Benchmarking nesting aids for cavity-nesting bees and wasps

Abstract

In urban areas, the diversity and abundance of cavity-nesting Hymenoptera may be restricted due to scarce nesting resources. Artificial nesting sites (nesting aids) are being installed to compensate for this shortage in a growing number of private gardens and public greenspaces to support Hymenoptera (especially bee) diversity. Various nesting aids are commercially available, but their effectiveness has so far not been investigated empirically. We compared a low-budget commercial nesting aid with a customized version based on scientific evidence. Commercial models comprised bamboo and coniferous wood cavities with fixed short lengths and little variation in diameter, whereas customized models comprised hardwood, reed and bamboo cavities with varying lengths and diameters. Both models were exposed pairwise in private gardens over one season and nesting Hymenoptera species identified. The commercial nesting aids were less well occupied, hosted fewer brood cells and had lower species diversity. Hardwood showed the highest rate of occupancy but reed cavities hosted the highest species diversity due to diverse cavity diameter and length combinations. Cavities with diameters between four and eight mm were occupied most often. Regardless of material, cavities with smooth entrances were strongly preferred. Nesting aids designed in accordance with our findings may thus support high and diverse populations of cavity-nesting Hymenoptera in anthropogenically transformed habitats such as urban areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Amiet F, Neumeyer R, Müller A (1999) Fauna helvetica 4: apidae 2. Schweizerische Entomologische Gesellschaft, Neuchatel

    Google Scholar 

  2. Amiet F, Herrmann M, Müller A, Neumeyer R (2004) Fauna helvetica 9: apidae 4. Schweizerische Entomologische Gesellschaft, Neuchatel

    Google Scholar 

  3. Baldock KCR, Goddard MA, Hicks DM et al (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc R Soc B 282(1803):20142849. https://doi.org/10.1098/rspb.2014.2849

    Article  PubMed  Google Scholar 

  4. Balfour NJ, Ollerton J, Castellanos MC, Ratnieks FLW (2018) British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators. Biol Cons 222:278–283. https://doi.org/10.1016/j.biocon.2018.04.028

    Article  Google Scholar 

  5. Barthélémy C (2012) Nest Trapping, a simple method for gathering information on life histories of solitary bees and wasps. Bionomics of 21 species of solitary aculeate in Hong Kong. Hong Kong Entomol Bull 4(1):3–37

    Google Scholar 

  6. Bates D, Maechler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  7. Baude M, Kunin WE, Boatman ND et al (2016) Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530:85–88. https://doi.org/10.1038/nature16532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351–354. https://doi.org/10.1126/science.1127863

    Article  PubMed  CAS  Google Scholar 

  9. Blösch M, Dahl F, Dahl M, Bischoff H (2000) Die Grabwespen Deutschlands: Lebensweise, Verhalten, Verbreitung. Die Tierwelt Deutschlands. Teil 71. Goecke & Evers, Keltern

    Google Scholar 

  10. Bosch J, Kemp WP (2002) Developing and establishing bee species as crop pollinators: the example of Osmia spp. (Hymenoptera: Megachilidae) and fruit trees. Bull Entomol Res 92:3–16. https://doi.org/10.1079/BER2001139

    Article  PubMed  CAS  Google Scholar 

  11. Bosch J, Kemp WP (2004) Effect of pre-wintering and wintering temperature regimes on weight loss, survival, and emergence time in the mason bee Osmia cornuta (Hymenoptera: Megachilidae). Apidologie 35(5):469–479. https://doi.org/10.1051/apido:2004035

    Article  Google Scholar 

  12. Bosch J, Kemp WP, Peterson SS (2000) Management of Osmia lignaria (Hymenoptera: Megachilidae) populations for almond pollination: Methods to advance bee emergence. Environ Entomol 29:874–883. https://doi.org/10.1603/0046-225X-29.5.874

    Article  Google Scholar 

  13. Cáceres MD, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574. https://doi.org/10.1890/08-1823.1

    Article  PubMed  Google Scholar 

  14. Cane JH, Griswold T, Parker FD (2007) Substrates and materials used for nesting by North American Osmia bees (Hymenoptera: Apiformes: Megachilidae). Ann Entomol Soc Am 100(3):350–358. https://doi.org/10.1603/0013-8746(2007)100%5b350:samufn%5d2.0.co;2

    Article  Google Scholar 

  15. Carré G, Roche P, Chifflet R, Morison N et al (2009) Landscape context and habitat type as drivers of bee diversity in European annual crops. Agric Ecosyst Environ 133(1–2):40–47. https://doi.org/10.1016/j.agee.2009.05.001

    Article  Google Scholar 

  16. Césard N, Mouret H, Vaissiere B (2014) Urban bee hotels and public hotels (Des hotels a abeilles urbains et citoyens). Insectes 175:7–11

    Google Scholar 

  17. Corcos D, Cerretti P, Caruso V, Mei M, Falco M, Marini L (2019) Impact of urbanization on predator and parasitoid insects at multiple spatial scales. PLoS ONE 14:e0214068. https://doi.org/10.1371/journal.pone.0214068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. David W (2017) Fertig zum Einzug: nisthilfen für Wildbienen. Pala, Darmstadt

    Google Scholar 

  19. Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the Anthropocene. Science 345(6195):401–406. https://doi.org/10.1126/science.1251817

    Article  PubMed  CAS  Google Scholar 

  20. Ebeling A, Klein A-M, Weisser WW, Tscharntke T (2012) Multitrophic effects of experimental changes in plant diversity on cavity-nesting bees, wasps, and their parasitoids. Oecologia 169(2):453–465. https://doi.org/10.1007/s00442-011-2205-8

    Article  PubMed  Google Scholar 

  21. Everaars J, Strohbach MW, Gruber B, Dormann CF (2011) Microsite conditions dominate habitat selection of the red mason bee (Osmia bicornis, Hymenoptera: Megachilidae) in an urban environment: a case study from Leipzig, Germany. Landsc Urban Plan 103(1):15–23. https://doi.org/10.1016/j.landurbplan.2011.05.008

    Article  Google Scholar 

  22. Fetridge ED, Ascher JS, Langellotto GA (2008) The bee fauna of residential gardens in a suburb of New York City (Hymenoptera: Apoidea). Ann Entomol Soc Am 101(6):1067–1077. https://doi.org/10.1603/0013-8746-101.6.1067

    Article  Google Scholar 

  23. Flores LMA, Zanette LRS, Araujo FS (2018) Effects of habitat simplification on assemblages of cavity nesting bees and wasps in a semiarid neotropical conservation area. Biodivers Conserv 27:311–328. https://doi.org/10.1007/s10531-017-1436-3

    Article  Google Scholar 

  24. Flügel H (2005) Bienen in der Großstadt. Insecta 9:21–26

    Google Scholar 

  25. Fortel L, Henry M, Guilbaud L et al (2016) Use of human-made nesting structures by wild bees in an urban environment. J Insect Conserv 20:239–253. https://doi.org/10.1007/s10841-016-9857-y

    Article  Google Scholar 

  26. Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611. https://doi.org/10.1126/science.1230200

    Article  PubMed  CAS  Google Scholar 

  27. Gaston KJ, Smith RM, Thompson K, Warren PH (2005) Urban domestic gardens (II): experimental tests of methods for increasing biodiversity. Biodivers Conserv 14(2):395–413. https://doi.org/10.1007/s10531-004-6066-x

    Article  Google Scholar 

  28. Gathmann A, Tscharntke T (1999) Landschafts-bewertung mit bienen und wespen in nisthilfen: artenspektrum, interaktionen und bestimmungsschlüssel. Nat Landsc Baden-Württemberg 73:277–305

    Google Scholar 

  29. Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71:757–764. https://doi.org/10.1046/j.1365-2656.2002.00641.x

    Article  Google Scholar 

  30. Gathmann A, Greiler H-J, Tscharntke T (1994) Trap-nesting bees and wasps colonizing set-aside fields: succession and body size, management by cutting and sowing. Oecologia 98:8–14. https://doi.org/10.1007/bf00326084

    Article  PubMed  CAS  Google Scholar 

  31. Guedot C, Bosch J, James RR, Kemp WP (2006) Effects of three-dimensional and color patterns on nest location and progeny mortality in alfalfa leaf cutting bee (Hymenoptera: Megachilidae). J Econ Entomol 99(3):626–633. https://doi.org/10.1603/0022-0493-99.3.626

    Article  PubMed  Google Scholar 

  32. Hallmann CA, Sorg M, Jongejans E et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12(10):e0185809. https://doi.org/10.1371/journal.pone.0185809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hartig F (2017) DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.1.5. https://CRAN.R-project.org/package=DHARMa

  34. Hassell MP (2000) Host-parasitoid population dynamics. J Anim Ecol 69:543–566. https://doi.org/10.1046/j.1365-2656.2000.00445.x

    Article  Google Scholar 

  35. Hochberg ME, Ives AR (eds) (2000) Parasitoid population biology. Princeton University Press, Princeton

    Google Scholar 

  36. Hopfenmüller S (2016) Ein weiteres Neozoon erreicht Bayern: Der Stahlblaue Grillenjäger Isodontia mexicana (Saussure, 1867). Nachr Bayer Entomol 65(3/4):93–94

    Google Scholar 

  37. IPBES (2016) The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn

    Google Scholar 

  38. Jacobs HJ (2007) Die grabwespen deutschlands. Goecke & Evers, Keltern

    Google Scholar 

  39. Klein A-M, Steffan-Dewenter I, Tscharntke T (2004) Foraging trip duration and density of megachilid bees, eumenid wasps and pompilid wasps in tropical agroforestry systems. J Anim Ecol 73(3):517–525. https://doi.org/10.1111/j.0021-8790.2004.00826.x

    Article  Google Scholar 

  40. Klein A-M, Boreux V, Fornoff F et al (2018) Relevance of wild and managed bees for human well-being. Curr Opin Insect Sci 26:82–88. https://doi.org/10.1016/j.cois.2018.02.011

    Article  PubMed  Google Scholar 

  41. Kratochwil A, Klatt M (1989) Wildbienen-gemeinschaften (Hymenoptera Apoidea) an spontaner vegetation im siedlungsbereich der stadt freiburg im breisgau. Braun-Blanquetia 3:421–438

    Google Scholar 

  42. Krombein KV (1967) Trap-nesting wasps and bees: life histories and associates. Smithsonian Press, Washington, DC

    Google Scholar 

  43. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Soft 69:1–33. https://doi.org/10.18637/jss.v069.i01

    Article  Google Scholar 

  44. Longair RW (1981) Sex ratio variations in xylophilous aculeate Hymenoptera. Evolution 35(3):597–600. https://doi.org/10.2307/2408206

    Article  PubMed  Google Scholar 

  45. MacIvor JS (2017) Cavity-nest boxes for solitary bees: a century of design and research. Apidologie 48(3):311–327. https://doi.org/10.1007/s13592-016-0477-z

    Article  Google Scholar 

  46. MacIvor JS, Packer L (2015) ‘Bee hotels’ as tools for native pollinator conservation: a premature verdict? PLoS ONE 10(3):e0122126. https://doi.org/10.1371/journal.pone.0122126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Martins CF, Ferreira RP, Carneiro LT (2012) Influence of the orientation of nest entrance, shading, and substrate on sampling trap-nesting bees and wasps. Neotrop Entomol 41(2):105–111. https://doi.org/10.1007/s13744-012-0020-5

    Article  PubMed  CAS  Google Scholar 

  48. Matteson KC, Ascher JS, Langellotto GA (2008) Bee richness and abundance in New York city urban gardens. Ann Entomol Soc Am 101(1):140–150. https://doi.org/10.1603/0013-8746(2008)101%5b140:braain%5d2.0.co;2

    Article  Google Scholar 

  49. McKinney ML (2002) Urbanization, biodiversity, and conservation. BioScience 52(10):883–890. https://doi.org/10.1641/0006-3568(2002)052%5b0883:ubac%5d2.0.co;2

    Article  Google Scholar 

  50. Michener CD (2007) The bees of the world, 2nd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  51. Notton DG (2016) Grass-carrying wasp, Isodontia mexicana (de Saussure), genus and species new to Britain (Hymenoptera: Sphecidae). Br J Entomol Nat Hist 29(4):241–245

    Google Scholar 

  52. O’Neill K (2001) Solitary wasps: behavior and natural history. Cornell University Press, Ithaca

    Google Scholar 

  53. Oksanen J, Blanchet FG, Friendly M et al (2017) vegan: Community ecology package. R package version 2.4-5. https://CRAN.R-project.org/package=vegan

  54. OpenStreetMap contributors (2015) Planet dump. https://planet.openstreetmap.org. Accessed 27 June 2018

  55. Paini DR (2004) Nesting biology of an Australian resin bee (Megachile sp; Hymenoptera: Megachilidae): a study using trap nests. Austral Entomol 43(1):10–15. https://doi.org/10.1111/j.1440-6055.2004.00404.x

    Article  Google Scholar 

  56. Pankiw P, Siemens B (1974) Management of Megachile rotundata in northwestern Canada for population increase. Can Entomol 106(9):1003–1008. https://doi.org/10.4039/Ent1061003-9

    Article  Google Scholar 

  57. Pereira-Peixoto MH, Pufal G, Martins CF, Klein A-M (2014) Spillover of trap-nesting bees and wasps in an urban-rural interface. J Insect Conserv 18(5):815–826. https://doi.org/10.1007/s10841-014-9688-7

    Article  Google Scholar 

  58. Pereira-Peixoto MH, Pufal G, Staab M et al (2016) Diversity and specificity of host-natural enemy interactions in an urban-rural interface. Ecol Entomol 41(3):241–252. https://doi.org/10.1111/een.12291

    Article  Google Scholar 

  59. Peterson SS, Baird CR, Bitner RM (1994) Heat retention during incubation in nests of the alfalfa leafcutting bee (Hymenoptera: Megachilidae). J Econ Entomol 87(2):345–349. https://doi.org/10.1093/jee/87.2.345

    Article  Google Scholar 

  60. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. https://doi.org/10.1016/j.tree.2010.01.007

    Article  PubMed  Google Scholar 

  61. Powney GD, Carvell C, Edwards M et al (2019) Widespread losses of pollinating insects in Britain. Nat Commun 10:1018. https://doi.org/10.1038/s41467-019-08974-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Pufal G, Steffan-Dewenter I, Klein A-M (2017) Crop pollination services at the landscape scale. Curr Opin Insect Sci 21:91–97. https://doi.org/10.1016/j.cois.2017.05.021

    Article  PubMed  Google Scholar 

  63. Quaranta M, Sommaruga A, Balzarini P, Felicioli A (2014) A new species for the bee fauna of Italy: megachile sculpturalis continues its colonization of Europe. Bull Insectol 67:287–293

    Google Scholar 

  64. R Development Core Team (2017) R: a language and environment for statistical computing

  65. Rubene D, Schroeder M, Ranius T (2015) Estimating bee and wasp (Hymenoptera: Aculeata) diversity on clear-cuts in forest landscapes—an evaluation of sampling methods. Insect Conserv Divers 8(3):261–271. https://doi.org/10.1111/icad.12105

    Article  Google Scholar 

  66. Rudd H, Vala J, Schaefer V (2002) Importance of backyard habitat in a comprehensive biodiversity conservation strategy: a connectivity analysis of urban green spaces. Restor Ecol 10(2):368–375. https://doi.org/10.1046/j.1526-100X.2002.02041.x

    Article  Google Scholar 

  67. Schmid-Egger C (2004) Bestimmungsschlüssel für die deutschen Arten der solitären Faltenwespen (Hymenoptera: Eumeninae). Deutscher Jugendbund für Naturbeobachtung, Hamburg

    Google Scholar 

  68. Schmid-Egger C (2010) Rote Liste der Wespen Deutschlands: Hymenoptera Aculeata: Grabwespen (Ampulicidae, Crabronidae, Sphecidae), Wegwespen (Pompilidae), Goldwespen (Chrysididae), Faltenwespen (Vespidae), Spinnenameisen (Mutillidae), Dolchwespen (Scoliidae), Rollwespen (Tiphiidae) und Keulhornwespen (Sapygidae). Ampulex 1:5–39

    Google Scholar 

  69. Staab M, Bruelheide H, Durka W et al (2016) Tree phylogenetic diversity promotes host-parasitoid interactions. Proc R Soc B 283(1834):20160275. https://doi.org/10.1098/rspb.2016.0275

    Article  PubMed  Google Scholar 

  70. Staab M, Pufal G, Tscharntke T, Klein A-M (2018) Trap nests for bees and wasps to analyse trophic interactions in changing environments—a systematic overview and user guide. Methods Ecol Evol 9(11):2226–2239. https://doi.org/10.1111/2041-210X.13070

    Article  Google Scholar 

  71. Steffan-Dewenter I, Schiele S (2008) Do resources or natural enemies drive bee population dynamics in fragmented habitats? Ecol 89:1375–1387. https://doi.org/10.1890/06-1323.1

    Article  Google Scholar 

  72. Stephen WP, Osgood CE (1965) Influence of tunnel size and nesting medium on sex ratios in a leaf-cutter bee, Megachile rotundata. J Econ Entomol 58(5):965–968. https://doi.org/10.1093/jee/58.5.965

    Article  Google Scholar 

  73. Stubbs CS, Drummond FA (1997) Management of the alfalfa leafcutting bee, Megachile rotundata (Hymenoptera: Megachilidae), for pollination of wild lowbush blueberry. J Kans Entomol Soc 70(2):81–93

    Google Scholar 

  74. Threlfall CG, Walker K, Williams NSG et al (2015) The conservation value of urban green space habitats for Australian native bee communities. Biol Conserv 187:240–248. https://doi.org/10.1016/j.biocon.2015.05.003

    Article  Google Scholar 

  75. Tscharntke T, Gathmann A, Steffan-Dewenter I (1998) Bioindication using trap-nesting bees and wasps and their natural enemies: community structure and interactions. J Appl Ecol 35(5):708–719. https://doi.org/10.1046/j.1365-2664.1998.355343.x

    Article  Google Scholar 

  76. Wein A, Bauhus J, Bilodeau-Gauthier S et al (2016) Tree species richness promotes invertebrate herbivory on congeneric native and exotic tree saplings in a young diversity experiment. PLoS ONE 11(12):e0168751. https://doi.org/10.1371/journal.pone.0168751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Westrich P (2015) Wildbienen: Die anderen Bienen. Pfeil, München

    Google Scholar 

  78. Westrich P (2018) Die Wildbienen Deutschlands. Eugen Ulmer, Stuttgart

    Google Scholar 

  79. Westrich P, Frommer U, Mandery K et al (2011) Rote Liste und Gesamtartenliste der Bienen (Hymenoptera, Apidae) Deutschlands. Nat Biol Vielfalt 70(3):373–416

    Google Scholar 

  80. Westrich P, Knapp A, Berney I (2015) Megachile sculpturalis Smith 1853 (Hymenoptera, Apidae), a new species for the bee fauna of Germany, now north of the Alps. Eucera 9:3–10

    Google Scholar 

  81. Williams LH (1972) Trap-nesting solitary bees for students of biology. Bee World 53(3):123–135. https://doi.org/10.1080/0005772X.1972.11097421

    Article  Google Scholar 

Download references

Acknowledgements

We thank the owners of all gardens for letting us work on their properties. Christian Schmid-Egger and Andreas Haselböck are gratefully acknowledged for identifying taxonomically ambiguous specimens. Vivien von Königslöw was financed by the Bayer Bee Care Center during the later stages of the writing process, but in support of another research project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vivien von Königslöw.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest in relation to the study in this paper. Vivien von Königslöw was financed by the Bayer Bee Care Center during the later stages of the writing process, but in support of another research project.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by B. D. Hoffmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1882 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

von Königslöw, V., Klein, AM., Staab, M. et al. Benchmarking nesting aids for cavity-nesting bees and wasps. Biodivers Conserv 28, 3831–3849 (2019). https://doi.org/10.1007/s10531-019-01853-1

Download citation

Keywords

  • Bee hotel
  • Hymenoptera
  • Trap nest
  • Urban ecology
  • Wild bee