barbet-Massin M, Thuiller W, Jiguet F (2012b) The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob Chang Biol 18:881–890

    Article  Google Scholar 

  • Barrientos R, Ponce C, Palacín C, Martín CA, Martín B, Alonso JC (2012) Wire marking results in a small but significant reduction in avian mortality at power lines: a BACI designed study. PLoS ONE 7(3):e32569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrios L, Rodriguez A (2004) Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. J Appl Ecol 41:72–81

    Article  Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modelling. Ecol Model 222:1810–1819

    Article  Google Scholar 

  • Bastos R, Pinhanços A, Santos M, Fernandes RF, Vicente JR, Morinha F et al (2016) Evaluating the regional cumulative impact of wind farms on birds: how can spatially explicit dynamic modelling improve impact assessments and monitoring? J Appl Ecol 53:1330–1340

    Article  Google Scholar 

  • Bayle P (1999) Preventing birds of prey problems at transmission lines in Western Europe. J Raptor Res 33:43–48

    Google Scholar 

  • Bellebaum J, Korner-Nievergelt F, Dürr T, Mammen U (2013) Wind turbine fatalities approach a level of concern in a raptor population. J Nat Conserv 21:394–400

    Article  Google Scholar 

  • Bernardino J, Bevanger K, Barrientos R, Dwyer JF, Marques AT, Martins RC, Moreira F (2018) Bird collisions with power lines: state of the art and priority areas for research. Biol Conserv 222:1–13

    Article  Google Scholar 

  • Bertolino S, Sciandra C, Bosso L, Russo D, Lurz P, Di Febbraro M (2020) Spatially-explicit models as tools for implementing effective management strategies for invasive alien mammals. Mammal Rev. https://doi.org/10.1111/mam.12185

    Article  Google Scholar 

  • Beston JA, Diffendorfer JE, Loss SR, Johnson DH (2016) Prioritizing avian species for their risk of population-level consequences from wind energy development. PLoS ONE 11(3):e0150813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevanger K (1998) Biological and conservation aspects of bird mortality caused by electricity power lines: a review. Biol Conserv 86:67–76

    Article  Google Scholar 

  • BirdLife International (2015) European Red List of Birds. Office for Official Publications of the European Communities, Brussels

    Google Scholar 

  • BirdLife International (2017) European birds of conservation concern: populations, trends and national responsabilities. UK BirdLife International, Cambridge

    Google Scholar 

  • Bordignon L (1995) Prima nidificazione di Cicogna nera, Ciconia nigra, in Italia. Riv Ital Orn 64:106–116

    Google Scholar 

  • Bordignon L, Mastrorilli M (2004) La Cicogna neraCiconia nigra in Lombardia. Picus 30:5–18

    Google Scholar 

  • Bordignon L, Brunelli M, Visceglia M (2006) La cicogna nera (Ciconia nigra) in Italia: tendenze storiche, biologia riproduttiva e fenologia. Avocetta 30:15–19

    Google Scholar 

  • Bordignon L, Gatti F, Chiozzi G (2009) Tentativo di nidificazione di Cicogna nera in Lombardia. Riv Ital Orn 79:60–63

    Google Scholar 

  • Bosso L, Luchi N, Maresi G, Cristinzio G, Smeraldo S, Russo D (2017a) Predicting current and future disease outbreaks of Diplodia sapinea shoot blight in Italy: species distribution models as a tool for forest management planning. For Ecol Manage 400:655–664. https://doi.org/10.1016/j.foreco.2017.06.044

    Article  Google Scholar 

  • Bosso L, De Conno C, Russo D (2017b) Modelling the risk posed by the zebra mussel Dreissena polymorpha: Italy as a case study. Environ Manage 60:304–313. https://doi.org/10.1007/s00267-017-0882-8

    Article  PubMed  Google Scholar 

  • Bosso L, Ancillotto L, Smeraldo S, D’Arco S, Migliozzi A, Conti P, Russo D (2018a) Loss of potential bat habitat following a severe wildfire: a model-based rapid assessment. Int J Wildland Fire 27:756–769

    Article  Google Scholar 

  • Bosso L, Smeraldo S, Rapuzzi P, Sama G, Garonna AP, Russo D (2018b) Nature protection areas of Europe are insufficient to preserve the threatened beetle Rosalia alpina (Coleoptera: Cerambycidae): evidence from species distribution models and conservation gap analysis. Ecol Entomol 43:192–203. https://doi.org/10.1111/een.12485

    Article  Google Scholar 

  • Breiner FT, Guisan A, Bergamini A, Nobis MP (2015) Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol Evol 6:1210–1218

    Article  Google Scholar 

  • Bright J, Langston R, Bullman R, Evans R, Gardner S, Pearce-Higgins J (2008) Map of bird sensitivities to wind farms in Scotland: a tool to aid planning and conservation. Biol Conserv 141:2342–2356

    Article  Google Scholar 

  • Brunelli M, Bordignon L, Caldarella M, Cripezzi E, Fraissinet M, Mallia E, Marrese M, Norante N, Urso S, Visceglia M (2018) Rapporto sulla nidificazione della Cicogna nera Ciconia nigra in Italia. Anno 2018. Alula 25:125–126

    Google Scholar 

  • Bush M, Gerlac B, Trautmann S (2017) Overlap between breeding season distribution and wind farms risks: a spatial approach. Vogelwelt 137:169–180

    Google Scholar 

  • Caldarella M, Bordignon L, Brunelli M, Cripezzi E, Fraissinet M, Mallia E, Marrese M, Norante N, Urso S, Visceglia M (2018) Status della Cicogna nera (Ciconia nigra) e linee guida per la conservazione della specie in Italia. Ed. Parco Regionale Gallipoli Cognato Piccole Dolomiti Lucane

  • Cramp S, Simmons KEL (1977) The Birds of the Western Paleartic, vol 1. Oxford University Press, Oxford

    Google Scholar 

  • Czech HA, Parsons KC (2002) Agricultural wetlands and waterbirds: a review. Waterbirds 25:56–65

    Article  Google Scholar 

  • D’Amico M, Martins RC, Álvarez-Martínez JM, Porto M, Barrientos R, Moreira F (2019) Bird collisions with power lines: prioritizing species and areas by estimating potential population-level impacts. Divers Distrib 25:975–982

    Article  Google Scholar 

  • del Hoyo J, Del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds of the world, vol 1. Barcelona: Lynx edicions

    Google Scholar 

  • Denis P, Brossault P (2016) Historique de la population nicheuse de Cigogne noire en France. Ornithos Hors-série 1:61–64

    Google Scholar 

  • Domíguez-Vega H, Monroy-Vilchis O, Balderas-Valdivia CJ, Gienger CM, Ariano-Sánchez D (2012) Predicting the potential distribution of the beaded lizard and identifcation of priority areas for conservation. J Nat Conserv 20:247–253

    Article  Google Scholar 

  • Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat JP, Guisan A (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Divers Distrib 17:1122–1131

    Article  Google Scholar 

  • Dzyubenko N, Bokotey A (2011) The present status of the breeding population of the Black Stork (Ciconia nigra) in Ukraine. In: Abstract’s book of the 8th Conference of the European Ornithologists’ Union, pp 27–30

  • Eaton S, Ellis C, Genney D, Thompson R, Yahr R, Haydon DT (2018) Adding small species to the big picture: species distribution modelling in an age of landscape scale conservation. Biol Cons 217:251–258

    Article  Google Scholar 

  • Elliott A, Christie DA, Garcia EFJ, Boesman P (2020) Black Stork (Ciconia nigra). In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (eds) Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona

    Google Scholar 

  • Feng X, Papeş M (2017) Can incomplete knowledge of species’ physiology facilitate ecological niche modelling? A case study with virtual species. Divers Distrib 23:1157–1168

    Article  Google Scholar 

  • Ferrer M, de Lucas M, Janss GF, Casado E, Munoz AR, Bechard MJ, Calabuig CP (2012) Weak relationship between risk assessment studies and recorded mortality in wind farms. J Appl Ecol 49:38–46

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fontaneto C, Ferretti G, Bordignon L, Fontaneto D (2006) The black stork Ciconia nigra in northern Italy: which environmental features does this species need to nest? Revue d'écologie (Terre et Vie) 61:303–308

    Google Scholar 

  • Fois M, Bacchetta G, Cuena-Lombrana A, Cogoni D, Pinna MS, Sulis E, Fenu G (2018a) Using extinctions in species distribution models to evaluate and predict threats: a contribution to plant conservation planning on the island of Sardinia. Env Cons 45:11–19

    Article  Google Scholar 

  • Fois M, Cuena-Lombraña A, Fenu G, Bacchetta G (2018b) Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecol Model 385:124–132

    Article  Google Scholar 

  • Fourcade Y, Besnard AG, Secondi J (2018) Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob Ecol Biogeogr 27:245–256

    Article  Google Scholar 

  • Fox AD, Desholm M, Kahlert J, Christenses TK, Petersen IK (2006) Information needs to support enivorommental impact assessment of the effects of European marine offshore wind farms on birds. Ibis 148:129–144

    Article  Google Scholar 

  • Fraissinet M, Bordignon L, Brunelli M, Caldarella M, Cripezzi E, Giustino S, Mallia E, Marrese M, Norante N, Urso S, Visceglia M (2018) Breeding population of Black Stork, Ciconia nigra, in Italy between 1994–2016. Riv Ital Ornit 88:15–22

    Article  Google Scholar 

  • Garrido JR, Fernández-Cruz M (2003) Effects of power lines on a White Stork Ciconia ciconia population in central Spain. Ardeola 50:191–200

    Google Scholar 

  • GBIF.org (2019) GBIF Occurrence Download. https://doi.org/10.15468/dl.e7wctr

  • González-Salazar C, Stephens CR, Marquet PA (2013) Comparing the relative contributions of biotic and abiotic factors as mediators of species’ distributions. Ecol Model 248:57–70

    Article  Google Scholar 

  • Grussu M, Floris G (2005) Lo svernamento della Cicogna nera in Sardegna. Aves Ichnusae 7:42–53

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  PubMed  Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AI, Martin TG (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Lambraño RE, Sánchez-Agudo JÁ, Carbonell R (2018) Where to start? Development of a spatial tool to prioritise retrofitting of power line poles that are dangerous to raptors. J Appl Ecol 55:2685–2697

    Article  Google Scholar 

  • Heuck C, Herrmann C, Levers C, Leitão PJ, Krone O, Brandl R, Albrecht J (2019) Wind turbines in high quality habitat cause disproportionate increases in collision mortality of the white-tailed eagle. Biol Conserv 236:44–51

    Article  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hernandez PA, Franke I, Herzog SK, Pacheco V, Paniagua L, Quintana HL et al (2008) Predicting species distributions in poorly-studied landscapes. Biodiv Conserv 17:1353–1366

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036

    Article  Google Scholar 

  • Iqbal MF, Khan IA (2014) Spatiotemporal land use land cover change analysis and erosion risk mapping of Azad Jammu and Kashmir, Pakistan. Egypt J Remote Sens Space Sci 17:209–229

    Google Scholar 

  • Janss GF, Ferrer M (1998) Rate of bird collision with power lines: effects of conductor-marking and static wire-marking (Tasa de Choques por Parte de Aves con Líneas del Tendido Eléctrico: Efecto de Marcadores de Conducción y Marcadores de Estática). J Field Ornithol 69:8–17

    Google Scholar 

  • Janss GF, Ferrer M (2001) Avian electrocution mortality in relation to pole design and adjacent habitat in Spain. Bird Conserv Int 11:3–12

    Article  Google Scholar 

  • Jiguet F, Villarubias S (2004) Satellite tracking of breeding black storks Ciconia nigra: new incomes for spatial conservation issues. Biol Conserv 120:153–160

    Article  Google Scholar 

  • Jiguet F, Barbet-Massin M, Henry PY (2010) Predicting potential distributions of two rare allopatric sister species the globally threatened doliornis cotingas in the Andes. J Field Ornithol 81:325–339

    Article  Google Scholar 

  • Jiguet F, Barbet-Massin M, Chevallier D (2011) Predictive distribution models applied to satellite tracks: modelling the western African winter range of European migrant black storks Ciconia nigra. J Ornithol 152:111–118

    Article  Google Scholar 

  • Kabir M, Hameed S, Ali H, Bosso L, Ud Din J, Bischof R, Redpath S, Ali Nawaz M (2017) Habitat suitability and movement corridors of grey wolf (Canis lupus) in Northern Pakistan. PLoS ONE 12:e0187027. https://doi.org/10.1371/journal.pone.0187027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalocsa B, Tamas EA (2016) Statut de population et de conservation de la Cigogne noire en Hongrie. Ornithos Hors-série 1:38–41

    Google Scholar 

  • Katzner TE, Brandes D, Miller T, Lanzone M, Maisonneuve C, Tremblay JA et al (2012) Topography drives migratory flight altitude of golden eagles: implications for on-shore wind energy development. J Appl Ecol 49:1178–1186

    Article  Google Scholar 

  • Kissling WD, Ahumada JA, Bowser A, Fernandez M, Fernandez N, Garcia EA, Guralnick RP, Isaac NJB, Kelling S, Los W, McRae L, Mihoub JB, Obst M, Santamaria M, Skidmore AK, Williams KJ, Agosti D, Amariles D, Arvanitidis C, Bastin L, De Leo F, Egloff W, Elith J, Hobern D, Martin D, Pereira HM, Pesole G, Peterseil J, Saarenmaa H, Schigel D, Schmeller DS, Segata N, Turak E, Uhlir PF, Wee B, Hardisty AR (2018) Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol Rev 93:600–625

    Article  PubMed  Google Scholar 

  • Kuvlesky WP Jr, Brennan LA, Morrison ML, Boydston KK, Ballard BM, Bryant FC (2007) Wind energy development and wildlife conservation: challenges and opportunities. J Wildl Manag 71:2487–2498

    Article  Google Scholar 

  • Kwon HS, Kim BJ, Jang GS (2016) Modelling the spatial distribution of wildlife animals using presence and absence data. Contemp Probl Ecol 9:515–518

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Lõhmus A, Sellis U (2001) Foraging habitats of the black stork in Estonia. Hirundo 14:109–112

    Google Scholar 

  • Lobo JM, Jimenez-Valverde A, Hortal J (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography 33:103–114

    Article  Google Scholar 

  • Lorgé P (2016) La Cigogne noire au Grand-Duché de Luxembourg. Ornithos Hors-série 1:42–43

    Google Scholar 

  • Maiorano L, Chiaverini L, Falco M, Ciucci P (2019) Combining multi-state species distribution models, mortality estimates, and landscape connectivity to model potential species distribution for endangered species in human dominated landscapes. Biol Conserv 237:19–27

    Article  Google Scholar 

  • Marcantonini C, Valero V (2017) Renewable energy and CO2 abatement in Italy. Energy Policy 106:600–613

    Article  Google Scholar 

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Article  Google Scholar 

  • Marques AT, Batalha H, Rodrigues S, Costa H, Pereira MJR, Fonseca C et al (2014) Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol Conserv 179:40–52

    Article  Google Scholar 

  • Marques AT, Santos CD, Hanssen F, Muñoz AR, Onrubia A, Wikelski M, Moreira F, Palmeirim JM, Silva JP (2020) Wind turbines cause functional habitat loss for migratory soaring birds. J Animal Ecol 89:93–103

    Article  Google Scholar 

  • Martín B, Perez-Bacalu C, Onrubia A, Lucas De, Ferrer M (2018) Impact of wind farms on soaring bird populations at a migratory bottleneck. Eur J wildlife Res 64:33

    Article  Google Scholar 

  • Mateo RG, Gastón A, Aroca-Fernández MJ, Broennimann O, Guisan A, Saura S, García-Viñas JI (2019) Hierarchical species distribution models in support of vegetation conservation at the landscape scale. J Veg Sci 30:386–396

    Article  Google Scholar 

  • May R, Masden EA, Bennet F, Perron M (2019) Considerations for upscaling individual effects of wind energy development towards population-level impacts on wildlife. J Environ Manag 230:84–93

    Article  CAS  Google Scholar 

  • McCune JL (2016) Species distribution models predict rare species occurrences despite significant effects of landscape context. J Appl Ecol 53:1871–1879

    Article  Google Scholar 

  • Mohammadi S, Ebrahimi E, Shahriari Moghadam M, Bosso L (2019) Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecol Inform 52:7–13

    Article  Google Scholar 

  • Morán-Ordóñez A, Roces-Díaz JV, Otsu K, Ameztegui A, Coll L, Lefevre F, Reatan J, Brotons L (2019) The use of scenarios and models to evaluate the future of nature values and ecosystem services in Mediterranean forests. Reg Environ Chang 19:415–428

    Article  Google Scholar 

  • Mordente F, Rocca G, Salerno S, Serroni P (1998) Cicogne noire, Ciconia nigra, nidificatrice en Calabre (Italie du Sud). Alauda 66:321–323

    Google Scholar 

  • Morganti M, Preatoni D, Sarà M (2017) Climate determinants of breeding and wintering ranges of lesser kestrels in Italy and predicted impacts of climate change. J Avian Biol 48:1595–1607

    Article  Google Scholar 

  • Mulero-Pázmány M, Negro JJ, Ferrer M (2013) A low cost way for assessing bird risk hazards in power lines: fixed-wing small unmanned aircraft systems. J Unmanned Veh Syst 2:5–15

    Article  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for maxent ecological niche models. Methods Ecol Evol 5:1198–1205

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GV, Underwood EC, Loucks CJ (2001) Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51:933–938

    Article  Google Scholar 

  • Pearce-Higgins JW, Leigh S, Langston RHW, Bainbridge IP, Bullman R (2009) The distribution of breeding birds around upland wind farms. J Appl Ecol 46:1323–1331

    Google Scholar 

  • Petrescu RV, Aversa R, Apicella A, Berto F, Li S, Petrescu FI (2016) Ecosphere protection through green energy. Am J Appl Sci 13:1027–1032

    Article  Google Scholar 

  • Pio DV, Engler R, Linder HP, Monadjem A, Cotterill FP, Taylor PJ, Salamin N (2014) Climate change effects on animal and plant phylogenetic diversity in Southern Africa. Glob Chang Biol 20:1538–1549

    Article  Google Scholar 

  • Proosdij AS, Sosef MS, Wieringa JJ, Raes N (2016) Minimum required number of specimen records to develop accurate species distribution models. Ecography 39:542–552

    Article  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at https://www.R-project.org/

  • Raes N (2012) Partial versus full species distribution models. Nat Conserv 10:127–138

    Article  Google Scholar 

  • Razgour O, Rebelo H, Di Febbraro M, Russo D (2016) Painting maps with bats: species distribution modelling in bat research and conservation. Hystrix. https://doi.org/10.4404/hystrix-27.1-11753

    Article  Google Scholar 

  • Rinnhofer LJ, Roura-Pascual N, Arthofer W, Dejaco T, Thaler-Knoflach B, Wachter GA, Erhard C, Steiner FM, Schlick-Steiner BC (2012) Iterative species distribution modelling and ground validation in endemism research: an Alpine jumping bristletail example. Biodivers Conserv 21:2845–2863

    Article  Google Scholar 

  • Rollan A, Real J, Bosch R, Tinto A, Hernandez-Matias A (2010) Modelling the risk of collision with power lines in Bonelli’s Eagle Hieraaetus fasciatus and its conservation implications. Bird Conserv Intern 20:279–294

    Article  Google Scholar 

  • Roscioni F, Rebelo H, Russo D, Carranza ML, Di Febbraro M, Loy A (2014) A modelling approach to infer the effects of wind farms on landscape connectivity for bats. Landsc Ecol 29:891–903

    Article  Google Scholar 

  • Russo D, Di Febbraro M, Cistrone L, Jones G, Smeraldo S, Garonna AP, Bosso L (2015) Protecting one, protecting both? Scale-dependent ecological differences in two species using dead trees, the rosalia longicorn beetle and the barbastelle bat. J Zool 297:165–175

    Article  Google Scholar 

  • Smallwood KS, Thelander C (2008) Bird mortality in the altamont pass wind resource area, California. J Wildlife Manage 72:215–223

    Article  Google Scholar 

  • Smeraldo S, Di Febbraro M, Ćirović D, Bosso L, Trbojević I, Russo D (2017) Species distribution models as a tool to predict range expansion after reintroduction: a case study on Eurasian beavers (Castor fiber). J Nat Conserv 37:12–20

    Article  Google Scholar 

  • Smeraldo S, Di Febbraro M, Bosso L, Flaquer C, Guixé D, Lisón F et al (2018) Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodiv Conserv 27:2425–2441

    Article  Google Scholar 

  • Strubbe D, Beauchard O, Matthysen E (2015) Niche conservatism among non-native vertebrates in Europe and North America. Ecography 38:321–329

    Article  Google Scholar 

  • Tamás EA (2012) Breeding and migration of the black stork (Ciconia nigra), with the special regard to a Central European population and the impact of hydro-meteorological factors and wetland status. Dissertation. University of Debrecen, Hungary

    Google Scholar 

  • Terna (2017). https://www.terna.it/it-it/sistemaelettrico/statisticheeprevisioni/datistatistici.aspx

  • Treinys R, Stončius D, Augutis D, Skuja S (2009) Breeding habitat of the black stork Ciconia nigra in Lithuania: implications for conservation planning. Baltic Forestry 15:33–40

    Google Scholar 

  • Thaxter CB, Buchanan GM, Carr J, Butchart SHM, Newbold T, Reen RE, Togias JA, Foden WB, O’Brien S, Pearce-Higgins JW (2017) Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc R Soc B 284:1–10

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Tobolka M, Zolnierowicz KM, Reeve NF (2015) The effect of extreme weather events on breeding parameters of the White Stork Ciconia ciconia. Bird Study 62:377–385

    Article  Google Scholar 

  • Tucker GM, Heath MF (1994) Birds in Europe: their conservation status. Birdlife International, Cambridge

    Google Scholar 

  • Vlachos CG, Bakaloudis DE, Alexandrou OG, Bontzorlos VA, Papakosta MA (2008) Factors affecting the nest site selection of the black stork, Ciconia nigra in the Dadia-Lefkimi-Soufli National Park, north-eastern Greece. Folia Zool 57:251

    Google Scholar 

  • Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30

    Article  PubMed  Google Scholar 

  • Wang S, Wang S, Smith P (2015) Ecological impacts of wind farms on birds: questions, hypotheses, and research needs. Renew Sustain Energy Rev 44:599–607

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evolut 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

We thank the following regional delegates of GLICiNe (Gruppo di Lavoro Italiano Cicogna Nera—Italian Work Group about Black Stork): Matteo Caldarella, Maurizio Marrese, Nicola Norante and Matteo Visceglia for the information provided. Two anonymous reviewers made important suggestions that allowed us to improve a previous ms version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Bosso.

Additional information

Communicated by Pedro Aragón.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6033 kb)

Supplementary file 2 (7Z 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smeraldo, S., Bosso, L., Fraissinet, M. et al. Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers Conserv 29, 1959–1976 (2020). https://doi.org/10.1007/s10531-020-01961-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-020-01961-3

Keywords

Navigation