Skip to main content


Log in

Why should we reconsider using species richness in spatial conservation prioritization?

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript


Species richness has been largely used for determining site conservation values, but this has not been assessed in the context of marine mammal conservation. In our study, we assessed the effectiveness of species richness as a surrogate of marine mammal species representation at the global scale and compared it to the use of complementarity as an alternative approach. We obtained 134 marine mammal distribution maps from the IUCN Red List database and used two complementarity algorithms to calculate conservation priorities. To determine the effectiveness of species richness as a surrogate, we calculated the Species Accumulation Index (SAI) scores for marine mammal groups. Our findings indicate that both complementarity approaches are consistently more effective surrogates of marine mammal species representation across all groups and grains tested. Our study strongly supports the use of complementarity as supposed to richness as the preferred method to select sites conservation values for marine mammals. To the best of our knowledge, we are the first to assess the effectiveness of richness and compare it to results obtained by the use of complementarity in global marine mammal species spatial representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others


  • Albuquerque F, Beier P (2015a) Rarity-weighted richness: a simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning. PLoS ONE 10:1–7

    Google Scholar 

  • Albuquerque F, Beier P (2015b) Global patterns and environmental correlates of high-priority conservation areas for vertebrates. J Biogeogr 42:1397–1405

    Article  Google Scholar 

  • Albuquerque F, Beier P (2015c) Using abiotic variables to predict importance of sites for species representation. Conserv Biol 29(5):1390–1400

    Article  Google Scholar 

  • Albuquerque FS, Beier P (2016) Downscaling patterns of complementarity to a finer resolution and its implications for conservation prioritization. Ecol Evol 6:4032–4040

    Article  Google Scholar 

  • Albuquerque FS, Gregory A (2017) The geography of hotspots of rarity-weighted richness of birds and their coverage by Natura 2000. PLoS ONE ONE:1–13

    Google Scholar 

  • Boonzaier L, Pauly D (2016) Marine protection targets: an updated assessment of global progress. Oryx 50:27–35

    Article  Google Scholar 

  • Bossart GD (2011) Marine mammals as sentinel species for oceans and human health. Vet Pathol 48:676–690

    Article  CAS  Google Scholar 

  • Brooks TM, Bakarr MI, Boucher TIM, Fonseca GABDA, Hilton-Taylor C, Hoekstra JM, Moritz TOM, Olivieri S, Parrish J, Pressey RL, Rodrigues SL, Sechrest W, Stattersfield A, Strahm W, Stuart SN (2004) Coverage provided by the global protected-area system. Is it enough? BioScience 54:1081–1091

    Article  Google Scholar 

  • Ceballos G, Ehrlich PB, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253

    Article  Google Scholar 

  • Fleishman E, Noss R, Noon B (2006) Utility and limitations of species richness metrics for conservation planning. Ecol Indic 6(3):543–553

    Article  Google Scholar 

  • Griffin JN, Jenkins SR, Gamfeldt L, Jones D, Hawkins SJ, Thompson RC (2009) Spatial heterogeneity increases the importance of species richness for an ecosystem process. Oikos 118:1335–1342

    Article  Google Scholar 

  • International Union for the Conservation of Nature (IUCN). n.d. The IUCN List of Threatened Species.

  • Jenkins CN, Pimm SL, Joppa LN (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proc Nat Acad Sci 110(28):E2602–E2610

    Article  CAS  Google Scholar 

  • Joseph LN, Maloney RF, O’connor SM, Cromarty P, Jansen P, Stephens T, Possingham HP (2008) Improving methods for allocating resources among threatened species: the case for a new national approach in New Zealand. Pacific Conserv Biol 14(3):154

    Article  Google Scholar 

  • Kiszka JJ, Heithaus MR, Wirsing AJ (2015) Behavioural drivers of the ecological roles and importance of marine mammals. Mar Ecol Prog Ser 523:267–281

    Article  Google Scholar 

  • Kaschner K, Tittensor DP, Ready J, Gerrodette T, Worm B, Bograd SJ (2011) Current and future patterns of global marine mammal biodiversity. PLoS ONE 6(5):e19653

    Article  CAS  Google Scholar 

  • Kirkpatrick JB (1983) An iterative method for establishing priorities for the selection of nature reserves: an example from Tasmania. Biol Conserv 25(2):127–134

    Article  Google Scholar 

  • Langhammer PF, Bakarr MI, Bennun LA, Brooks TM, Clay RP, Darwall W, De Silva N, Edgar GJ, Eken G, Fishpool LDC, da Fonseca GAB, Foster MN, Knox DH, Matiku P, Radford EA, Rodrigues ASL, Salaman P, Sechrest W, Tordoff AW (2007) Identification and gap analysis of key biodiversity areas: targets for comprehensive protected area systems. IUCN, Gland

    Google Scholar 

  • Littnan C, Harting A, Baker J (2015) Neomonachus schauinslandi. The IUCN red list of threatened species. (accessed on 16 Jun 2019)

  • Marine Mammal Protected Area Task Force (MMPATF). n.d. Important Marine Mammal Areas (IMMA) Selection Criteria.

  • Myers N (1988) Threatened biotas: hotspots in tropical forests. Environmentalist 8:178–208

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kents J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  Google Scholar 

  • Moilanen A, Possingham HP, Polasky S (2009). In: Moilanen HP, Wilson A, Possingham (eds) Spatial conservation prioritization: quantitative methods & computational tools. Oxford University Press, New York

    Google Scholar 

  • Moilanen A, Pouzols F, Meller L, Veach V, Arponen A, Leppanen J, Kujuala H (2014) Zonation: spatial conservation planning and software v. 4

  • Parsons ECM (2016) Why IUCN should replace “data deficient” conservation status with a precautionary “assume threatened” status—a cetacean case study. Front Mar Sci 3:193

    Google Scholar 

  • Pompa S, Ehrlich PR, Ceballos G (2011) Global distribution and conservation of marine mammals. Proc Nat Acad Sci 108(33):13600–13605

    Article  CAS  Google Scholar 

  • Ramírez F, Afán I, Davis LS, Chiaradia A (2017) Climate impacts on global hot spots of marine biodiversity. Sci Adv 3:e1601198 22

    Article  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Timothy WB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  CAS  Google Scholar 

  • Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu Rev Ecol Evol Syst 38:713–737

    Article  Google Scholar 

  • Rodrigues ASL, Akçakaya HR, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Chanson JS, Fishpool LDC, da Fonseca GAB, Gaston KJ, Hoffmann M, Marquet PA, Pilgrim JD, Pressey RL, Schipper JAN, Sechrest WES, Stuart SN, Underhill LESG, Waller RW, Matthew EJ, Xie Y (2004) Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54:1092–1100

    Article  Google Scholar 

  • Rojas-Bracho L, Gulland FMD, Smith CR, Taylor B, Wells RS, Thomas PO, Bauer B, Heide-Jørgensen MP, Teilmann J, Dietz R, Balle JD, Jensen MV, Sinding MH,S, Jaramillo-Legorreta A, Abel G, Read AJ, Westgate AJ, Colegrove K, Gomez F, Martz K, Rebolledo R, Ridgway S, Rowles T, van Elk CE, Boehm J, Cardenas-Hinojosa G, Constandse R, Nieto-Garcia E, Phillips W, Sabio D, Sanchez R, Sweeney J, Townsend F, Vivanco J, Vivanco JC, Walker S (2019) A Field Effort to Capture Critically Endangered Vaquitas Phocoena sinus for Protection from entanglement in illegal gillnets. Endangered Species Richness 38:11–27

    Article  Google Scholar 

  • Rondinini C, Rodrigues ASL, Boitani L (2011) The key elements of a comprehensive global mammal conservation strategy. Philos Trans R Soc B 366:2591–2597

  • Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues ASL, Stuart SN, Temple HJ, Baillie J, Boitani L, Lacher TE, Mittermeier RA, Smith AT, Absolon D, Aguiar JM, Amori G, Bakkour N, Baldi R, Berridge RJ, Bielby J, Black PA, Blanc JJ, Brooks TM, Burton JA, Butynski TM, Catullo G, Chapman R, Cokeliss Z, Collen B, Conroy J, Cooke JG, da Fonseca GAB, Derocher AB, Dublin HT, Duckworth JW, Emmons L, Emslie RH, Festa-Bianchet M, Foster M, Foster A, Garshelis DL, Gates C, Gimenez-Dixon M, Gonzalez S, Gonzalez-Maya JF, Good TC, Hammerson G, Hammond PS, Happold D, Happold M, Hare J, Harris RB, Hawkins CE, Haywood M, Heaney LR, Hedges S, Helgen KM, Hilton-Taylor C, Hussain SA, Ishii N, Jefferson TA, Jenkins RKB, Johnston CH, Keith M, Kingdon J, Knox DH, Kovacs KM, Langhammer P, Leus K, Lewison R, Lichtenstein G, Lowry LF, Macavoy Z, Mace GM, Mallon DP, Masi M, McKnight MW, Medellín RA, Medici P, Mills G, Moehlman PD, Molur S, Mora A, Nowell K, Oates JF, Olech W, Oliver WRL, Oprea M, Patterson BD, Perrin WF, Polidoro BA, Pollock C, Powel A, Protas Y, Racey P, Ragle J, Ramani P, Rathbun G, Reeves RR, Reilly SB, Reynolds JE III, Rondinini C, Rosell-Ambal RG, Rulli M, Rylands AB, Savini S, Schank CJ, Sechrest W, Self-Sullivan S, Shoemaker A, Sillero-Zubiri A, De Silva N, Smith DE, Srinivasulu C, Stephenson PJ, van Strien N, Talukdar BK, Taylor BL, Timmins R, Tirira DG, Tognelli MF, Tsytsulina K, Veiga LM, Vié JC, Williamson EA, Wyatt SA, Xie Y, Young BE (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230

    Article  CAS  Google Scholar 

  • Tittensor D, Mora C, Jetz W, Lotze H (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101

    Article  CAS  Google Scholar 

  • UNEP-WCMC and IUCN (2016) Protected Planet Report 2016. Cambridge, UK/Gland, Switzerland

  • Veach V, Di Minin E, Pouzols FM, Moilanen A (2017) Species richness as criterion for global conservation area placement leads to large losses in coverage of biodiversity. Divers Distrib.

    Article  Google Scholar 

  • Vilela B, Villalobos F, Poisot T (2015) letsR: a new R package for data handling and analysis in macroecology. Meth Ecol Evol 6(10):1229–1234

    Article  Google Scholar 

  • Williams P, Gibbons P, Margules C, Rebelo A, Humphries C, Pressey R (1996) A comparison of richness hotspots, rarity hotspots, and complementarity areas for conserving diversity of British birds. Conserv Biol 10:155–174

    Article  Google Scholar 

Download references


We thank B. Polidoro, N. Kellar, P. Deviche, and two anonymous reviewers for comments on previous versions of this manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Fábio Albuquerque.

Additional information

Communicated by Pedro Aragón.

This article belongs to the Topical Collection: Coastal and marine biodiversity.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astudillo-Scalia, Y., Albuquerque, F. Why should we reconsider using species richness in spatial conservation prioritization?. Biodivers Conserv 29, 2055–2067 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: