Skip to main content

Beta diversity as an indicator of priority areas for Myrtaceae assemblage conservation in Subtropical Araucaria Forest

A Correction to this article was published on 10 February 2020

This article has been updated

Abstract

We can say that studies on diversity provide knowledgeable insights into which areas with different compositions will be initially preserved or those which require more attention for government supervision. Thus, we aim to evaluate the alpha, beta and gamma diversity of the Myrtaceae assemblages as a tool for indicating priority conservation areas. Herein we explore the different levels of diversity resulting from fragments distributed along an altitudinal gradient in the Subtropical Araucaria Forest in the Santa Catarina Plateau of the Brazilian Atlantic Forest. In sequence, the Jaccard index and ordination by Detrended Correspondence Analysis were used for the β-diversity analysis and floristic substitution. Finally, the spatial dependence was analyzed by the Mantel Test based on floristic and geographical distances. Our results show that Myrtaceae assemblages along the altitude gradient are characterized by heterogeneous floristic compositions (β-diversity 0.55–0.95 variation), in which fragments above 1300 m are physiognomically marked by a predominance of the Myrceugenia and Myrcia genera. Higher altitudinal amplitude was characterized as an indicator for selecting complementary fragments due to dependence on β-diversity (r = 0.6961; p-value = 0.001), aiming at greater conservation effectiveness. In this sense, the LGS and URI complementary fragments are strategic because they comprise high beta diversity, high richness, the presence of exclusive and endemic species, and are located in different river basins. Our results show beta diversity as an effective tool for indicating priority areas for the conservation of Myrtaceae assemblages in AF, however it is essential to consider the exclusive and endemic species together.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 10 February 2020

    In the original publication of the article, Table 1 was published with few errors and the Acknowledgement statement was inadvertently omitted. The corrected table and acknowledgement statement is provided in this Correction.

Abbreviations

SJC:

São José do Cerrito

LGS:

Lages

URA:

Urupema

SJM:

São Joaquim

BJS:

Bom Jardim da Serra

URI:

Urubici

AF:

Atlantic Forest

SAF:

Subtropical Araucaria Forest

PA:

Protected areas

References

  • Almeida JA, Albuquerque JA, Bortoluzzi RLC, Mantovani A (2007) Caracterização dos solos e da vegetação de áreas palustres (brejos e banhados) do Planalto Catarinense. Relatório de Projeto de Pesquisa, Universidade do Estado de Santa Catarina—Centro de Ciências Agroveterinárias, Lages

    Google Scholar 

  • Araújo FS, Martins SV, Meira Neto JAA, Lani JL, Pires IE (2005) Florística da vegetação arbustivo—arbórea colonizadora de uma área degradada por mineração de caulim, em Brás Pires, MG. Rev Árvore 29:983–992

    Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143

    Google Scholar 

  • Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob Ecol Biogeogr 21:1223–1232. https://doi.org/10.1111/j.1466-8238.2011.00756.x

    Article  Google Scholar 

  • Berg OK (1857–1859). Myrtaceae. In: Martius CFP, Eichler A, Urban I (eds) Flora brasiliensis. Munchen, Wien, Leipzig, pp. 655.

  • Blum CT, Roderjan CV, Galvão F (2011) O clima e sua influência na distribuição da Floresta Ombrófila Densa na Serra da Prata. Morretes, Paraná Floresta. Rev Floresta 41:589–598. https://doi.org/10.5380/rf.v41i3.24052

    Article  Google Scholar 

  • Brancalion PHS, Holl KD (2016) Functional composition trajectory: a resolution to the debate between Suganuma, Durigan, and Reid. Restor Ecol 24:1–3. https://doi.org/10.1111/rec.12312

    Article  Google Scholar 

  • Bruijnzeel LA (2000) Hydrology of tropical montane cloud forests: a reassessment. Land Use Water Resour Res 1:11–18

    Google Scholar 

  • Cain SA, Castro GMO (1959) Manual of vegetation analysis. Harper & Brothers, New York

    Google Scholar 

  • Chao A, Chiu C-H (2016) Bridging the variance and diversity decomposition approaches to beta diversity via similarity and differentiation measures. Methods Ecol Evol 7:919–928. https://doi.org/10.1111/2041-210X.12551

    Article  Google Scholar 

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc B 345:101118

    Google Scholar 

  • de Candolle AP (1828) Prodromus systematis naturalis regni vegetabilis. SciELO Network 3:207–296

    Google Scholar 

  • Faith DP, Reid CAM, Hunter J (2004) Integrating phylogenetic diversity, complementarity, and endemism for conservation assessment. Conserv Biol 18:255–261. https://doi.org/10.1111/j.1523-1739.2004.00330.x

    Article  Google Scholar 

  • Falkenberg DB, Voltolini JC (1995) The montane cloud forest in southern Brazil. In: Hamilton LS, Juvik JO, Scatena FN (eds) Tropical montane cloud forests. Springer, New York, pp 138–149

    Google Scholar 

  • Ferreira PI, Gomes JP, Batista F, Bernardi AP, Costa NCF, Bortoluzzi RLC, Mantovani A (2013) Espécies potenciais para recuperação de áreas de preservação permanente no Planalto Catarinense. Floresta Ambiente 20:173–182

    Google Scholar 

  • Flora do Brasil 2020 em construção (2019). Jardim Botânico do Rio de Janeiro. Disponível em. https://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB171. Accessed 21 June, 2019

  • Flores-Palacios A, García-Franco JG (2008) Habitat isolation changes the beta diversity of the vascular epiphyte community in lower montane forest, Veracruz. Mexico. Biodivers. Conserv 17:191–207

    Google Scholar 

  • Forzza RC, Leitman PM, Costa AF, Carvalho AA Jr, Peixoto AL, Walter BMT, Bicudo C, Zappi D, Costa DP, Lleras E, Martinelli G, Lima HC, Prado J, Stehmann JR, Baumgratz JFA, Pirani JR, Sylvestre L, Maia LC, Lohmann LG, Queiroz LP, Silveira M, Coelho MN, Mamede MC, Bastos MNC, Morim MP, Barbosa MR, Menezes M, Hopkins M, Secco R, Cavalcanti TB, Souza VC (2010) Catálogo de Plantas e Fungos do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Gasper AL, Sevegnani L, Vibrans AC, Sobral M, Uhlman A, Lingner DV, Rigon-Jr MJ, Verdi M, Stival-Santos A, Dreveck S, Korte A (2013) Inventário florístico florestal de Santa Catarina: espécies da Floresta Ombrófila Mista. Rodriguésia 64:201–210

    Google Scholar 

  • Gavish Y, Giladi I, Ziv Y (2019) Partitioning species and environmental diversity in fragmented landscapes: do the alpha, beta and gamma components match? Biodivers Conserv 28:769–786. https://doi.org/10.1007/s10531-018-01691-7

    Article  Google Scholar 

  • Gomes JP, Dacoregio HM, Silva KM, da Rosa LH, da Bortoluzzi RLC (2017) Myrtaceae na Bacia do Rio Caveiras: Características Ecológicas e Usos Não Madeireiros. Floresta e Ambiente 24:1–10

    Google Scholar 

  • Higuchi P, Silva AC, Ferreira TS, Souza ST, Gomes JG, Silva KM, Santos KF, Linke C, Paulino PS (2012) Influência de variáveis ambientais sobre o padrão estrutural e florístico do componente arbóreo, em um fragmento de Floresta Ombrófila Mista Montana em Lages, SC. Ciênc Florest 22:79–90

    Google Scholar 

  • Higuchi P, Silva AC, Almeida JA, Bortoluzzi RLC, Mantovani A, Ferreira TS, Souza ST, Gomes JP, Silva KM (2013a) Florística e estrutura do componente arbóreo e análise ambiental de um fragmento de Floresta Ombrófila Mista Alto-Montana no município de Painel, SC. Ciênc Florest 23:153–164

    Google Scholar 

  • Higuchi P, Silva AC, Budke JC, Mantovani A, Bortoluzzi RLC, Ziger AA (2013b) Influência do clima e de rotas migratórias de espécies arbóreas sobre o padrão fitogeográfico de florestas na região sul do Brasil. Ciênc Florest 23:539–553

    Google Scholar 

  • Howard PC, Viskanic P, Davenport TRB, Kigenyi FW, Baltzer M, Dicknson CJ, Lwanga JS, Matthews RA, Balmford A (1998) Complementarity and the use of indicator groups for reserve selection in Uganda. Nature 394:472–475

    CAS  Google Scholar 

  • Hubbell SP (2001) The united neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hubbell SP (2006) Neutral theory and the evolution of ecological equivalence. Ecology 87:1387–1398

    PubMed  Google Scholar 

  • IBGE [Instituto Brasileiro de Geografia e Estatística] (2012) Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro

    Google Scholar 

  • Indrusiak C, Monteiro AS (2009) Unidades de conservação na área de distribuição da Araucaria. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra T, Backes A, Ganade G (eds) Floresta com Araucária, ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto (SP), pp 267–272

    Google Scholar 

  • Izsak C, Price ARG (2001) Measuring b-diversity using a taxonomic similarity index, and its relation to spatial scale. Mar Ecol Prog Ser 215:6977

    Google Scholar 

  • Işik K (2011) Rare and endemic species: why are they prone to extinction? Turk J Bot 35:411–417. https://doi.org/10.3906/bot-1012-90

    Article  Google Scholar 

  • IUCN (2018) The IUCN Red List of Threatened Species. Version 2018–1. Disponível em (2019) https://www.iucnredlist.org. Accessed 23 June, 2019

  • Jaccard P (1912) The distribution of the flora in the alpine zone. N Phytol 11:37–50

    Google Scholar 

  • Jarenkow JA, Budke JC (2009) Padrões florísticos e análise estrutural de remanescentes de Florestas com Araucária no Brasil. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra T, Backes A, Ganade G (eds) Floresta com araucária: ecologia, conservação e desenvolvimento sustentável. Holos Editora, Ribeirão Preto, pp 113–126

    Google Scholar 

  • Joly CA, Assis MA, Bernacii LC, Tamashiro JY, Campos MCR, Gomes JAMA, Lacerda MS, Santos FAM, Pedroni F, Pereira LS, Padgurschi MCG, Prata EMB, Ramos E, Torres RB, Rochelle A, Martins FR, Alves LF, Vieira SA, Martinelli LA, Camargo PB, Aidar MPM, Eisenlohr PV, Simões E, Villani JP, Belinello R (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do Sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotrop 12:123–145

    Google Scholar 

  • Jordano P, Galetti M, Pizo MA, Silva WR (2006) Ligando Frugivoria e Dispersão de sementes à biologia da conservação. In: Duarte CF, Bergallo HG, Dos Santos MA, Va AE (eds) Biologia da conservação: essências. Editorial Rima, São Paulo, pp 411–436.

    Google Scholar 

  • Kasecker TP, Silva JMC, Rapini A, Ramos-Neto MB, Andrade MJG, Giullieti AM, Queiroz LP (2009) In: Giullieti AM, Rapini A, Andrade MJG, Queiroz LP, Silva JMC (eds) Plantas Raras do Brasil. Conservac¸a˜o Internacional, Belo Horizonte, pp 433–471.

  • Köppen W (1948) Climatológia. 1ed. Fondo de Cultura Económica, México

    Google Scholar 

  • Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr 23:1324–1334

    Google Scholar 

  • Legendre P, Cáceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16:951–963. https://doi.org/10.1111/ele.12141

    Article  PubMed  Google Scholar 

  • Lucas EJ, Bünger MO (2015) Myrtaceae in the Atlantic forest: their role as a ‘model’ group. Biodivers Conserv 24:2165–2180. https://doi.org/10.1007/s10531-015-0992-7

    Article  Google Scholar 

  • Lucas EJ, Belsham SR, Nic Lughadha EM, Orlovich DA, Sakuragui CM, Chase MW, Wilson PG (2005) Phylogenetic patterns in the fleshy-fruited Myrtaceae- preliminary molecular evidence. Plant Syst Evol 251:35–51

    CAS  Google Scholar 

  • Lucas EJ, Harris SA, Mazine FF, Belsham SR, Nic Lughadha EM, Telford A, Chase MW (2007) Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales). Taxon 56:1105–1128. https://doi.org/10.2307/25065906

    Article  Google Scholar 

  • Lucas EJ, Holst B, Sobral M, Mazine FF, Nic Lughadha EM, Barnes Proença CE, Vasconcelos TN (2019) A new subtribal classification of tribe Myrteae (Myrtaceae). Syst Bot 44:560–569. https://doi.org/10.1600/036364419X15620113920608

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Marcon AK, Silva AC, Higuchi P, Ferreira TS, Missio FF, Salami B, Rosa AD, Negrini M, Bento MA, Buzzi Jr F (2014) Floristic and structural variation in response to the environmental heterogeneity in a cloud forest in Ubirici, Santa Catarina, Southern Brazil. Sci For 42:439–450.

    Google Scholar 

  • Margules C, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    CAS  PubMed  Google Scholar 

  • Margules C, Sharkar S (2007) Systematic conservation planning. Cambridge University Press, Cambridge

    Google Scholar 

  • Martins-Ramos D, Chaves CL, Bortoluzzi RLC, Mantovani A (2011) Florística de Floresta Ombrófila Mista Alto-Montana de Campos em Urupema, Santa Catarina, Brasil. Rev Bras Biociênc 9:156–166

    Google Scholar 

  • Martinelli G, Moraes MA (2013) Livro vermelho da flora do Brasil. Jardim Botânico do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Martins SE, Rossi L, Sampaio PSP, Magenta MAG (2008) Caracterização florística de comunidades vegetais de restinga em Bertioga, SP, Brasil. Acta Bot Bras 22:249–274

    Google Scholar 

  • Mittermeier RA, Robles Gil P, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Fonseca GAB (2004) Hotspots revisited: Earth's biologically richest and most endangered terrestrial ecoregions. CEMEX/Agrupación Sierra Madre, Mexico City

    Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Muller Filho IL (1970) Notas para o estudo da geomorfologia do Rio Grande do Sul. Imprensa Universitária, Santa Maria, Brasil, p 39

    Google Scholar 

  • Murray-Smith C, Neil A, Brummitt NA, Oliveira-Filho AT, Bachman S, Moat J, Lughadha EMN, Lucas EJ (2008) Plant diversity hotspots in the Atlantic Coastal Forests of Brazil. Conserv Biol 23:151–163. https://doi.org/10.1111/j.1523-1739.2008.01075.x

    Article  PubMed  Google Scholar 

  • Negrini M, Higuchi P, Silva AC, Spiazzi FR, Fernando Buzzi Jr F, Vefago MB (2014) Heterogeneidade florístico-estrutural do componente arbóreo em um sistema de fragmentos florestais no Planalto Sul Catarinense. Rev Árvore 38:779–786

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O'Hara RG, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) Vegan: community ecology package. R package version 1.17–0. Disponível em https://CRAN.R-project.org/package=vegan. Accessed 05 Feb 2019

  • Oliveira-Filho AT, Jarenkow JA, Rodal MJN (2006). Floristic relationships of seasonally dry forests of eastern South America based on tree species distribution patterns. In: Toby R (ed) Neotropical savannas and dry forests: plant diversity, biogeography and conservation. Taylor and Francis, Oxford

    Google Scholar 

  • Oliveira-Filho AT, Budke JC, Jarenkow JA, Eisenlohr PV, Neves DRM (2013) Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J Plant Ecol 8:242–260

    Google Scholar 

  • Ostroski P, Saiter FZ, Amorim AM, Fiaschi P (2018) Endemic angiosperms in Bahia Coastal Forests, Brazil: an update using a newly delimited área. Biota Neotrop 18:e20180544. https://doi.org/10.1590/1676-0611-BN-2018-0544

    Article  Google Scholar 

  • Paisani JC, Santos LJC, Goudard G, Goulart AÁ, Biffi VHR (2019). Subtropical Araucaria Plateaus. In: Salgado AAR, Santos LJC, Paisani JC (eds) The physical geography of Brazil, environment, vegetation and landscape. Springer Nature Switzerland AG, Basel, pp. 21–39. https://doi.org/10.1007/978-3-030-04333-9_3

    Chapter  Google Scholar 

  • Peers MJL, Thornton DH, Murray DL (2012) Reconsidering the specialist-generalist paradigm in niche breadth dynamics: resource gradient selection by Canada lynx and bobcat. PLoS ONE. https://doi.org/10.1371/journal.pone.0051488

    Article  PubMed  PubMed Central  Google Scholar 

  • Pimm SL, Lawton JH (1988) Planning for biodiversity. Science 279:2068–2069

    Google Scholar 

  • Portes MCGO, Galvão F, Koehler A (2001) Caracterização floristica e estrutural de uma Floresta Ombrófila Densa Altomontana do morro Anhangava, Quatro Barras, PR. Rev Floresta 31:22–31

    Google Scholar 

  • Pscheidt F, Rech CCC, Missio FF, Bento MA, Buzzi Junior F, Ansolin RD, Bonazza M, Aguiar MD, Silva AC, Higuchi P (2015) Variações florístico-estruturais da comunidade arbórea associadas à distância da borda em um fragmento florestal no Planalto Sul Catarinense. Floresta 45:421–430. https://doi.org/10.5380/rf.v45i2.34180

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing, reference index version 2.12.1. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rebelo AG, Siegfried WR (1992) Where should nature reserves be located in the Cape Floristic Region, South Africa? Models for the spatial configuration of a reserve network aimed at maximizing the protection of floral diversity. Conserv Biol 6:243–252. https://doi.org/10.1046/j.1523-1739.1992.620243.x

    Article  Google Scholar 

  • Rezende VL, Miranda PLS, Meyer L, Moreira CV, Linhares MFM, Oliveira-Filho AT, Eisenlohr PV (2015) Tree species composition and richness along altitudinal gradients as a tool for conservation decisions: the case of Atlantic semideciduous forest. Biodivers Conserv 24:2149–2163. https://doi.org/10.1007/s10531-015-0939-z

    Article  Google Scholar 

  • Reyers B, van Jaarsveld AS, Krüger M (2000) Complementarity as a biodiversity indicator strategy. Proc R Soc Lond B 267:505–513

    CAS  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Google Scholar 

  • Rigueira DMG, Rocha PLB, Mariano-Neto E (2013) Forest cover, extinction thresholds and time lags in woody plants (Myrtaceae) in the Brazilian Atlantic Forest: resources for conservation. Biodivers Conserv 22:3141–3163. https://doi.org/10.1007/s10531-013-0575-4

    Article  Google Scholar 

  • Scheer MB, Mocochinski AY (2009) Florística vascular da Floresta Ombrófila Densa Altomontana de quatro Serras no Paraná. Biota Neotrop 9:51–70

    Google Scholar 

  • Schneider LCA, Silva MT, Agostinetto L, Siegloch AE (2018) Deforestation in Mixed Ombrophilous Forest in the Serrana region of Santa Catarina. Rev Árvore 42:e420206. https://doi.org/10.1590/1806-90882018000200006

    Article  Google Scholar 

  • Secretariado da Convenção sobre Diversidade Biológica (2014) Panorama da Biodiversidade Global 4. Montréal

    Google Scholar 

  • Silva AC, Higuchi P, Aguiar MD, Negrini M, Fert Neto J, Hess AF (2012) Relações Florísticas e Fitossociologia de uma Floresta Ombrófila Mista Montana secundária em Lages, Santa Catarina. Ciênc Florest 22:193–206

    CAS  Google Scholar 

  • Silva AC, Higuchi P, Negrini M, Grudtner A, Zech DF (2013) Caracterização fitossociológica e fitogegráfica de um trecho de floresta ciliar em Alfredo Wagner, SC, como subsídio para restauração ecológica. Ciênc Florest 23:579–593

    Google Scholar 

  • Sobral M (2003) A família das Myrtaceae no Rio Grande do Sul. Unisinos, São Leopoldo

    Google Scholar 

  • Soininen JR, Mcdonald R, Hillebrand H (2007) Distance decay similarity in ecological assemblages. Ecography 30:3–12

    Google Scholar 

  • Sokal RR, Rohlf FJ (1962) The comparison of dendrograms by objective methods. Taxon 11:30–40

    Google Scholar 

  • Souza K, Souza CC, Rosa MG, Cruz AP, Lima CL, Silva JO, Lazzarin LC, Loebens R, Dias RAR, Silva AC, Higuchi P, Schimalski MB (2015) Estrutura e estratégias de dispersão do componente arbóreo de uma floresta subtropical ao longo de uma topossequência no Alto-Uruguai. Sci Forest 43:321–332

    Google Scholar 

  • Staggemeier VG, Cazetta E, Morellato LPC (2017) Hyperdominance of Myrtaceae fruits as sources to frugivorous animals. Biotropica 49:71–82. https://doi.org/10.1111/btp.12358

    Article  Google Scholar 

  • Stedille LIB, Gomes JP, da Costa NCF, Vargas OF, da Luz L, Mantovani A (2018) Passive restoration of Mixed Ombrophilous Forest a decade after forest plantation removal in the south of Brazil. Floresta 48:523–534

    Google Scholar 

  • Stehmann J, Forzza RC, Sobral M, Kamino LHY (2009) Plantas da Floreta Atlântica. Jardim Botânico do Rio de Janeiro Press, Rio de Janeiro

    Google Scholar 

  • Strassburger L (2005) Uso da terra nas Bacias Hidrográficas do Rio do Peixe (SC) e do Rio Pelotas (RS/SC) e sua influência na Limnologia do reservatório da UHE-Itá (RS/SC)

  • Tropicos.org (2019) Missouri Botanical Garden. Disponível em: https://www.tropicos.org. Accessed 08 June, 2019

  • Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33: 222.

    Google Scholar 

  • Tuomisto H, Ruokolainen K (2005) Environmental heterogeneity and the diversity of pteridophytes and Melastomataceae in western Amazonia. Biol Skr 55:3756

    Google Scholar 

  • Van Jaarsveld AS, Freitag S, Chown SL, Muller C, Koch S, Hull H, Bellamy C, Krüger M, Endrödy-Younga S, Mansell MW, Scholtz CH (1998) Biodiversity assessment and conservation strategies. Science 279:2106–2108. https://doi.org/10.1126/science.279.5359.2106

    Article  PubMed  Google Scholar 

  • Vane-Wright RI (1996) Identifying priorities for the conservation of biodiversity: systematic biological criteria within a socio-political framework. In: Gaston KJ (ed) Biodiversity. biology of numbers and difference. Blackwell Science, Oxford, pp. 309–344

    Google Scholar 

  • Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect? Systematics and the agony of choice. Biol Conserv 55:235–254

    Google Scholar 

  • Vieira FCS, Quadros KE (2010) Myrtaceae, Myrcia squamata (Mattos and D. Legrand) Mattos and Myrceugenia seriatoramosa (Kiaersk.) D. Legrand & Kausel in Santa Catarina: Distribution extension. Check List 6:488–490

    Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 12:213–251

    Google Scholar 

  • Williams-Linera G (2002) Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodivers Conserv 11:1825–1843

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliano Pereira Gomes.

Additional information

Communicated by Karen E. Hodges.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira Gomes, J., Bet Stedille, L.I., de Freitas Milani, J.E. et al. Beta diversity as an indicator of priority areas for Myrtaceae assemblage conservation in Subtropical Araucaria Forest. Biodivers Conserv 29, 1361–1379 (2020). https://doi.org/10.1007/s10531-020-01940-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-020-01940-8

Keywords

  • Altitudinal gradient
  • Complementarity algorithms
  • Exclusive species
  • Endemic species
  • Jaccard index