Skip to main content

Long-term, fire-induced changes in habitat structure and microclimate affect Cerrado lizard communities

Abstract

Fire transforms the structure of natural habitats and, consequently, modifies microclimates affecting ectotherm organisms that are particularly susceptible to changes in the thermal environment. Nevertheless, the effects of fire-induced microclimatic shifts upon natural populations have been neglected. We measured the central tendency and variation of habitat structural and microclimatic variables in experimental plots of Neotropical savanna vegetation subjected to different fire regimes and assessed their effects upon lizard community structure. In addition, we evaluated the underlying mechanisms linking fire-induced environmental changes to community structure, by comparing lizard body condition and survival between different fire regimes. Fire suppression promoted increased tree density, canopy cover and leaf-litter weight, whereas burning had the opposite effects, reducing the habitat structural complexity. The best predictors of fire regimes were means of structural variables, but variances of microclimatic variables, and the reduced structural complexity of burned plots both increased and decreased the variation of microclimatic variables. Lizard community structure was chiefly described by a gradient of decreasing tree density, canopy cover and leaf litter weight with increasing fire severity. About half of the lizard species were favored in the fire-protected plot, while the other half was favored in the burned plots, with most of the variation being explained by structural variables. Lizard body condition and survival rates were not affected by fire regimes, suggesting a dominant role of thermoregulation opportunities afforded by habitat structure—instead of food availability or predation rates—upon community structure. Our findings indicate that even sporadic fires can have profound effects upon lizard communities and that protecting some habitat patches from burning is essential to maximize lizard diversity in Cerrado landscapes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abram PK, Boivin G, Moiroux J, Brodeur J (2017) Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. Biol Rev 92:1859–1876. https://doi.org/10.1111/brv.12312

    Article  PubMed  Google Scholar 

  2. Alvares CA, Stape JL, Sentelhas PC, Goncalves JLD, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  3. Andersen AN, Cook GD, Corbett LK, Douglas MM, Eager RW, Russell-Smith J, Setterfield SA, Williams RJ, Woinarski JCZ (2005) Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment. Austral Ecol 30:155–167. https://doi.org/10.1111/j.1442-9993.2005.01441.x

    Article  Google Scholar 

  4. Andersson M, Krockenberger A, Schwarzkopf L (2010) Experimental manipulation reveals the importance of refuge habitat temperature selected by lizards. Austral Ecol 35:294–299. https://doi.org/10.1111/j.1442-9993.2009.02035.x

    Article  Google Scholar 

  5. Basson CH, Levy O, Angilletta MJ, Clusella-Trullas S (2017) Lizards paid a greater opportunity cost to thermoregulate in a less heterogeneous environment. Funct Ecol 31:856–865. https://doi.org/10.1111/1365-2435.12795

    Article  Google Scholar 

  6. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  7. Braithwaite RW (1987) Effects of fire regimes on lizards in the wet-dry tropics of Australia. J Trop Ecol 3:265–275. https://doi.org/10.1017/S0266467400002145

    Article  Google Scholar 

  8. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  9. Brisson JA, Strasburg JL, Templeton AR (2003) Impact of fire management on the ecology of Collared Lizard (Crotaphytus collaris) populations living on the Ozark Plateau. Anim Conserv 6:247–254. https://doi.org/10.1017/s1367943003003305

    Article  Google Scholar 

  10. Buckley LB, Hurlbert AH, Jetz W (2012) Broad-scale ecological implications of ectothermy and endothermy in changing environments. Global Ecol Biogeogr 21:873–885. https://doi.org/10.1111/j.1466-8238.2011.00737.x

    Article  Google Scholar 

  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  12. Bury RB (2004) Wildfire, fuel reduction, and herpetofaunas across diverse landscape mosaics in northwestern forests. Conserv Biol 18:968–975. https://doi.org/10.1111/j.1523-1739.2004.00522.x

    Article  Google Scholar 

  13. Cavitt JF (2000) Fire and a tallgrass prairie reptile community: effects on relative abundance and seasonal activity. J Herpetol 34:12–20. https://doi.org/10.2307/1565233

    Article  Google Scholar 

  14. Ceriani L, Verme P (2012) The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini. J Econ Inequal 10:421–443. https://doi.org/10.1007/S10888-011-9188-X

    Article  Google Scholar 

  15. Chen JQ, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology: variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience 49:288–297. https://doi.org/10.2307/1313612

    Article  Google Scholar 

  16. Cintra R, Sanaiotti T (2005) Fire effects on the composition of a bird community in an Amazonian savanna (Brazil). Braz J Biol 65:683–695. https://doi.org/10.1590/S1519-69842005000400016

    CAS  Article  PubMed  Google Scholar 

  17. Clarke MF (2008) Catering for the needs of fauna in fire management: science or just wishful thinking? Wildl Res 35:385–394. https://doi.org/10.1071/Wr07137

    Article  Google Scholar 

  18. Colli GR (1991) Reproductive ecology of Ameiva ameiva (Sauria, Teiidae) in the Cerrado of central Brazil. Copeia 1991:1002–1012. https://doi.org/10.2307/1446095

    Article  Google Scholar 

  19. Colli GR, Péres AK, Zatz MG (1997) Foraging mode and reproductive seasonality in tropical lizads. J Herpetol 31:490–499. https://doi.org/10.2307/1565600

    Article  Google Scholar 

  20. Costa BM, Pantoja DL, Vianna MCM, Colli GR (2013) Direct and short-term effects of fire on lizard assemblages from a neotropical savanna hotspot. J Herpetol 47:502–510. https://doi.org/10.1670/12-043

    Article  Google Scholar 

  21. Crawley MJ (2013) The R book. Wiley, Chichester

    Google Scholar 

  22. Cunningham SC, Babb RD, Jones TR, Taubert BD, Vega R (2002) Reaction of lizard populations to a catastrophic wildfire in a central Arizona mountain range. Biol Conserv 107:193–201. https://doi.org/10.1016/S0006-3207(02)00064-2

    Article  Google Scholar 

  23. Davies-Colley RJ, Payne GW, van Elswijk M (2000) Microclimate gradients across a forest edge. N Z J Ecol 24:111–121. https://doi.org/10.2307/24054666

    Article  Google Scholar 

  24. de Andrade RB, Balch JK, Carreira JYO, Brando PM, Freitas AVL (2017) The impacts of recurrent fires on diversity of fruit-feeding butterflies in a south-eastern Amazon forest. J Trop Ecol 33:22–32. https://doi.org/10.1017/s0266467416000559

    Article  Google Scholar 

  25. Deng H (2013) Guided random forest in the RRF package. http://arxiv.org/abs/1306.0237v1:1-2

  26. Dillon ME, Woods HA (2016) Introduction to the symposium: beyond the mean: biological impacts of changing patterns of temperature variation. Integr Comp Biol 56:11–13. https://doi.org/10.1093/icb/icw020

    Article  PubMed  Google Scholar 

  27. Dillon ME, Woods HA, Wang G, Fey SB, Vasseur DA, Telemeco RS, Marshall K, Pincebourde S (2016) Life in the frequency domain: the biological impacts of changes in climate variability at multiple time scales. Integr Comp Biol 56:14–30. https://doi.org/10.1093/icb/icw024

    Article  PubMed  Google Scholar 

  28. Elzer AL, Pike DA, Webb JK, Hammill K, Bradstock RA, Shine R (2013) Forest-fire regimes affect thermoregulatory opportunities for terrestrial ectotherms. Austral Ecol 38:190–198. https://doi.org/10.1111/j.1442-9993.2012.02391.x

    Article  Google Scholar 

  29. Engstrom RT (2010) First-order fire effects on animals: review and recommendations. Fire Ecol 6:115–130. https://doi.org/10.4996/fireecology.0601115

    Article  Google Scholar 

  30. Fenner AL, Bull CM (2007) Short-term impact of grassland fire on the endangered Pygmy Bluetongue Lizard. J Zool 272:444–450. https://doi.org/10.1111/j.1469-7998.2007.00287.x

    Article  Google Scholar 

  31. Flatt T, Shine R, Borges-Landaez PA, Downes SJ (2001) Phenotypic variation in an oviparous montane lizard (Bassiana duperreyi): the effects of thermal and hydric incubation environments. Biol J Linn Soc Lond 74:339–350. https://doi.org/10.1006/bijl.2001.0581

    Article  Google Scholar 

  32. Garda AA, Costa GC, Franca FGR, Giugliano LG, Leite GS, Mesquita DO, Nogueira C, Tavares-Bastos L, Vasconcellos MM, Vieira GHC, Vitt LJ, Werneck FP, Wiederhecker HC, Colli GR (2012) Reproduction, body size, and diet of Polychrus acutirostris (Squamata: Polychrotidae) in two contrasting environments in Brazil. J Herpetol 46:2–8. https://doi.org/10.1670/10-288

    Article  Google Scholar 

  33. Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, New York

    Google Scholar 

  34. Greenberg CH (2002) Fire, habitat structure and herpetofauna in the southeast vol NE-288. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square

  35. Griffiths AD, Christian KA (1996) The effects of fire on the Frillneck Lizard (Chlamydosaurus kingii) in northern Australia. Aust J Ecol 21:386–398. https://doi.org/10.1111/j.1442-9993.1996.tb00625.x

    Article  Google Scholar 

  36. Haslem A, Kelly LT, Nimmo DG, Watson SJ, Kenny SA, Taylor RS, Avitabile SC, Callister KE, Spence-Bailey LM, Clarke MF, Bennett AF (2011) Habitat or fuel? Implications of long-term, post-fire dynamics for the development of key resources for fauna and fire. J Appl Ecol 48:247–256. https://doi.org/10.1111/j.1365-2664.2010.01906.x

    Article  Google Scholar 

  37. Haslem A, Avitabile SC, Taylor RS, Kelly LT, Watson SJ, Nimmo DG, Kenny SA, Callister KE, Spence-Bailey LM, Bennett AF, Clarke MF (2012) Time-since-fire and inter-fire interval influence hollow availability for fauna in a fire-prone system. Biol Conserv 152:212–221. https://doi.org/10.1016/j.biocon.2012.04.007

    Article  Google Scholar 

  38. Hellgren EC, Burrow AL, Kazmaier RT, Ruthven DC (2010) The effects of winter burning and grazing on resources and survival of Texas Horned Lizards in a thornscrub ecosystem. J Wildl Manage 74:300–309. https://doi.org/10.2193/2009-090

    Article  Google Scholar 

  39. Hoffmann WA, Jaconis S, Mckinley KL, Geiger EL, Gotsch SG, Franco AC (2012) Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna-forest boundaries. Austral Ecol 37:634–643. https://doi.org/10.1111/j.1442-9993.2011.02324.x

    Article  Google Scholar 

  40. Huang SP, Porter WP, Tu MC, Chiou CR (2014) Forest cover reduces thermally suitable habitats and affects responses to a warmer climate predicted in a high-elevation lizard. Oecologia 175:25–35. https://doi.org/10.1007/s00442-014-2882-1

    Article  PubMed  Google Scholar 

  41. Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: discussion of approaches. Am Zool 19:357–366. https://doi.org/10.1093/icb/19.1.357

    Article  Google Scholar 

  42. Lara DX, Fiedler NC, Medeiros MB (2007) Uso do fogo em propriedades rurais do Cerrado em Cavalcante, GO. Cienc Florest 17:9–15. https://doi.org/10.5902/198050981930

    Article  Google Scholar 

  43. Legendre P, Legendre L (2012) Numerical Ecology, 3rd edn. Elsevier, Amsterdan

    Google Scholar 

  44. Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277. https://doi.org/10.1111/j.2041-210X.2010.00078.x

    Article  Google Scholar 

  45. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  46. Lyon LJ, Telfer ES, Schreiner DS (2000) Direct effects of fire and animal responses. In: Report GT (ed) Wildland fire in ecosystems: effects of fire on fauna, vol 1. RMRS-GTR-42, pp 17–23

  47. Maravalhas J, Vasconcelos HL (2014) Revisiting the pyrodiversity-biodiversity hypothesis: long-term fire regimes and the structure of ant communities in a Neotropical savanna hotspot. J Appl Ecol 51:1661–1668. https://doi.org/10.1111/1365-2664.12338

    Article  Google Scholar 

  48. Martin RE, Sapsis DB (1991) Fires as agents of biodiversity: pyrodiversity promotes biodiversity. In: Kerner HM (ed) Symposium on biodiversity, Northwestern California, 1992. Wildland Resources Centre, University of California, Berkeley, pp 150–157. https://doi.org/10.1098/rstb.2015.0169

  49. Matthews CE, Moorman CE, Greenberg CH, Waldrop TA (2010) Response of reptiles and amphibians to repeated fuel reduction treatments. J Wildl Manag 74:1301–1310. https://doi.org/10.2193/2008-513

    Article  Google Scholar 

  50. Meiri S, Bauer AM, Chirio L, Colli GR, Das I, Doan TM, Feldman A, Herrera F-C, Novosolov M, Pafilis P, Pincheira-Donoso D, Powney G, Torres-Carvajal O, Uetz P, Van Damme R (2013) Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Global Ecol Biogeogr 22:834–845. https://doi.org/10.1111/geb.12053

    Article  Google Scholar 

  51. Mesquita DO, Colli GR, Franca FGR, Vitt LJ (2006) Ecology of a Cerrado lizard assemblage in the Jalapão region of Brazil. Copeia 2006:460–471

    Article  Google Scholar 

  52. Milling CR, Rachlow JL, Olsoy PJ, Chappell MA, Johnson TR, Forbey JS, Shipley LA, Thornton DH (2018) Habitat structure modifies microclimate: an approach for mapping fine-scale thermal refuge. Methods Ecol Evol 9:1648–1657. https://doi.org/10.1111/2041-210x.13008

    Article  Google Scholar 

  53. Miranda HS (2010) Efeitos do Regime do Fogo sobre a Estrutura de Comunidades de Cerrado: Resultados do Projeto Fogo. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brasília

    Google Scholar 

  54. Miranda HS, Bustamante MMC, Miranda AC (2002) The fire factor. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 51–68

    Chapter  Google Scholar 

  55. Miranda HS, Sato MN, Nascimento WN, Aires FS (2009) Fires in the Cerrado, the Brazilian savanna. In: Cochrane MA (ed) Tropical fire ecology: climate change, land use, and ecosystem dynamics. Springer and Praxis Publishing Ltd, Chichester, pp 427–450

    Chapter  Google Scholar 

  56. Mistry J (1998) Fire in the cerrado (savannas) of Brazil: an ecological review. Prog Phys Geogr 22:425–448. https://doi.org/10.1177/030913339802200401

    Article  Google Scholar 

  57. Moseley KR, Castleberry SB, Schweitzer SH (2003) Effects of prescribed fire on herpetofauna in bottomland hardwood forests. Southeast Nat 2:475–486

    Article  Google Scholar 

  58. Mott B, Alford RA, Schwarzkopf L (2010) Tropical reptiles in pine forests: assemblage responses to plantations and plantation management by burning. For Ecol Manag 259:916–925. https://doi.org/10.1016/j.foreco.2009.11.031

    Article  Google Scholar 

  59. Nicholson E, Lill A, Andersen A (2006) Do tropical savanna skink assemblages show a short-term response to low-intensity fire? Wildl Res 33:331–338. https://doi.org/10.1071/Wr05067

    Article  Google Scholar 

  60. Nimmo DG, Kelly LT, Spence-Bailey LM, Watson SJ, Taylor RS, Clarke MF, Bennett AF (2013) Fire mosaics and reptile conservation in a fire-prone region. Conserv Biol 27:345–353. https://doi.org/10.1111/j.1523-1739.2012.01958.x

    CAS  Article  PubMed  Google Scholar 

  61. Nimmo DG, Kelly LT, Farnsworth LM, Watson SJ, Bennett AF (2014) Why do some species have geographically varying responses to fire history? Ecography 37:805–813. https://doi.org/10.1111/ecog.00684

    Article  Google Scholar 

  62. Nogueira C, Colli GR, Martins M (2009) Local richness and distribution of the lizard fauna in natural habitat mosaics of the Brazilian Cerrado. Austral Ecol 34:83–96. https://doi.org/10.1111/j.1442-9993.2008.01887.x

    Article  Google Scholar 

  63. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan

  64. Oliveira-Filho AT, Ratter JA (2002) Vegetation physiognomies and woody flora of the Cerrado biome. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: Ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 91–120

    Chapter  Google Scholar 

  65. Oliveras I, Meirelles ST, Hirakuri VL, Freitas CR, Miranda HS, Pivello VR (2013) Effects of fire regimes on herbaceous biomass and nutrient dynamics in the Brazilian savanna. Int J Wildland Fire 22:368–380. https://doi.org/10.1071/Wf10136

    CAS  Article  Google Scholar 

  66. Parr CL, Andersen AN (2006) Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conserv Biol 20:1610–1619. https://doi.org/10.1111/j.1523-1739.2006.00492.x

    Article  PubMed  Google Scholar 

  67. Pelegrin N, Bucher EH (2010) Long-term effects of a wildfire on a lizard assemblage in the arid Chaco forest. J Arid Environ 74:368–372. https://doi.org/10.1016/j.jaridenv.2009.09.009

    Article  Google Scholar 

  68. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  Google Scholar 

  69. Pianka ER (1996) Long-term changes in lizard assemblages in the Great Victoria Desert: dynamic habitat mosaics in response to wildfires. In: Cody ML, Smallwood JA (eds) Long-term studies of vertebrate communities. Academic Press, San Diego, pp 191–215

    Chapter  Google Scholar 

  70. Pianka ER, Goodyear SE (2011) Lizard responses to wildfire in arid interior Australia: long-term experimental data and commonalities with other studies. Austral Ecol. https://doi.org/10.1111/j.1442-9993.2010.02234.x

    Article  Google Scholar 

  71. Pincebourde S, Murdock CC, Vickers M, Sears MW (2016) Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integr Comp Biol 56:45–61. https://doi.org/10.1093/icb/icw016

    Article  PubMed  Google Scholar 

  72. Potter KA, Arthur Woods H, Pincebourde S (2013) Microclimatic challenges in global change biology. Glob Chang Biol 19:2932–2939. https://doi.org/10.1111/gcb.12257

    Article  PubMed  Google Scholar 

  73. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  74. Ramos AM, dos Santos LAR, Fortes LTG (2009) Normais Climatológicas do Brasil 1961-1990. INMET, Brasília

    Google Scholar 

  75. Ribeiro MLO (ed) (2011) Reserva Ecológica do IBGE - Biodiversidade Terrestre. Fundação Instituto Brasileiro de Geografia e Estatística—IBGE, Rio de Janeiro

  76. Rochester CJ, Brehme CS, Clark DR, Stokes DC, Hathaway SA, Fisher RN (2010) Reptile and amphibian responses to large-scale wildfires in southern California. J Herpetol 44:333–351. https://doi.org/10.1670/08-143.1

    Article  Google Scholar 

  77. Sato MN, Miranda HS, Maia JMF (2010) O fogo e o estrato arbóreo do Cerrado: Efeitos imediatos e de longo prazo. In: Miranda HS (ed) Efeitos do Regime do Fogo sobre a Estrutura de Comunidades de Cerrado: Resultados do Projeto Fogo. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brasília, pp 77–91

    Google Scholar 

  78. Scheffers BR, Edwards DP, Diesmos A, Williams SE, Evans TA (2014) Microhabitats reduce animal’s exposure to climate extremes. Glob Chang Biol 20:495–503. https://doi.org/10.1111/gcb.12439

    Article  PubMed  Google Scholar 

  79. Sears MW, Angilletta MJ, Schuler MS, Borchert J, Dilliplane KF, Stegman M, Rusch TW, Mitchell WA (2016) Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proc Natl Acad Sci USA 113:10595–10600. https://doi.org/10.1073/pnas.1604824113

    CAS  Article  PubMed  Google Scholar 

  80. Sinervo B, Mendez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Cruz MVS, Lara-Resendiz R, Martinez-Mendez N, Calderon-Espinosa ML, Meza-Lazaro RN, Gadsden H, Avila LJ, Morando M, De la Riva IJ, Sepulveda PV, Rocha CFD, Ibarguengoytia N, Puntriano CA, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J, Sites JW (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899

    CAS  Article  Google Scholar 

  81. Singh S, Smyth AK, Blomberg SP (2002) Effect of a control burn on lizards and their structural environment in a eucalypt open-forest. Wildl Res 29:447–454. https://doi.org/10.1071/Wr01015

    Article  Google Scholar 

  82. Sousa HCd, Soares AHSB, Costa BM, Pantoja DL, Caetano GH, Queiroz TAd, Colli GR (2015) Fire regimes and the demography of the lizard Micrablepharus atticolus (Squamata, Gymnophthalmidae) in a biodiversity hotspot. S Am J Herpetol 10:143–156. https://doi.org/10.2994/sajh-d-15-00011.1

    Article  Google Scholar 

  83. Sousa HC, Costa BM, Morais CJS, Pantoja DL, de Queiroz TA, Vieira CR, Colli GR (2016) Blue tales of a blue-tailed lizard: ecological correlates of tail autotomy in Micrablepharus atticolus (Squamata, Gymnophthalmidae) in a Neotropical savannah. J Zool 299:202–212. https://doi.org/10.1111/jzo.12335

    Article  Google Scholar 

  84. Taylor JE, Fox BJ (2001) Disturbance effects from fire and mining produce different lizard communities in eastern Australian forests. Austral Ecol 26:193–204. https://doi.org/10.1046/j.1442-9993.2001.01105.x

    Article  Google Scholar 

  85. Ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179. https://doi.org/10.2307/1938672

    Article  Google Scholar 

  86. Thomas JA, Rose RJ, Clarke RT, Thomas CD, Webb NR (1999) Intraspecific variation in habitat availability among ectothermic animals near their climatic limits and their centres of range. Funct Ecol 13:55–64. https://doi.org/10.1046/j.1365-2435.1999.00008.x

    CAS  Article  Google Scholar 

  87. Trainor CR, Woinarski JCZ (1994) Responses of lizards to three experimental fires in the savanna forests of Kakadu National Park. Wildl Res 21:131–148. https://doi.org/10.1071/WR9940131

    Article  Google Scholar 

  88. Uehara-Prado M, Bello AdM, Fernandes JO, Santos AJ, Silva IA, Cianciaruso MV (2010) Abundance of epigaeic arthropods in a Brazilian savanna under different fire frequencies. Zoologia (Curitiba) 27:718–724. https://doi.org/10.1590/S1984-46702010000500008

    Article  Google Scholar 

  89. Vieira EM (1999) Small mammal communities and fire in the Brazilian Cerrado. J Zool 249:75–80. https://doi.org/10.1111/j.1469-7998.1999.tb01061.x

    Article  Google Scholar 

  90. Vitt LJ, Colli GR, Caldwell JP, Mesquita DO, Garda AA, FranÇa FGR (2007) Detecting variation in microhabitat use in low-diversity lizard assemblages across small-scale habitat gradients. J Herpetol 41:654–663. https://doi.org/10.1670/06-279.1

    Article  Google Scholar 

  91. Waldschmidt S, Tracy CR (1983) Interactions between a lizard and its thermal environment: implications for sprint performance and space utilization in the lizard Uta stansburiana. Ecology 64:476–484. https://doi.org/10.2307/1939967

    Article  Google Scholar 

  92. Webb JK, Shine R (2008) Differential effects of an intense wildfire on survival of sympatric snakes. J Wildl Manag 72:1394–1398. https://doi.org/10.2193/2007-515

    Article  Google Scholar 

  93. Whelan RJ (1995) The ecology of fire. Cambridge Studies in Ecoloy. Cambridge University Press, Cambridge

    Google Scholar 

  94. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139. https://doi.org/10.1080/00063659909477239

    Article  Google Scholar 

  95. Wiederhecker HC, Pinto ACS, Colli GR (2002) Reproductive ecology of Tropidurus torquatus (Squamata: Tropiduridae) in the highly seasonal Cerrado biome of central Brazil. J Herpetol 36:82–91

    Article  Google Scholar 

  96. Wilgers DJ, Horne EA (2006) Effects of diferent burn regimes on tallgrass prairie herpetofaunal species diversity and community composition in the Flint Hills, Kansas. J Herpetol 40:73–84. https://doi.org/10.1670/162-05A.1

    Article  Google Scholar 

  97. Woods HA, Dillon ME, Pincebourde S (2015) The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J Therm Biol 54:86–97. https://doi.org/10.1016/j.jtherbio.2014.10.002

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the administration of Reserva Ecológica do IBGE for logistic support during all stages of data collecting and H. S. Miranda for diligently coordinating the main project of prescribed fires. BMC and DLP thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for fellowships. HCS and TAQ thank Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq) for fellowships. GRC thanks CAPES, CNPq, Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF), and USAID’s PEER program under cooperative agreement AID-OAA-A-11-00012 for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guarino R. Colli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by David Hawksworth.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Costa, B.M., Pantoja, D.L., Sousa, H.C. et al. Long-term, fire-induced changes in habitat structure and microclimate affect Cerrado lizard communities. Biodivers Conserv 29, 1659–1681 (2020). https://doi.org/10.1007/s10531-019-01892-8

Download citation

Keywords

  • Lizard
  • Reptile
  • Cerrado
  • Savanna
  • Fire
  • Community structure
  • Conservation