Abstract
Human activities are the main drivers of biotic homogenization, thus affecting ecosystem functions. In this study, we aimed to investigate the relationship among anthropogenic disturbances and forest attributes. Moreover, we sought to identify direct and indirect effects of topographic heterogeneity (TH), more specifically of standard deviation of altitude, on anthropogenic disturbances and forest attributes, respectively, through a path analysis. We used data gathered on 186 systematically distributed sample plots located in the Brazilian subtropical Evergreen Rainforest. We selected 14 predictor variables related to anthropogenic disturbances aiming to model seven forest attributes related to species diversity, composition, and structure. The aboveground biomass, rarefied species richness, proportion of standing dead trees, and proportion of individuals of pioneer species in the regeneration layer were better predicted by global linear regression models. The proportions of individuals of pioneer species in the canopy layer and of threatened species in the canopy and regeneration layers were better explained by local geographically weighted regression models. Human activities at different spatial scales may lead to disturbances (e.g., edge effects and habitat fragmentation), thus driving changes in forest attributes. The land use amidst forest remnants was related to biomass production and biotic homogenization. Logging and road networks may imperil the maintenance of threatened species. The path analysis showed that TH indirectly affects species richness via pasture area. Furthermore, topography appeared to act as a barrier for the expansion of certain human activities over the landscape. Our findings evoked the need for implementation of adaptative conservation strategies.
This is a preview of subscription content, access via your institution.





References
Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. https://doi.org/10.1016/j.foreco.2009.09.001
Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Zeitschrift. https://doi.org/10.1127/0941-2948/2013/0507
Arroyo-Rodríguez V, Melo FPL, Martínez-Ramos M et al (2017) Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol Rev 92:326–340. https://doi.org/10.1111/brv.12231
Baptista SR, Rudel TK (2006) A re-emerging Atlantic forest? Urbanization, industrialization and the forest transition in Santa Catarina, southern Brazil. Environ Conserv 33:195–202
Bello C, Galetti M, Pizo MA et al (2015) Defaunation affects carbon storage in tropical forests. Sci Adv. https://doi.org/10.1126/sciadv.1501105
Bollen KA, Stine RA (1992) Bootstrapping goodness-of-fit measures in structural equation models. Sociol Methods Res 21:205–229. https://doi.org/10.1177/0049124192021002004
BRASIL (1993) Decreto 750 de 10 de fevereiro de 1993. Dispõe sobre o corte, a exploração e a supressão de vegetação primária ou nos estágios avançado e médio de regeneração da Mata Atlântica, e dá outras providências. https://www.planalto.gov.br/ccivil_03/decreto/1990-1994/D750.htm. Accessed 23 Aug 2018
BRASIL (2006) Lei 11.428 de 22 de dezembro de 2006. Dispõe sobre a utilização e proteção da vegetação nativa do Bioma Mata Atlântica, e dá outras providências. https://www.planalto.gov.br/ccivil_03/_ato2004-2006/2006/lei/l11428.htm. Accessed 23 Aug 2018
BRASIL (2012) Lei 12.651 de 25 de maio de 2012. Dispõe sobre a proteção da vegetação nativa, e dá outras providências. https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/L12651.htm. Accessed 02 Nov 2019
Broadbent EN, Asner GP, Keller M et al (2008) Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv 141:1745–1757. https://doi.org/10.1016/j.biocon.2008.04.024
Brockerhoff EG, Barbaro L, Castagneyrol B et al (2017) Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers Conserv 26:3005–3035
Cardinale BJ, Duffy JE, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. https://doi.org/10.1038/nature11148
Carola CR (2010) Natureza admirada, natureza devastada: História e Historiografia da colonização de Santa Catarina. Varia Hist 26:547–572. https://doi.org/10.1590/S0104-87752010000200011
Ceballos G, Ehrlich PR, Barnosky AD et al (2015) Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci Adv 1(11):e1501105. https://doi.org/10.1126/sciadv.1400253
Chave J, Muller-Landau HC, Baker TR et al (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–2367. https://doi.org/10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2
Chave J, Réjou-Méchain M, Búrquez A et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol 20:3177–3190. https://doi.org/10.1111/gcb.12629
Chazdon RL (2014) Second growth. The promise of tropical forest regeneration in an age of deforestation. The University of Chicago Press, Chicago
Colonetti S, Citadini-Zanette V, Martins R et al (2009) Florística e estrutura fitossociológica em floresta ombrófila densa submontana na barragem do rio São Bento, Siderópolis, Estado de Santa Catarina. Acta Sci Biol Sci 31:397–405. https://doi.org/10.4025/actascibiolsci.v31i4.3345
da Silva BG, Castello ACD, Koch I, Silva WR (2017) Pathways affect vegetation structure and composition in the Atlantic Forest in southeastern Brazil. Acta Bot Brasilica 31:108–119. https://doi.org/10.1590/0102-33062016abb0402
de la Peña-Domene M, Martínez-Garza C, Ayestarán-Hernández LM et al (2018) Plant attributes that drive dispersal and establishment limitation in tropical agricultural landscapes. Forests. https://doi.org/10.3390/f9100620
de Valeriano M, Rossetti DF (2012) Topodata: Brazilian full coverage refinement of SRTM data. Appl Geogr 32:300–309. https://doi.org/10.1016/j.apgeog.2011.05.004
ESRI (2012) ArcGIS Desktop 10.1. Environmental Systems Research Institute, Redlands
Everson DA, Boucher DH (1998) Tree species-richness and topographic complexity along the riparian edge of the Potomac River. For Ecol Manag 109:305–314. https://doi.org/10.1016/S0378-1127(98)00264-3
Ferraz SFB, Ferraz KMPMB, Cassiano CC et al (2014) How good are tropical forest patches for ecosystem services provisioning? Landsc Ecol 29:187–200. https://doi.org/10.1007/s10980-014-9988-z
Flynn DFB, Gogol-Prokurat M, Nogeire T et al (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33. https://doi.org/10.1111/j.1461-0248.2008.01255.x
Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester
Freitas SR, Hawbaker TJ, Metzger JP (2010) Effects of roads, topography, and land use on forest cover dynamics in the Brazilian Atlantic Forest. For Ecol Manag 259:410–417. https://doi.org/10.1016/j.foreco.2009.10.036
Fundação S.O.S. Mata Atlântica (2017) Atlas dos remanescentes florestais da Mata Atlântica, período 2015–2016. Fundação S.O.S, Mata Atlântica, São Paulo
Fundação S.O.S. Mata Atlântica (2018) Atlas dos remanescentes florestais da Mata Atlântica, período 2017–2018. Fundação S.O.S, Mata Atlântica, São Paulo
de Gasper AL, Uhlmann A, Sevegnani L et al (2014) Floristic and forest inventory of Santa Catarina: species of evergreen rainforest. Rodriguésia 65:807–816. https://doi.org/10.1590/2175-7860201465401
Gatti RC, Castaldi S, Lindsell JA et al (2015) The impact of selective logging and clearcutting on forest structure, tree diversity and above-ground biomass of African tropical forests. Ecol Res 30:119–132. https://doi.org/10.1007/s11284-014-1217-3
Geoambiente Sensoriamento Remoto Ltda (2008) Projeto de Proteção da Mata Atlântica em Santa Catarina (PPMA/SC). Relatório Técnico do Mapeamento Temático Geral do Estado de Santa Catarina, São José dos Campos, p 90
Geofabrik (2018) Excerpts and Derived Data From the OpenStreetMap Dataset. https://www.geofabrik.de/data/download.html. Accessed 02 June 2018
Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x
Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge
Haddad NM, Brudvig LA, Clobert J et al (2015) Habitat fragmentation and its lasting impact on earth's ecosystems. Appl Ecol. https://doi.org/10.1126/sciadv.1500052
Huth A, Ditzer T (2001) Long-term impacts of logging in a tropical rain forest: a simulation study. For Ecol Manag 142:33–51. https://doi.org/10.1016/S0378-1127(00)00338-8
Jakovac CC, Peña-Claros M, Kuyper TW, Bongers F (2015) Loss of secondary-forest resilience by land-use intensification in the Amazon. J Ecol 103:67–77. https://doi.org/10.1111/1365-2745.12298
Laurance WF, Delamonica P, Laurance SG et al (2000) Rainforest fragmentation kills big trees. Nature 404:836. https://doi.org/10.1038/35009032
Laurance WF, Lovejoy TE, Vasconcelos HL et al (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618. https://doi.org/10.1046/j.1523-1739.2002.01025.x
Laurance WF, Nascimento HEM, Laurance SG et al (2006) Rain forest fragmentation and the proliferation of successional trees. Ecology 87:469–482. https://doi.org/10.1890/05-0064
Laurance WF, Andrade AS, Magrach A et al (2014) Apparent environmental synergism drives the dynamics of Amazonian forest fragments. Ecology 95:3018–3026. https://doi.org/10.1890/14-0330.1
Leithead M, Anand M, da Duarte L, S, Pillar VD, (2012) Causal effects of latitude, disturbance and dispersal limitation on richness in a recovering temperate, subtropical and tropical forest. J Veg Sci 23:339–351. https://doi.org/10.1111/j.1654-1103.2011.01351.x
Liang J, Crowther TW, Picard N et al (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354(6316):1124–1127. https://doi.org/10.1126/science.aaf8957
Lôbo D, Leão T, Melo FPL et al (2011) Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers Distrib 17:287–296. https://doi.org/10.1111/j.1472-4642.2010.00739.x
Lutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A, Anderson-Teixeira KJ, Andrade A, Baltzer J, Becker KML et al (2018) Global importance of large-diameter trees. Glob Ecol Biogeogr 27:849–864. https://doi.org/10.1111/geb.12747
Martinelli G, Moraes MA (2013) Livro vermelho da flora do Brasil. Jardim Botânico do Rio de Janeiro, Rio de Janeiro
McGarigal K, Marks BJ (1995) FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland
Méndez-Toribio M, Meave JA, Zermeño-Hernández I et al (2016) Effects of slope aspect and topographic position on environmental variables, disturbance regime and tree community attributes in a seasonal tropical dry forest. J Veg Sci 27:1094–1103. https://doi.org/10.1111/jvs.12455
Mesquita RCG, Delamo P, Laurance WF (1999) Effect of surrounding vegetation on edge-related tree mortality in Amazonian forest fragments. Biol Conserv 91:129–134. https://doi.org/10.1016/S0006-3207(99)00086-5
Metzger JP, Bustamante MM, Ferreira J et al (2019) Why Brazil needs its legal reserves. Perspect Ecol Conserv 17:91–103. https://doi.org/10.1016/j.pecon.2019.07.002
MMA - Ministério do Meio Ambiente (2014) Lista Nacional Oficial das Espécies da Flora Ameaçadas de Extinção. Portaria No 443, de 17 de dezembro de
Montagna T, Gasper AL, Oliveira LZ et al (2018) Situação atual e recomendações para conservação de 13 espécies de alto valor para uso e conservação no estado de Santa Catarina. In: Gasper AL, Oliveira LZ, Lingner DV, Vibrans AC (eds) Inventário Florístico Florestal de Santa Catarina Espécies arbóreas raras de Santa Catarina, vol VII. Edifurb, Blumenau, pp 159–241
Moreira-Burger D, Braz W, Delitti C (2010) Modelos preditores da fitomassa aérea da Floresta Baixa de Restinga. Rev Bras Bot 33:143–153. https://doi.org/10.1590/S0100-84042010000100013
Neter J et al (1996) Applied linear statistical models, 4th edn. McGraw-Hill, Boston, p 439
Olden JD (2006) Biotic homogenization: a new research agenda for conservation biogeography. J Biogeogr 33:2027–2039. https://doi.org/10.1111/j.1365-2699.2006.01572.x
Oliveira-Filho AT, Fonte MAL (2000) Patterns of floristic differentiations among Atlantic Forests in southeastern Brazil and the influence of climate. Biotropica 32:793–810
Oliveira LZ, Gasper AL, Lingner DV, Sevegnani L, Vibrans AC (2019) Secondary subtropical Atlantic forests shelter a surprising number of rare tree species: outcomes of an assessment using spatially unbiased data. Biodivers Conserv 28:751–768
Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609
Paula MD, de Costa CPA, Tabarelli M (2011) Carbon storage in a fragmented landscape of Atlantic forest: the role played by edge-affected habitats and emergent trees. Trop Conserv Sci 4:349–358. https://doi.org/10.1177/194008291100400310
Peres CA, Emilio T, Schietti J et al (2016) Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc Natl Acad Sci 113:892–897. https://doi.org/10.1073/pnas.1516525113
Poorter L, van der Sande MT, Thompson J et al (2015) Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeogr 24:1314–1328. https://doi.org/10.1111/geb
Prevedello JA, Vieira MV (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv 19:1205–1223. https://doi.org/10.1007/s10531-009-9750-z
Reitz R (1965) Plano de coleção. In: Flora Ilustrada Catarinense. p 71
Reitz R, Klein RM, Reis A (1979) Madeiras do Brasil - Santa Catarina. Reitz, R. (Ed.). Florianópolis: Editora Lunardelli, p 320
Rezende CL, Uezu A, Scarano FR, Araujo DSD (2015) Atlantic forest spontaneous regeneration at landscape scale. Biodivers Conserv 24:2255–2272. https://doi.org/10.1007/s10531-015-0980-y
Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021
Rosa AD, Carolina Silva A, Higuchi P et al (2016) Natural regeneration of tree species in a cloud forest in Santa Catarina, Brazil. Rev Árvore 40:1073–1082. https://doi.org/10.1590/0100-67622016000600013
Sandel B, Svenning JC (2013) Human impacts drive a global topographic signature in tree cover. Nat Commun 4:1–7. https://doi.org/10.1038/ncomms3474
Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci 106:203–208. https://doi.org/10.1073/pnas.0810193105
Scipioni MC, Dobner M Jr, Longhi SJ et al (2019) The last giant Araucaria trees in southern Brazil. Scientia Agricola 76:220–226. https://doi.org/10.1590/1678-992x-2017-0264
Tabarelli M, Cardoso Da Silva JM, Gascon C (2004) Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers Conserv 13:1419–1425. https://doi.org/10.1023/B:BIOC.0000019398.36045.1b
Tabarelli M, Peres CA, Melo FPL (2012) The “few winners and many losers” paradigm revisited: emerging prospects for tropical forest biodiversity. Biol Conserv 155:136–140. https://doi.org/10.1016/j.biocon.2012.06.020
Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. Ecol Lett 8:857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x
Vefago MB, Silva ACD, Cuchi T, Santos GND, Nunes ADS, Rodrigues Júnior LC, Lima CL, Gross A, Kilca RV, Higuchi P (2019) What explains the variation on the regenerative component dynamics of Araucaria Forests in southern Brazil? Sci Agric 76(5):405–414. https://doi.org/10.1590/1678-992x-2017-0304
Vibrans AC, Gasper AL, Moser P, Oliveira LZ, Lingner DV, Sevegnani L (2020) Insights from a large-scale inventory in the Southern Brazilian Atlantic Forest. Sci Agric 77:1–12. https://doi.org/10.1590/1678-992X-2018-0036
Vibrans AC, McRoberts RE, Moser P, Nicoletti AL (2013) Using satellite image-based maps and ground inventory data to estimate the area of the remaining Atlantic forest in the Brazilian state of Santa Catarina. Remote Sens Environ 130:87–95. https://doi.org/10.1016/j.rse.2012.10.023
Vitousek PM, Aber JD, Howarth RH et al (1997) Human alteration of the global nitrogen cycle: source and consequences. Ecol Appl 7:737–750. https://doi.org/10.1038/nn1891
Zanne AE, Lopez-Gonzalez G, Coomes DA et al (2009) Data from: towards a worldwide wood economics spectrum. Dryad Dataset. https://doi.org/10.5061/dryad.234
Acknowledgements
The authors are grateful to Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) and Serviço Florestal Brasileiro for supporting the IFFSC, to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the research grant 31 (312075/2013-8) awarded to the last author, for the owners of the sampled forests, to the field crews for the enormous efforts invested in data collection, to the taxonomists for identifying the botanical material, to Pedro V. Eisenlohr for his contribution to the statistical analyzes, and to the anonymous reviewers of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by David Hawksworth.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection: Forest and plantation biodiversity.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Lingner, D.V., Rodrigues, A.V., Oliveira, L.Z. et al. Modelling changes in forest attributes driven by human activities at different spatial scales in the subtropical Atlantic Forest. Biodivers Conserv 29, 1283–1299 (2020). https://doi.org/10.1007/s10531-020-01935-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10531-020-01935-5
Keywords
- Edge effects
- Biotic homogenization
- Second-growth forest
- Landscape matrix
- Topographic heterogeneity