Advertisement

Biodiversity and Conservation

, Volume 28, Issue 11, pp 3037–3043 | Cite as

Intra-country introductions unraveling global hotspots of alien fish species

  • Jean R. S. VituleEmail author
  • Thiago V. T. Occhi
  • Bin Kang
  • Shin-Ichiro Matsuzaki
  • Luis Artur Bezerra
  • Vanessa S. Daga
  • Larissa Faria
  • Fabrício de A. Frehse
  • Felipe Walter
  • André A. Padial
Commentary

Abstract

Alien or non-native species are defined as species living outside their natural distributional ranges. The spread of alien species is increasing globally as a result of rapid technological advances and globalization. Recent investigations have estimated global hotspots of alien established species on the basis of geopolitical boundaries, including Dawson et al. (in: Nat Ecol Evol 1:186.  https://doi.org/10.1038/s41559-017-0186, 2017). In particular, these investigations do not consider Intra-Country Established Alien Species, i.e., successful introductions that occur among regions within the same country. In continental countries such as Brazil, the USA and China, studies excluding Intra-Country Established Alien Species (IEAS) waste essential information. Here, we argue that researchers should also consider intra-country introductions when estimating and addressing the risks of alien introductions. By using detailed data for freshwater fish including IEAS in large countries, we demonstrate that novel hotspots for IEAS have arisen worldwide. We illustrate emblematic examples of IEAS, as well as their vectors and negative impacts, to demonstrate the range of impacts that might be missed when excluding IEAS data from analysis. We recognize the need for generalizations, but generalizations based on incomplete data can misinform conservation efforts, particularly in megadiverse regions. Ignores IEAS influences how we count non-native species, invasions and perceive invisibility and impacts. Consequently, upcoming records and analysis of invasion patterns and management of aliens and EAS global hotspots must account for such biases in quantifying the IEAS portion.

Keywords

Conservation policy Watershed Global assessment Invasion risk Spatial grain Geographic distribution Non-native species 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. We are also grateful to the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for research grants provided to JRSV (Process Numbers: 302367/2018-7 and 303776/2015-3), to AAP (Process Numbers: 307984/2015-0; 402828/2016-0), and to VSD (Process Number: 167382/2017-9). Finally, many thanks to Dr. Kirk Winemiller, Dr. David Hoeinghaus, Dr. Angus Jackson, Dr. James Nienow and all anonymous reviewers for improvements on previous versions of this manuscript, and to Dr. Katsutoshi Watanabe for providing data from Japan.

Supplementary material

10531_2019_1815_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 37 kb)

References

  1. Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Balderas SC, Bussing W, Stiassny MLJ, Skelton P, Allen GR, Unmack P, Naseka A, Ng R, Sindorf N, Robertson J, Armijo E, Higgins JV, Heibel TJ, Wikramanayake E, Olson D, López H, Reis RE, Lundberg JG, Pérez MHS, Petry P (2008) Freshwater ecoregions of the World: a new map of biogeographic units for freshwater biodiversity and conservation. Bioscience 58:403–414.  https://doi.org/10.1641/B580507 CrossRefGoogle Scholar
  2. Agostinho AA, Gomes LC, Pelicice FM (2007) Ecologia e manejo de recursos pesqueiros em reservatórios no Brasil. Eduem, MaringáGoogle Scholar
  3. Bezerra LAV, Ribeiro VM, Freitas MO et al (2019) Benthification, biotic homogenization behind the trophic downgrading in altered ecosystems. Ecosphere.  https://doi.org/10.1002/ecs2.2757 Google Scholar
  4. CBD (2017) Convention on biological diversity, communication, education and public awareness. https://www.cbd.int/idb/2009/about/what/. Accessed 20 Oct 2017
  5. Dawson W, Moser D, van Kleunen M, Kreft H, Pergl J, Pysek P, Weigelt P, Winter M, Lenzner B, Blackburn TM, Dyer EE, Cassey P, Scrivens SL, Economo EP, Guénard B, Capinha C, Seebens H, García-Díaz P, Nentwig W, García-Berthou E, Casal C, Mandrak NE, Fuller P, Meyer C, Essl F (2017) Global hotspots and correlates of alien species richness across taxonomic groups. Nat Ecol Evol 1:186.  https://doi.org/10.1038/s41559-017-0186 CrossRefGoogle Scholar
  6. Doria CRC, Catâneo DTBS, Torrente-Vilara G, Vitule JRS (2019) Is there a future for artisanal fishing in the Amazon? The case of Arapaima gigas invasion in Amazon. Manag Biol Invasion (in press). https://www.reabic.net/journals/mbi/2019/Accepted.aspx
  7. Estes JÁ, Terborgh J, Brashares JS, Power ME, Berger J, Bond W, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soulé ME, Virtanen R, Wardle DA (2011) Trophic downgrading of planet earth. Science 333:301–306CrossRefGoogle Scholar
  8. FAO (2016) Food & Agriculture Organization of the United Nations. FishStat J – Universal software for fishery statistical time series. Accessed 10 Apr 2016Google Scholar
  9. Fitzgerald DB, Tobler M, Winemiller KO (2016) From richer to poorer: successful invasion by freshwater fishes depends on species richness of donor and recipient basins. Glob Change Biol 22:2440–2450CrossRefGoogle Scholar
  10. Frehse FA, Braga RR, Nocera GA, Vitule JRS (2016) Non-native species and invasion biology in a megadiverse country: scientometric analysis and ecological interactions in Brazil. Biol Invasions 18:3713–3725CrossRefGoogle Scholar
  11. Guo Q, Ricklefs RE (2010) Domestic exotics and the perception of invisibility. Divers Distrib 16:1034–1039.  https://doi.org/10.1111/j.1472-4642.2010.00708.x CrossRefGoogle Scholar
  12. Kang B, Deng J, Wu Y, Chen L, Zhang J, Qiu H, Lu Y, He D (2014) Mapping China’s freshwater fishes: diversity and Biogeography. Fish Fish 15:209–230.  https://doi.org/10.1111/faf.12011 CrossRefGoogle Scholar
  13. Kang B, Huang X, Li J, Liu M, Guo L, Han CC (2017) Inland fisheries in China: past, present, and future. Rev Fish Sci Aquacult 25:270–285.  https://doi.org/10.1080/23308249.2017.1285863 CrossRefGoogle Scholar
  14. Lima-Junior DP, Magalhães ALB, Pelicice FM, Vitule JRS, Azevedo-Santos VM, Orsi ML, Simberloff D, Agostinho AA (2018) Aquaculture expansion in Brazilian freshwaters against the Aichi Biodiversity Targets. Ambio 47:427–440.  https://doi.org/10.1007/s13280-017-1001-z PubMedCentralGoogle Scholar
  15. Liu C, He D, Chen Y, Olden JD (2017) Species invasions threaten the antiquity of China’s freshwater fish fauna. Divers Distrib 23:556–566CrossRefGoogle Scholar
  16. Matsuzaki SS, Sasaki T, Akasaka M (2013) Consequences of the introduction of exotic and translocated species and future extirpations on the functional diversity of freshwater fish assemblages. Glob Ecol Biogeogr 22:1071–1082CrossRefGoogle Scholar
  17. Miranda-Chumacero G, Wallace R, Calderón H, Calderón G, Willink P, Guerrero M, Siles TM, Lara K, Chuqui D (2012) Distribution of arapaima (Arapaima gigas) (Pisces: Arapaimatidae) in Bolivia: implications in the control and management of a non-native population. BioInvasions Rec 1:129–138CrossRefGoogle Scholar
  18. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  19. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19CrossRefGoogle Scholar
  20. Pelicice FM, Agostinho AA (2009) Fish fauna destruction after the introduction of a non-native predator (Cichla kelberi) in a Neotropical reservoir. Biol Invasions 11:1789–1801CrossRefGoogle Scholar
  21. Pelicice FM, Azevedo-Santos VM, Vitule JRS, Orsi ML, Lima DP Jr, Magalhães ALB, Pompeu PS, Petrere M Jr, Agostinho AA (2017) Neotropical freshwater fishes imperilled by unsustainable policies. Fish Fish 18:1119–1133.  https://doi.org/10.1111/faf.12228 CrossRefGoogle Scholar
  22. Picker MD, Griffiths CL (2011) Alien and invasive animals—a South African perspective. Struik-Random House Publishers, Cape Town. ISBN 978 1 77007 823 9Google Scholar
  23. Rahel FJ (2000) Homogenization of fish faunas across the United States. Science 288:854–856CrossRefGoogle Scholar
  24. Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pysek P, Winter M, Arianoutsou M, Bacher S, Blasius B, Brundu G, Capinha C, Celesti-Grapow L, Dawson W, Dullinger S, Fuentes N, Jäger N, Kartesz J, Kenis M, Kreft H, Kühn I, Lenzner B, Liebhold A, Mosena A, Moser D, Nishino M, Pearman D, Pergl J, Rabitsch W, Rojas-Sandoval J, Roques A, Rorke S, Rossinelli S, Roy HE, Scalera R, Schindler S, Stajerova K, Tokarska-Guzik B, van Kleunen M, Walker K, Weigelt P, Yamanaka T, Essl F (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435CrossRefPubMedCentralGoogle Scholar
  25. Simberloff D (2004) Community ecology: is it time to move on? Am Nat 163:787–799CrossRefGoogle Scholar
  26. Skóra F, Abilhoa V, Padial AA, Vitule JRS (2015) Darwin’s hypotheses to explain colonization trends: evidence from a quasinatural experiment and a new conceptual model. Divers Distrib 21:583–594CrossRefGoogle Scholar
  27. Sommerwerk N, Wolter C, Freyhof J, Tockner K (2017) Components and drivers of change in European freshwater fish fauna. J Biogeogr 44:1781–1790CrossRefGoogle Scholar
  28. Tarasi DD, Peet RK (2017) The native-exotic species richness relationship varies with spatial grain of measurement and environmental conditions. Ecology 98:3086–3095CrossRefGoogle Scholar
  29. Vitule JRS, Freire CA, Simberloff D (2009) Introduction of nonnative freshwater fish can certainly be bad. Fish Fish 10:98–108CrossRefGoogle Scholar
  30. Vitule JRS, Skóra F, Abilhoa V (2012) Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Divers Distrib 18:111–120CrossRefGoogle Scholar
  31. Watanabe K (2010) Faunal structure of Japanese freshwater fishes and its artificial disturbance. Environ Biol Fish 94:533–547CrossRefGoogle Scholar
  32. Weyl OLF, Daga VS, Ellender BR, Vitule JRS (2016) A review of Clarias gariepinus invasions in Brazil and South Africa. J Fish Biol 89:386–402CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jean R. S. Vitule
    • 1
    • 2
    Email author
  • Thiago V. T. Occhi
    • 1
    • 2
  • Bin Kang
    • 3
  • Shin-Ichiro Matsuzaki
    • 4
  • Luis Artur Bezerra
    • 2
    • 5
  • Vanessa S. Daga
    • 1
  • Larissa Faria
    • 1
    • 2
  • Fabrício de A. Frehse
    • 1
    • 2
  • Felipe Walter
    • 1
  • André A. Padial
    • 2
    • 6
  1. 1.Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Setor de TecnologiaUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Programa de Pós-Graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
  3. 3.Fisheries CollegeOcean University of ChinaQingdaoChina
  4. 4.Center for Environmental Biology & Ecosystem StudiesNational Institute for Environmental StudiesTsukubaJapan
  5. 5.Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
  6. 6.Laboratório de Análise e Síntese em BiodiversidadeUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations