Rocky outcrops conserve genetic diversity and promote regeneration of a threatened relict tree in a critically endangered ecosystem

Abstract

The loss of individuals in disturbed sites may be buffered by the presence of small natural features (SNFs), sites acting as ecological refuges preventing the loss of phenotypic variability and genetic diversity of plants. An important group of SNFs is rocky outcrops, singular geological formations that stand out from the surrounding matrix which could host a greater species diversity. We tested the value of rocky outcrops as SNFs of a Tertiary relict tree, the Chilean lucuma Pouteria splendens (Sapotaceae). We identified vegetation patches with P. splendens and characterized their landscape properties in sites associated with rocky outcrops and clearings (plains). Then, we contrasted the genetic diversity, phenotypic variability and sapling abundance of P. splendens inhabiting rocky outcrops and plains. We observed that rocky outcrops sustained subtle higher genetic diversity compared with plains, but non-significant genetic structuration was detected between habitat types. Independently of the habitat type, P. splendens have a significant role in the sapling recruitment: their number was higher underneath of conspecifics than in open spaces. Besides, plants in the rocky outcrops produced smaller and ovoid-shaped fruits, as a possible result of selective pressures generated by frugivorous. We propose that rocky outcrops are regeneration sites for P. splendens. However, subtle differences in genetic diversity between habitats and the lacking of genetic structuration suggest that conservation strategies should be focused on the protection of all habitat types as a manner of maintaining ecosystem processes in this singular vegetation remnant.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ackerly DD (2004) Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. Am Nat 163:654–671

    PubMed  Article  Google Scholar 

  2. Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87:S50–S61

    CAS  PubMed  Article  Google Scholar 

  3. Aguilar R, Quesada R, Ashworth L et al (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    PubMed  Article  Google Scholar 

  4. Alaniz AJ, Galleguillos M, Perez-Quezada JF (2016) Assessment of quality of input data used to classify ecosystems according to the IUCN red list methodology: the case of the central Chile hotspot. Biol Conserv 204:378–385

    Article  Google Scholar 

  5. Araújo APA, De Paula JD, Carneiro MAA, Schoereder JH (2006) Effects of host plant architecture on colonization by galling insects. Austral Ecol 31:343–348

    Article  Google Scholar 

  6. Armesto JJ, Rozzi R, Miranda P, Sabag C (1987) Plant/frugivore interactions in South American temperate forests. Rev Chil Hist Nat 60:321–336

    Google Scholar 

  7. Armesto JJ, Manuschevich D, Mora A et al (2010) From the holocene to the anthropocene: a historical framework for land cover change in southwestern South America in the past 15,000 years. Land Use Policy 27:148–160

    Article  Google Scholar 

  8. Baert JM, Jaspers S, Janssen CR et al (2017) Non-linear partitioning of biodiversity effect on ecosystem functioning. Methods Ecol Evol 8:1233–1240

    Article  Google Scholar 

  9. Baker WL (1992) The landscape ecology of large disturbances in the design and management of nature reserves. Landsc Ecol 7:181–194

    Article  Google Scholar 

  10. Barnosky AD, Hadley EA, Bascompte J et al (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58

    CAS  PubMed  Article  Google Scholar 

  11. Bosch M, Waser NM (2001) Experimental manipulation of plant density and its effect on pollination and reproduction of two confamilial montane herbs. Oecologia 126:76–83

    PubMed  Article  Google Scholar 

  12. Bremer H, Sander H (2000) Inselbergs: geomorphology and geoecology. In: Porembski S, Barthlott S (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Berlin, Heidelberg, pp 7–35

    Google Scholar 

  13. Callaway RM (1995) Positive interactions among plants. Botl Rev 61:306–349

    Article  Google Scholar 

  14. Calviño-Cancela M, Escudero M, Rodríguez-Pérez J et al (2012) The role of seed dispersal pollination and historical effects on genetic patterns of an insular plant that has lost its only seed disperser. J Biogeogr 39:1996–2006

    Article  Google Scholar 

  15. Cardinale BJ, Srivastava DS, Duffy JE et al (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    CAS  PubMed  Article  Google Scholar 

  16. Cardinale BJ, Duffy JE, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 489:59–67

    Article  CAS  Google Scholar 

  17. Cheptou PO, Carrue O, Rouifed S, Cantarel A (2008) Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc Natl Acad Sci USA 105:3796–3799

    CAS  PubMed  Article  Google Scholar 

  18. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  19. CONAF (2017) Número de incendios forestales y superficie afectada a la fecha Sistema de información digital para el control de operaciones SIDCO-CONAF. http://www.conaf.cl/incendios-forestales/incendios-forestales-en-chile/estadistica-de-ocurrencia-diaria/. Accessed 14 Dec 2017

  20. Cooperrider AY, Boyd RJ, Stuart HR (1986) Inventory and monitoring of wildlife habitats. US Department of Interior Bureau of Land Management, Denver

    Google Scholar 

  21. Davis J, Pavlova A, Thompson R, Sunnucks P (2013) Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Glob Change Biol 19:1970–1984

    Article  Google Scholar 

  22. Díaz S, Fargione J, Chapin FS, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4:e277

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Duarte M, Guerrero PC, Carvallo G, Bustamante RO (2014) Conservation network design for endemic cacti under taxonomic uncertainty. Biol Conserv 176:236–242

    Article  Google Scholar 

  24. Earl DA, von Holdt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  25. Echeverría C, Coomes D, Salas J et al (2006) Rapid deforestation and fragmentation of Chilean Temperate Forests. Biol Conserv 130:481–494

    Article  Google Scholar 

  26. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  Article  PubMed  Google Scholar 

  27. Fahrig L (2005) When is a landscape perspective important? In: Moss M, Wiens J (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Cambridge, pp 3–10

    Google Scholar 

  28. Faúndez L, Guerrero P, Saldivia P, Walter HE (2013) Eriosyce chilensis the IUCN red list of threatened species 2013: eT151924A576839. Accessed 15 Mar 2018

  29. Fernández I, Morales N, Olivares L et al (2010) Restauración ecológica para ecosistemas nativos afectados por incendios forestales. Gráfica LOM, Santiago

    Google Scholar 

  30. Fitzsimons JA, Michael DR (2017) Rocky outcrops: a hard road in the conservation of critical habitats. Biol Conserv 211:36–44

    Article  Google Scholar 

  31. Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  32. Fuentes-Castillo T, Miranda A, Rivera-Hutinel A et al (2012) Nucleated regeneration of semiarid sclerophyllous forests close to remnant vegetation. Forest Ecol Manag 274:38–47

    Article  Google Scholar 

  33. Gajardo R (1994) La vegetación natural de Chile: clasificación y distribución geográfica. Editorial Universitaria, Santiago

    Google Scholar 

  34. Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090

    CAS  Article  PubMed  Google Scholar 

  35. Goettsch B, Hilton-Taylor C, Cruz-Piñón G et al (2015) High proportion of cactus species threatened with extinction. Nat Plants 1:15142

    CAS  PubMed  Article  Google Scholar 

  36. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Article  Google Scholar 

  37. Guerrero PC, Arroyo MTK, Bustamante RO et al (2011) Phylogenetics and predictive distribution modeling provide insights into infrageneric relationships and the evolution of the Eriosyce subgen Neoporteria (Cactaceae). Plant Syst Evol 297:113–128

    Article  Google Scholar 

  38. Guimaraes PR Jr, Galetti M, Jordano P (2008) Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS ONE 3:e1745

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. Haltenhoff H (2010) Los grandes incendios forestales en Chile: 1985–2009. Corporación Nacional Forestal, Santiago

    Google Scholar 

  40. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    CAS  Article  Google Scholar 

  41. Harvey MS (2002) Short-range endemism amongst the Australian fauna: some examples from non-marine environments. Invertebr Syst 16:555–570

    Article  Google Scholar 

  42. Hechenleitner P, Gardner MF, Thomas PI et al (2005) Plantas Amenazadas del Centro-Sur de Chile Distribución Conservación y Propagación. Universidad Austral de Chile, Valdivia

    Google Scholar 

  43. Helm A, Oja T, Saar L et al (2009) Human influence lowers plant genetic diversity in communities with extinction debt. J Ecol 97:1329–1336

    Article  Google Scholar 

  44. Henríquez CA, Sotes GJ, Bustamante RO (2012) Fenología reproductiva de Pouteria splendens (Sapotacae). Gayana Bot 69:251–255

    Article  Google Scholar 

  45. Hoffmann AA, Sgrò CM, Kristensen TN (2017) Revisiting adaptive potential population size and conservation. Trends Ecol Evol 32:506–517

    PubMed  Article  Google Scholar 

  46. Holmgren M, Segura AM, Fuentes ER (2000) Limiting mechanisms in the regeneration of the Chilean matorral. Plant Ecol 147:49–57

    Article  Google Scholar 

  47. Holzhauer SIJ, Ekschmitt K, Sander A-C et al (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landscape Ecol 21:891–899

    Article  Google Scholar 

  48. Hooper D, Solan M, Symstad A et al (2002) Species diversity functional diversity and ecosystem functioning. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and Ecosystem Functioning. Oxford University Press, Oxford

    Google Scholar 

  49. Hunter ML Jr, Acuña V, Bauer DM et al (2017) Conserving small natural features with large ecological roles: a synthetic overview. Biol Conserv 211:88–95

    Article  Google Scholar 

  50. Keppel G, Wardell-Johnson GW (2012) Refugia: keys to climate change management. Glob Change Biol. 18:2389–2391

    Article  Google Scholar 

  51. Keppel G, Van Niel KP, Wardell-Johnson GW et al (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21:393–404

    Article  Google Scholar 

  52. Kolár F, Stech M, Trávnícek P et al (2009) Towards resolving the Knautia arvensis agg (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Ann Bot 103:963–974

    PubMed  PubMed Central  Article  Google Scholar 

  53. Kuldna P, Peterson K, Poltimäe H, Luig J (2009) An application of DPSIR framework to identify issues of pollinator loss. Ecol Econ 69:32–42

    Article  Google Scholar 

  54. Kunin WE (1997) Sample shape, spatial scale and species counts: implications for reserve design. Biol Conserv 82:369–377

    Article  Google Scholar 

  55. Lamont BB, Klinkhamer PGL, Witkowski ETF (1993) Population fragmentation may reduce fertility to zero in Banksia goodii? A demonstration of the Allee effect. Oecologia 94:446–450

    PubMed  PubMed Central  Article  Google Scholar 

  56. Legendre P, Legendre L (1998) Numerical Ecology, 2nd edn. Elsevier, Amsterdam, p 853

    Google Scholar 

  57. León de la Luz JL, Rebman J, Domínguez-León M, Domínguez-Cadena R (2008) The vascular flora and floristic relationships of the Sierra de La Giganta in Baja California Sur Mexico. Rev Mex Biodivers 79:29–65

    Google Scholar 

  58. Loayza AP, Herrera-Madariaga MA, Carvajal DE et al (2017) Conspecific plants are better “nurses” than rocks: consistent results revealing intraspecific facilitation as a process that promotes establishment in a hyper-arid environment. AoB Plants 9:1–11

    Article  Google Scholar 

  59. Ludwig JA (2005) Disturbances and landscapes: the little things count. In: Wiens J, Moss M (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Edinburgh, pp 42–51

    Google Scholar 

  60. Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Universitaria, Santiago

    Google Scholar 

  61. Lund R, Teillier S (2012) Flora vascular de Los Molles Región de Valparaíso Chile. Chloris chilensis 15. http://www.chlorischile.cl/Lund-Los%20Molles/flora%20de%20Los%20Molles.htm Accessed 12 June 2015

  62. Mackey B, Berry S, Hugh S et al (2012) Ecosystem greenspots: identifying potential drought fire and climate-change micro-refuges. Ecol Appl 22:1852–1864

    PubMed  Article  Google Scholar 

  63. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  64. Mares MA, Seine RH (2000) The fauna of inselbergs. In: Porembski S, Barthlott S (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Berlin, Heidelberg, pp 483–491

    Google Scholar 

  65. Milchunas D, Noy-Meir I (2002) Grazing refuges external avoidance of herbivory and plant diversity. Oikos 99:113–130

    Article  Google Scholar 

  66. Morales NS, Fernandez IC, Carrasco BA, Orchard C (2015) Combining niche modeling land use-change and genetic information to assess the conservation status of Pouteria splendens populations in Central Chile. Int J Ecol. https://doi.org/10.1155/2015/612194

    Article  Google Scholar 

  67. Morgan MT, Wilson WG, Knight TM (2005) Plant population dynamics pollinator foraging and the selection of self-fertilization. Am Nat 166:169–183

    PubMed  Article  Google Scholar 

  68. Munguía-Rosas MA, Sosa VJ (2008) Nurse plants vs nurse objects: effects of woody plants and rocky cavities on the recruitment of the Pilosocereus leucocephalus columnar cactus. Ann Bot 101:175–185

    PubMed  Article  Google Scholar 

  69. Muñoz M, Serra MT (2006) Estado de conservación de las plantas de Chile: Pouteria splendens. http://www.mma.gob.cl/clasificacionespecies/Anexos_segundo_proceso/Fichas_especies_segundo_proceso/Pouteria_splendensdoc. Accessed 4 May 2017

  70. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406

    CAS  PubMed  Article  Google Scholar 

  72. Owen CA, Bita EC, Banilas G et al (2005) AFLP reveals structural details of genetic diversity within cultivated olive germplasm from the Eastern Mediterranean. Theor Appl Genet 110:1169–1176

    CAS  PubMed  Article  Google Scholar 

  73. Paula S, Naulin PI, Arce C et al (2016) Lignotubers in Mediterranean basin plants. Plant Ecol 217:661–676

    Article  Google Scholar 

  74. Peakall R, Smouse PE (2012) GenAlEx 65: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Pecl GT, Araújo MB, Bell JD et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:eaai9214

    PubMed  Article  CAS  Google Scholar 

  76. Pejchar L, Mooney HA (2009) Invasive species ecosystem services and human well-being. Trends Ecol Evol 24:497–504

    PubMed  Article  Google Scholar 

  77. Peña-Egaña M, Loayza AP, Squeo FA (2018) Are pulp consumers effective seed dispersers? Tests with a large-seeded tropical relict tree. Biotropica. https://doi.org/10.1111/btp12604

    Article  Google Scholar 

  78. Pérez-Méndez N, Jordano P, García C, Valido A (2016) The signature of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci Rep 6:24820

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. Peters EM, Martorell C, Ezcurra E (2008) Nurse rocks are more important than nurse plants in determining the distribution and establishment of globose cacti (Mammillaria) in the Tehuacán Valley Mexico. J Arid Environ 72:593–601

    Article  Google Scholar 

  80. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Raimundo RLG, Guimarães PR Jr, Evans DM (2018) Adaptive networks for restoration ecology. Trends Ecol Evol 33:664–675

    PubMed  Article  Google Scholar 

  82. Robinson NM, Leonard SWJ, Ritchie EG et al (2013) Refuges for fauna in fire-prone landscapes: their ecological function and importance. J Appl Ecol 50:1321–1329

    Article  Google Scholar 

  83. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  84. Schmitz OJ, Wilmers CC, Leroux SJ, Doughty CE et al (2018) Animals and the zoogeochemistry of the carbon cycle. Science 362:eaar3213

    PubMed  Article  CAS  Google Scholar 

  85. Schroeder JW, Tran HT, Dick CW (2014) Fine scale spatial genetic structure in Pouteria reticulata (Engl.) Eyma (Sapotaceae), a dioecious, vertebrate dispersed tropical rain forest tree species. Glob Ecol Conserv 1:43–49

    Article  Google Scholar 

  86. Seine RH (2000) Human dimensions and conservation. In: Porembski S, Barthlott S (eds) Inselbergs biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Berlin, Heidelberg, pp 493–506

    Google Scholar 

  87. Simberloff D (1988) The contribution of population and community biology to conservation science. Annl Rev Ecol Syst 19:473–511

    Article  Google Scholar 

  88. Simonetti JA (1989) Microhabitat use by small mammals in central Chile. Oikos 56:309–318

    Article  Google Scholar 

  89. Sotes GJ, Bustamante RO, Henríquez C (2013) Distribución de plántulas y germinación de semillas del lúcumo chileno (Pouteria splendens) en Los Molles Chile. Rev Chil Hist Nat 86:337–344

    Article  Google Scholar 

  90. Sotes GJ, Bustamante RO, Henríquez CA (2018) Leaf litter is essential for seed survival of the endemic endangered tree Pouteria splendens (Sapotaceae) from central Chile. Web Ecol 18:1–5

    Article  Google Scholar 

  91. Squeo FA, Arancio G, Gutiérrez J (2001) Libro rojo de la flora nativa y de los sitios prioritarios para su conservación: región de coquimbo. Ediciones Universidad de La Serena, La Serena

    Google Scholar 

  92. Squeo FA, Holmgren M, Jiménez M et al (2007) Tree establishment along an ENSO experimental gradient in the Atacama desert. J Veg Sci 18:195–202

    Article  Google Scholar 

  93. Steffen W, Richardson K, Rockström J et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:736–747

    CAS  Article  Google Scholar 

  94. Swenson U, Richardson JE, Bartish IV (2008) Multi-gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): evidence of generic polyphyly and extensive morphological homoplasy. Cladistic 24:1006–1031

    Article  Google Scholar 

  95. Szarzynski J (2000) Xeric Islands: Environmental Conditions on Inselbergs. In: Porembski S, Barthlott S (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Berlin Heidelberg, pp 37–48

    Google Scholar 

  96. Tero N, Aspi J, Siikamäki P et al (2003) Genetic structure and gene flow in a metapopulation of an endangered plant species Silene tatarica. Mol Ecol 12:2073–2085

    CAS  PubMed  Article  Google Scholar 

  97. Travis SE, Maschinski J, Keim P (1996) An analysis of genetic variation in Astragalus cremnophylax var cremnophylax a critically endangered plant using AFLP markers. Mol Ecol 5:735–745

    CAS  PubMed  Article  Google Scholar 

  98. Vásquez RA (1996) Patch utilization by three species of Chilean rodents differing in body size and mode of locomotion. Ecology 77:2343–2351

    Article  Google Scholar 

  99. Verboom J, Wamelink W (2005) Spatial modeling in landscape ecology. In: Wiens J, Moss M (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Edinburgh, pp 79–89

    Google Scholar 

  100. Verdú M, García-Fayos P (1996) Nucleation processes in a Mediterranean bird-dispersed plant. Funct Ecol 10:275–280

    Article  Google Scholar 

  101. Wolf AT, Howe RW, Hamrick JL (2000) Genetic diversity and population structure of the serpentine endemic Calystegia collina (Convolvulaceae) in northern California. Am J Bot 87:1138–1146

    CAS  PubMed  Article  Google Scholar 

  102. World Conservation Monitoring Centre (1998) Pouteria splendens The IUCN red list of threatened species 1998: eT32051A9677515. http://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T32051A9677515en. Accessed 19 June 2018

  103. Wright S (1949) The genetical structure of populations. Annl Eugenic 15:323–354

    Article  Google Scholar 

  104. Wu FQ, Shen SK, Zhang XJ et al (2015) Genetic diversity and population structure of an extremely endangered species: the world’s largest Rhododendron. AoB Plants 7:plu082

    Article  Google Scholar 

  105. Yamaura Y, Kawahara T, Iida S, Ozaki K (2008) Relative importance of the area and shape of patches to the diversity of multiple taxa. Conserv Biol 22:1513–1522

    PubMed  Article  Google Scholar 

  106. Yang J, Gao Z, Sun W, Zhang C (2016) High regional genetic differentiation of an endangered relict plant Craigia yunnanensis and implications for its conservation. Plant Divers 39:221–226

    Article  Google Scholar 

  107. Yeh FC, Yang RC, Boyle T (1999) POPGENE. Population genetics software. https://www.ualberta.ca/~fyeh/fyeh/. Accessed 27 Apr 2017

  108. Yu Z, Guo X (2004) Genetic analysis of selected strains of eastern oyster (Crassostrea virginica Gmelin) using AFLP and microsatellite markers. Mar Biotechnol 6:575–586

    CAS  PubMed  Article  Google Scholar 

  109. Yu Y, Fan Q, Shen R et al (2014) Genetic variability and population structure of Disanthus cercidifolius subsp longipes (Hamamelidaceae) based on AFLP analysis. PLoS ONE 24:e107769

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Fondo de Investigación del Bosque Nativo (CONAF 009/2015) and by Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT 1160583 (to PCG) and FONDECYT 11150301 (to GOC) Grants. We also thank A. Cadiz, D. Fernández, C. González, P. Henríquez, L. Marcó, C. Munso, B. Segura, C. Shapheer, I. Tamburrino and V. Vilches for assist with field or laboratory work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gastón O. Carvallo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Biodiversity protection and reserves.

Communicated by Daniel Sanchez Mata.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carvallo, G.O., Vergara-Meriño, B., Díaz, A. et al. Rocky outcrops conserve genetic diversity and promote regeneration of a threatened relict tree in a critically endangered ecosystem. Biodivers Conserv 28, 2805–2824 (2019). https://doi.org/10.1007/s10531-019-01797-6

Download citation

Keywords

  • AFLP
  • Hotspots
  • Mediterranean-type ecosystem
  • Refuge
  • Small natural features
  • Sapotaceae