Skip to main content

Will the emblematic southern conifer Araucaria angustifolia survive to climate change in Brazil?

Abstract

Conifer forests dominated by Araucaria pines (Araucaria angustifolia) are emblematic of the humid forests in the southeast of Brazil, South America. However, these forests are highly fragmented and threatened by climate change. Despite the ecological and cultural importance of the dominant species (A. angustifolia), our knowledge of its climatic niche is incomplete. We aimed to understand the environmental drivers of the distribution and the climatic vulnerability of A. angustifolia in Brazil by modelling the extent of suitable climatic niches available for the species under the current climate and future climate scenarios. The potential distribution predicted by our model for the present was consistent with the real distribution of this species. However, our projections for future distributions show a decline in suitable climatic niches for the species, and a tendency for the species to be confined to high altitude mountain ranges and plateaus of south and southeast Brazil. Critically, most of the current protected areas will cease to harbor suitable climatic niches for the species. We conclude that prioritizing and expanding protected areas in important mountain ranges will be essential for protecting of the species in situ and to safeguard it from further habitat loss. Further research on population-level physiological responses of the species to climatic change and the role of biotic interactions will help optimize future modelling work.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteor Z 105:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  2. Aslam MS, Choudhary BA, Uzair M, Ijaz AS (2013) Phytochemical and ethno-pharmacological review of the genus Araucaria–review. Trop J Pharm Res 12:651–659. https://doi.org/10.4314/tjpr.v12i4.31

    CAS  Article  Google Scholar 

  3. Backes A (2009) Distribuição geográfica atual da floresta com araucária: condicionamento climático. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 39–44

    Google Scholar 

  4. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x

    Article  Google Scholar 

  5. Bauermann SG, Behling H (2009) Dinâmica paleo vegetacional da floresta com araucária a partir do final do pleistoceno: o que mostra a palinologia. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 35–38

    Google Scholar 

  6. Behling H (2002) South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 177:19–27. https://doi.org/10.1016/S0031-0182(01)00349-2

    Article  Google Scholar 

  7. Brasil, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis –IBAMA (2008) Lista Oficial de Espécies da Flora Brasileira Ameaçada de Extinção. http://www.mma.gov.br/estruturas/ascom_boletins/_arquivos/83_19092008034949.pdf/. Accessed 16 June 2018

  8. Bruner AG, Gullison RE, Rice RE, Fonseca GAB (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291:125–127. https://doi.org/10.1126/science.291.5501.125

    CAS  Article  PubMed  Google Scholar 

  9. Câmara IG (2003) Brief history of conservation in the Atlantic Forest. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America: biodiversity status, threats, and outlook. CABS and Island Press, Washington, pp 31–42

    Google Scholar 

  10. Carnaval AC (2018) Biome stability in South America over the last 30 kyr: inferences from long-term vegetation dynamics and habitat modelling. Glob Ecol Biogeogr 27:285–297. https://doi.org/10.1111/geb.12694

    Article  Google Scholar 

  11. Carnaval AC, Waltari E, Rodrigues MT, Rosauer D, VanDerWal J, Damasceno R, Prates I, Strangas M, Spanos Z, Rivera D, Pie MR, Firkowski CR, Bornschein MR, Ribeiro LF, Moritz C (2014) Prediction of phylogeographic endemism in an environmentally complex biome. Proc Roy Soc B 281:20141461. https://doi.org/10.1098/rspb.2014.1461

    Article  Google Scholar 

  12. Cassana FF, Dillenburg LR (2012) The periodic wetting of leaves enhances water relations and growth of the long-lived conifer Araucaria angustifolia. Plant Biol 5:75–83. https://doi.org/10.1111/j.1438-8677.2012.00600.x

    CAS  Article  Google Scholar 

  13. Chilcott C, Hilbert D, Howden M (2003) Modelling biodiversity and climate change. In: Howden M, Hughes L, Dunlop M, Zethoven I, Hilbert D, Chilcott C (eds) Climate change impacts on biodiversity in Australia: outcomes of a workshop sponsored by the Biological Diversity Advisory Committee. Environment Australia, Canberra, pp 63–66

    Google Scholar 

  14. Costa GC, Hampe A, Ledru MP, Martinez PA, Mazzochini GG, Shepard DB, Werneck FP, Moritz C, Carnaval AC (2018) Biome stability in South America over the last 30 kyr: Inferences from long-term vegetation dynamics and habitat modelling. Glob Ecol Biogeogr 27:285–297. https://doi.org/10.1111/geb.12694

    Article  Google Scholar 

  15. Costion CM, Simpson L, Pert PL, Carlsen MM, Kress WJ, Crayn D (2015) Will tropical mountaintop plant species survive climate change? Identifying key knowledge gaps using species distribution modelling in Australia. Biol Conserv 191:322–330. https://doi.org/10.1016/j.biocon.2015.07.022

    Article  Google Scholar 

  16. Eisenlohr PV, Oliveira-Filho AT (2015) Revisiting patterns of tree species composition and their driving forces in the Atlantic Forests of Southeastern Brazil. Biotropica 47:689–701. https://doi.org/10.1111/btp.12254

    Article  Google Scholar 

  17. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  18. Engels W (2009) Brazil’s Araucaria Rainforest: climate change and reforestation. In: Van Bodegom AJ, Savenije H, Wit M (eds) Forests and climate change: adaptation and mitigation. Tropenbos International, Wageningen, pp 114–118

    Google Scholar 

  19. Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) (2009) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto

    Google Scholar 

  20. Franklin J (2010) Mapping species distribution. University Press, Cambridge

    Book  Google Scholar 

  21. Garcia LG, Ferraz SFB, Alvares CA, Ferraz KMPMB, Higa RCV (2014) Modelagem da aptidão climática do Eucalyptus grandis frente aos cenários de mudanças climáticas no Brasil. Sci For 42:503–511

    Google Scholar 

  22. GBIF.org (2016) GBIF Occurrence Download. https://doi.org/10.15468/dl.ywhpmz

  23. Gentry AH (1992) Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63:19–28. https://doi.org/10.2307/3545512

    Article  Google Scholar 

  24. Giraudo AR, Krauczuk E, Arzamendia V, Povedano H (2003) Critical analysis of protected areas in the Atlantic Forest of Argentina. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America: biodiversity status, threats, and outlook. CABS and Island Press, Washington, pp 245–261

    Google Scholar 

  25. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  26. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x

    Article  Google Scholar 

  27. Huang C, Kim S, Altstatt A, Townshend JRG, Davis P, Song K, Tucker CJ, Rodas O, Yanosky A, Clay R, Musinsky J (2007) Rapid loss of Paraguay´s Atlantic forest and the status of protected areas—a landsat assessment. Remote Sens Environ 106:460–466. https://doi.org/10.1016/j.rse.2006.09.016

    Article  Google Scholar 

  28. Huberty CJ (1994) Applied Discriminant Analysis (Carl J. Huberty). Wiley, New York

    Google Scholar 

  29. Indrusiak C, Monteiro S (2009) Unidades de Conservação na área de distribuição da Araucária. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 253–265

    Google Scholar 

  30. Instituto Brasileiro de Geografia e Estatística- IBGE (2014) Geociências. http://downloads.ibge.gov.br/downloads_geociencias.htm/. Accessed 16 June 2018

  31. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  32. Jarenkow JA, Budke JC (2009) Padrões florísticos e análise estrutural de remanescentes de florestas com araucária no Brasil. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 113–126

    Google Scholar 

  33. Käffer M, Marcelli MPK (2009) Líquens da floresta com araucária. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 153–160

    Google Scholar 

  34. Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:1–20. https://doi.org/10.1038/sdata.2017.122

    Article  Google Scholar 

  35. Kershaw P, Wagstaff B (2001) The southern conifer family Araucariaceae: history, status, and value for paleoenvironmental reconstruction. Annu Rev Ecol Evol Syst 32:397–414. https://doi.org/10.1146/annurev.ecolsys.32.081501.114059

    Article  Google Scholar 

  36. Kriticos DJ, Randall RP (2001) A comparison of systems to analyse potential weed distributions. In: Groves RH, Panetta FD, Virtue JG (eds) Weed risk assessment. CSIRO Publishing, Collingwood, pp 61–79

    Google Scholar 

  37. Laurance WF, Useche DC, Shoo LP et al (2011) Global warming, elevational ranges and the vulnerability of tropical biota. Biol Conserv 144:548–557. https://doi.org/10.1016/j.biocon.2010.10.010

    Article  Google Scholar 

  38. Ledru MP, Stevenson J (2012) The rise and fall of the genus Araucaria: a southern hemisphere climatic connection. In: Haberle SG, David B (eds) Peopled landscapes: archaeological and biogeographic approaches to landscapes. ANU E Press, Canberra, pp 241–254

    Google Scholar 

  39. Leite PF, Klein RM (1990) Vegetação. In: IBGE (ed) Geografia do Brasil, v 2, Região Sul. IBGE, Rio de Janeiro, pp 113–150

    Google Scholar 

  40. Lemes P, Melo AS, Loyola RD (2014) Climate change threatens protected areas of the Atlantic Forest. Biodivers Conserv 23:357–368. https://doi.org/10.1007/s10531-013-0605-2

    Article  Google Scholar 

  41. Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci USA 109:16217–16221. https://doi.org/10.1073/pnas.1213621109

    Article  PubMed  Google Scholar 

  42. Liu C, White M, Newell G (2013a) Selecting thresholds for the prediction of species occurrence with presence only data. J Biogeogr 40:778–789. https://doi.org/10.1111/jbi.12058

    Article  Google Scholar 

  43. Liu C, White M, Newell G, Griffioen P (2013b) Species distribution modelling for conservation planning in Victoria, Australia. Ecol Modell 249:68–74. https://doi.org/10.1016/j.ecolmodel.2012.07.003

    Article  Google Scholar 

  44. Marsden SJ, Whiffin M, Galetti M, Fielding A (2005) How well will Brazil’s system of Atlantic forest reserves maintain viable bird populations? Biodivers Conserv 14:2835–2853. https://doi.org/10.1007/s10531-004-0219-9

    Article  Google Scholar 

  45. Mello AJM, Peroni N (2015) Cultural landscapes of the Araucaria Forests in the northern plateau of Santa Catarina. Brazil. J Ethnobiol Ethnomed 11:51. https://doi.org/10.1186/s13002-015-0039-x

    Article  Google Scholar 

  46. Mittermeier RA, Myers N, Thomsen JB, da Fonseca GAB, Olivieri S (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520. https://doi.org/10.1046/j.1523-1739.1998.012003516.x

    Article  Google Scholar 

  47. MMA (2018) Dados Georreferenciados. http://www.mma.gov.br/areas-protegidas/cadastro-nacional-de-ucs/dados-georreferenciados/. Accessed 5 Feb 2018

  48. Moreira M, Zucchi MI, Gomes JE, Alves-Pereira A, Cardoso EJ (2016) Araucaria angustifolia aboveground roots presented high arbuscular mycorrhizal fungal colonization and diversity in the Brazilian Atlantic Forest. Pedosphere 26:561–566. https://doi.org/10.1016/S1002-0160(15)60065-0

    Article  Google Scholar 

  49. Moreira-Souza M, Trufem SF, Gomes-da-Costa SM, Cardoso EJ (2003) Arbuscular mycorrhizal fungi associated with Araucaria angustifolia (Bert.) O. Ktze. Mycorrhiza 13:211–215. https://doi.org/10.1007/s00572-003-0221-1

    CAS  Article  PubMed  Google Scholar 

  50. Mountain Research Initiative EDW Working Group (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430. https://doi.org/10.1038/nclimate2563

    Article  Google Scholar 

  51. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Nóbrega CC, de Marco P (2011) Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers Distrib 17:491–505. https://doi.org/10.1111/j.1472-4642.2011.00749.x

    Article  Google Scholar 

  53. Oliveira HR, Cassemiro FAS (2013) Potenciais efeitos das mudanças climáticas futuras sobre a distribuição de um anuro da caatinga Rhinella granulosa (Anura, Bufonidae). Iheringia Sér Zool 103:272–279. https://doi.org/10.1590/S0073-47212013000300010

    Article  Google Scholar 

  54. Oliveira-Filho AT (2009) Classificação das fitofisionomias da américa do sul cisandina tropical e subtropical: proposta de um novo sistema—prático e flexível—ou uma injeção a mais de caos? Rodriguésia 60:237–258

    Article  Google Scholar 

  55. Oliveira-Filho AT (2017) NeoTropTree, Flora arbórea da Região Neotropical: um banco de dados envolvendo biogeografia, diversidade e conservação. http://www.icb.ufmg.br/treeatlan/. Acccessed 15 May 2017

  56. Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in southeastern Brazil and the influence of climate. Biotropica 32:793–810. https://doi.org/10.1111/j.1744-7429.2000.tb00619.x

    Article  Google Scholar 

  57. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. https://doi.org/10.1038/nature01286

    CAS  Article  PubMed  Google Scholar 

  58. Pearson RG (2007) Species’s distribution modelling for conservation educators and practitioners. Lesson Conserv 3:54–89

    Google Scholar 

  59. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x

    Article  Google Scholar 

  60. Phillips SJ, Dudík M, Schapire RE. [Internet] Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 10 June 2018

  61. Pinto MP, Grelle CEV (2009) Reserve selection and persistence: complementing the existing Atlantic Forest reserve system. Biodivers Conserv 18:957–968. https://doi.org/10.1007/s10531-008-9513-2

    Article  Google Scholar 

  62. Pinto HS, Assad SD, Zullo J Jr., Brunini O (2002) O aquecimento global e a agricultura. Mudanças Climáticas com Ciência 34:1–6

    Google Scholar 

  63. Putzke J (2009) Fungos associados à Araucaria angustifolia. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 149–152

    Google Scholar 

  64. Rambo B (1951) A imigração da selva higrófila no Rio Grande do Sul. Anais Botânicos do Herbário Barbosa Rodriguésia 3:55–91

    Google Scholar 

  65. Reflora—Virtual Herbarium. http://reflora.jbrj.gov.br/reflora/herbarioVirtual/. Accessed 20 Feb 2018

  66. Rezende VL, Oliveira-Filho AT, Eisenlohr PV, Kamino LHY, Vibrans AC (2015) Restricted geographic distribution of tree species calls for urgent conservation efforts in the Subtropical Atlantic Forest. Biodivers Conserv 24:1057–1071. https://doi.org/10.1007/s10531-014-0721-7

    Article  Google Scholar 

  67. Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Tabarelli M, Fonseca GA, Mittermeier RA (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspect Ecol Conser 16:208–214. https://doi.org/10.1016/j.pecon.2018.10.002

    Article  Google Scholar 

  68. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  69. Rylands AB, Brandon K (2005) Unidades de conservação brasileiras. Megadiversidade 1:27–35

    Google Scholar 

  70. Silva JMC, Casteleti CHM (2003) Status of the biodiversity of the Atlantic Forest of Brazil. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America: biodiversity status, threats, and outlook. Center for Applied Biodiversity Science and Island Press, Washington, pp 43–59

    Google Scholar 

  71. Silva LC, Anand M, Oliveira JM, Pillar VD (2009) Past century changes in Araucaria angustifolia (Bertol.) Kuntze water use efficiency and growth in forest and grassland ecosystems of southern Brazil: implications for forest expansion. Glob Change Biol 15:2387–2396. https://doi.org/10.1111/j.1365-2486.2009.01859.x

    Article  Google Scholar 

  72. SOS Mata Atlântica (2017) Atlas dos remanescentes florestais da Mata Atlântica: período 2015-2016. Technical report. http://www.sosmatatlantica.org.br/. Accessed 15 June 2017

  73. Souza AF (2007) Ecological interpretation of multiple population size structures in trees: the case of Araucaria angustifolia in South America. Aust Ecol 32:524–533. https://doi.org/10.1111/j.1442-9993.2007.01724.x

    Article  Google Scholar 

  74. Souza AF (2017) Conifer demography in forest-grassland mosaics: a landscape-scale study over a 24-year period. Botany 95:717–729. https://doi.org/10.1139/cjb-2016-0315

    Article  Google Scholar 

  75. Souza MIFD, Salgueiro F, Carnavale-Bottino M, Félix DB, Alves-Ferreira M, Bittencourt JVM, Margis R (2009) Patterns of genetic diversity in southern and southeastern Araucaria angustifolia (Bert.) O. Kuntze relict populations. Genet Mol Biol 32:546–556. https://doi.org/10.1590/S1415-47572009005000052

    Article  PubMed  PubMed Central  Google Scholar 

  76. Stefenon VM, Gailing O, Finkeldey R (2007) Genetic structure of Araucaria angustifolia (Araucariaceae) populations in Brazil: implications for the in situ conservation of genetic resources. Plant Biol 9:516–525. https://doi.org/10.1055/s-2007-964974

    CAS  Article  PubMed  Google Scholar 

  77. Thomas P (2013) Araucaria angustifolia. The IUCN Red list of threatened species. Version 2014.2. http://www.iucnredlist.org/. Accessed 16 June 2016

  78. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32:369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x

    Article  Google Scholar 

  79. Thuiller W, Georges D, Engler R (2014) biomod2: Ensemble platform for species distribution modeling. R package version 3.1-64. http://CRAN.R-project.org/package=biomod2/. Accessed 10 Feb 2015

  80. Tibbett K (2004) Risk and economic reciprocity: an analysis of three regional Aboriginal food-sharing systems in late Holocene Australia. Aust Archaeol 58:7–10. https://doi.org/10.1080/03122417.2004.11681774

    Article  Google Scholar 

  81. Valverde MC, Marengo JA (2010) Mudanças na circulação atmosférica sobre a América do Sul para cenários futuros de clima projetados pelos modelos globais do IPCC AR4. Rev Bras Meteorol 25:125–145. https://doi.org/10.1590/S0102-77862010000100011

    Article  Google Scholar 

  82. Veloso HP (2012) Manual técnico da vegetação Brasileira, 2nd edn. IBGE, Rio de Janeiro

    Google Scholar 

  83. Vieira EM, Lobo G (2009) Dispersão e predação de sementes de Araucaria angustifólia. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 85–96

    Google Scholar 

  84. Wilberger TP, Boeni BO, Azambuja CP, Silveira D, Vieira ML, Lehn CR, Dutra TL (2009) Epítificos vasculares associados à Araucaria angustifolia. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 137–148

    Google Scholar 

  85. Williams SE, Bolitho EE, Fox S (2003) Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc R Soc B Biol Sci 270:1887–1892. https://doi.org/10.1098/rspb.2003.2464

    Article  Google Scholar 

  86. Williams JW, Jackson ST, Kutzbacht JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci USA 104:5738–5742. https://doi.org/10.1073/pnas.0606292104

    CAS  Article  PubMed  Google Scholar 

  87. Williams JN, Seo C, Thorne J, Nelson JK, Erwin S, O’Brien JM, Schwartz MW (2009) Using species distribution models to predict new occurrences for rare plants. Divers Distrib 15:565–576. https://doi.org/10.1111/j.1472-4642.2009.00567.x

    Article  Google Scholar 

  88. Wrege MS, Higa RCV, Britez RM, Garrastazu MC, de Sousa VA, Caramori PH, Radin B, Braga HJ (2009) El cambio climático y la conservación de Araucaria angustifolia en Brasil. Unasylva 60:231–232

    Google Scholar 

  89. Wrege MS, Fritzsons E, Soares MTS, Bognola IA, de Sousa VA, de Sousa LP, Gomes JBV, de Aguiar AV, Gomes GC, Matos MFS, Scarante AG, Ferrer RS (2017) Distribuição natural e habitat da araucária frente às mudanças climáticas globais. Pesqui Florest Bras 37:331–346. https://doi.org/10.4336/2017.pfb.37.91.1413

    Article  Google Scholar 

  90. Zhang L, Liu S, Sun P et al (2015) Consensus forecasting of species distributions: the effects of niche model performance and niche properties. PLoS ONE 10:1–18. https://doi.org/10.1371/journal.pone.0120056

    CAS  Article  Google Scholar 

  91. Zwiener VP, Lira-Noriega A, Grady CJ, Padial AA, Vitule JRS (2017) Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Glob Ecol Biogeogr 27:298–309. https://doi.org/10.1111/geb.12695

    Article  Google Scholar 

Download references

Funding

This work was supported by the Fundação Grupo Boticário de Conservação à Natureza [Grant Number: 1015_20142]; and the Fundação de Amparo à Pesquisa de Minas Gerais [Grant Number APQ-01960-12]. Monik Castro was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; David Tng was supported by an Australian Endeavour Research Fellowship; Deborah Apgaua was supported by a Schlumberger Faculty of the Future fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Maioli Campos Barbosa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by David Hawksworth.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castro, M.B., Barbosa, A.C.M.C., Pompeu, P.V. et al. Will the emblematic southern conifer Araucaria angustifolia survive to climate change in Brazil?. Biodivers Conserv 29, 591–607 (2020). https://doi.org/10.1007/s10531-019-01900-x

Download citation

Keywords

  • Brazilian pine
  • Global warming
  • Extinction risk
  • Potential species distribution modelling
  • Climatic envelope