Advertisement

Biodiversity and Conservation

, Volume 28, Issue 11, pp 2805–2824 | Cite as

Rocky outcrops conserve genetic diversity and promote regeneration of a threatened relict tree in a critically endangered ecosystem

  • Gastón O. CarvalloEmail author
  • Beatriz Vergara-Meriño
  • Angie Díaz
  • Cristian A. Villagra
  • Pablo C. Guerrero
Original Paper
Part of the following topical collections:
  1. Biodiversity protection and reserves

Abstract

The loss of individuals in disturbed sites may be buffered by the presence of small natural features (SNFs), sites acting as ecological refuges preventing the loss of phenotypic variability and genetic diversity of plants. An important group of SNFs is rocky outcrops, singular geological formations that stand out from the surrounding matrix which could host a greater species diversity. We tested the value of rocky outcrops as SNFs of a Tertiary relict tree, the Chilean lucuma Pouteria splendens (Sapotaceae). We identified vegetation patches with P. splendens and characterized their landscape properties in sites associated with rocky outcrops and clearings (plains). Then, we contrasted the genetic diversity, phenotypic variability and sapling abundance of P. splendens inhabiting rocky outcrops and plains. We observed that rocky outcrops sustained subtle higher genetic diversity compared with plains, but non-significant genetic structuration was detected between habitat types. Independently of the habitat type, P. splendens have a significant role in the sapling recruitment: their number was higher underneath of conspecifics than in open spaces. Besides, plants in the rocky outcrops produced smaller and ovoid-shaped fruits, as a possible result of selective pressures generated by frugivorous. We propose that rocky outcrops are regeneration sites for P. splendens. However, subtle differences in genetic diversity between habitats and the lacking of genetic structuration suggest that conservation strategies should be focused on the protection of all habitat types as a manner of maintaining ecosystem processes in this singular vegetation remnant.

Keywords

AFLP Hotspots Mediterranean-type ecosystem Refuge Small natural features Sapotaceae 

Notes

Acknowledgements

This study was funded by Fondo de Investigación del Bosque Nativo (CONAF 009/2015) and by Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT 1160583 (to PCG) and FONDECYT 11150301 (to GOC) Grants. We also thank A. Cadiz, D. Fernández, C. González, P. Henríquez, L. Marcó, C. Munso, B. Segura, C. Shapheer, I. Tamburrino and V. Vilches for assist with field or laboratory work.

Supplementary material

10531_2019_1797_MOESM1_ESM.pdf (92 kb)
Supplementary material 1 (PDF 91 kb)
10531_2019_1797_MOESM2_ESM.pdf (125 kb)
Supplementary material 2 (PDF 124 kb)
10531_2019_1797_MOESM3_ESM.pdf (36 kb)
Supplementary material 3 (PDF 36 kb)
10531_2019_1797_MOESM4_ESM.pdf (85 kb)
Supplementary material 4 (PDF 84 kb)

References

  1. Ackerly DD (2004) Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. Am Nat 163:654–671Google Scholar
  2. Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87:S50–S61Google Scholar
  3. Aguilar R, Quesada R, Ashworth L et al (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188Google Scholar
  4. Alaniz AJ, Galleguillos M, Perez-Quezada JF (2016) Assessment of quality of input data used to classify ecosystems according to the IUCN red list methodology: the case of the central Chile hotspot. Biol Conserv 204:378–385Google Scholar
  5. Araújo APA, De Paula JD, Carneiro MAA, Schoereder JH (2006) Effects of host plant architecture on colonization by galling insects. Austral Ecol 31:343–348Google Scholar
  6. Armesto JJ, Rozzi R, Miranda P, Sabag C (1987) Plant/frugivore interactions in South American temperate forests. Rev Chil Hist Nat 60:321–336Google Scholar
  7. Armesto JJ, Manuschevich D, Mora A et al (2010) From the holocene to the anthropocene: a historical framework for land cover change in southwestern South America in the past 15,000 years. Land Use Policy 27:148–160Google Scholar
  8. Baert JM, Jaspers S, Janssen CR et al (2017) Non-linear partitioning of biodiversity effect on ecosystem functioning. Methods Ecol Evol 8:1233–1240Google Scholar
  9. Baker WL (1992) The landscape ecology of large disturbances in the design and management of nature reserves. Landsc Ecol 7:181–194Google Scholar
  10. Barnosky AD, Hadley EA, Bascompte J et al (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58Google Scholar
  11. Bosch M, Waser NM (2001) Experimental manipulation of plant density and its effect on pollination and reproduction of two confamilial montane herbs. Oecologia 126:76–83Google Scholar
  12. Bremer H, Sander H (2000) Inselbergs: geomorphology and geoecology. In: Porembski S, Barthlott S (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Berlin, Heidelberg, pp 7–35Google Scholar
  13. Callaway RM (1995) Positive interactions among plants. Botl Rev 61:306–349Google Scholar
  14. Calviño-Cancela M, Escudero M, Rodríguez-Pérez J et al (2012) The role of seed dispersal pollination and historical effects on genetic patterns of an insular plant that has lost its only seed disperser. J Biogeogr 39:1996–2006Google Scholar
  15. Cardinale BJ, Srivastava DS, Duffy JE et al (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992Google Scholar
  16. Cardinale BJ, Duffy JE, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 489:59–67Google Scholar
  17. Cheptou PO, Carrue O, Rouifed S, Cantarel A (2008) Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc Natl Acad Sci USA 105:3796–3799Google Scholar
  18. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143Google Scholar
  19. CONAF (2017) Número de incendios forestales y superficie afectada a la fecha Sistema de información digital para el control de operaciones SIDCO-CONAF. http://www.conaf.cl/incendios-forestales/incendios-forestales-en-chile/estadistica-de-ocurrencia-diaria/. Accessed 14 Dec 2017
  20. Cooperrider AY, Boyd RJ, Stuart HR (1986) Inventory and monitoring of wildlife habitats. US Department of Interior Bureau of Land Management, DenverGoogle Scholar
  21. Davis J, Pavlova A, Thompson R, Sunnucks P (2013) Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Glob Change Biol 19:1970–1984Google Scholar
  22. Díaz S, Fargione J, Chapin FS, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4:e277Google Scholar
  23. Duarte M, Guerrero PC, Carvallo G, Bustamante RO (2014) Conservation network design for endemic cacti under taxonomic uncertainty. Biol Conserv 176:236–242Google Scholar
  24. Earl DA, von Holdt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361Google Scholar
  25. Echeverría C, Coomes D, Salas J et al (2006) Rapid deforestation and fragmentation of Chilean Temperate Forests. Biol Conserv 130:481–494Google Scholar
  26. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620Google Scholar
  27. Fahrig L (2005) When is a landscape perspective important? In: Moss M, Wiens J (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Cambridge, pp 3–10Google Scholar
  28. Faúndez L, Guerrero P, Saldivia P, Walter HE (2013) Eriosyce chilensis the IUCN red list of threatened species 2013: eT151924A576839. Accessed 15 Mar 2018Google Scholar
  29. Fernández I, Morales N, Olivares L et al (2010) Restauración ecológica para ecosistemas nativos afectados por incendios forestales. Gráfica LOM, SantiagoGoogle Scholar
  30. Fitzsimons JA, Michael DR (2017) Rocky outcrops: a hard road in the conservation of critical habitats. Biol Conserv 211:36–44Google Scholar
  31. Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  32. Fuentes-Castillo T, Miranda A, Rivera-Hutinel A et al (2012) Nucleated regeneration of semiarid sclerophyllous forests close to remnant vegetation. Forest Ecol Manag 274:38–47Google Scholar
  33. Gajardo R (1994) La vegetación natural de Chile: clasificación y distribución geográfica. Editorial Universitaria, SantiagoGoogle Scholar
  34. Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090Google Scholar
  35. Goettsch B, Hilton-Taylor C, Cruz-Piñón G et al (2015) High proportion of cactus species threatened with extinction. Nat Plants 1:15142Google Scholar
  36. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338Google Scholar
  37. Guerrero PC, Arroyo MTK, Bustamante RO et al (2011) Phylogenetics and predictive distribution modeling provide insights into infrageneric relationships and the evolution of the Eriosyce subgen Neoporteria (Cactaceae). Plant Syst Evol 297:113–128Google Scholar
  38. Guimaraes PR Jr, Galetti M, Jordano P (2008) Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS ONE 3:e1745Google Scholar
  39. Haltenhoff H (2010) Los grandes incendios forestales en Chile: 1985–2009. Corporación Nacional Forestal, SantiagoGoogle Scholar
  40. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49Google Scholar
  41. Harvey MS (2002) Short-range endemism amongst the Australian fauna: some examples from non-marine environments. Invertebr Syst 16:555–570Google Scholar
  42. Hechenleitner P, Gardner MF, Thomas PI et al (2005) Plantas Amenazadas del Centro-Sur de Chile Distribución Conservación y Propagación. Universidad Austral de Chile, ValdiviaGoogle Scholar
  43. Helm A, Oja T, Saar L et al (2009) Human influence lowers plant genetic diversity in communities with extinction debt. J Ecol 97:1329–1336Google Scholar
  44. Henríquez CA, Sotes GJ, Bustamante RO (2012) Fenología reproductiva de Pouteria splendens (Sapotacae). Gayana Bot 69:251–255Google Scholar
  45. Hoffmann AA, Sgrò CM, Kristensen TN (2017) Revisiting adaptive potential population size and conservation. Trends Ecol Evol 32:506–517Google Scholar
  46. Holmgren M, Segura AM, Fuentes ER (2000) Limiting mechanisms in the regeneration of the Chilean matorral. Plant Ecol 147:49–57Google Scholar
  47. Holzhauer SIJ, Ekschmitt K, Sander A-C et al (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landscape Ecol 21:891–899Google Scholar
  48. Hooper D, Solan M, Symstad A et al (2002) Species diversity functional diversity and ecosystem functioning. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and Ecosystem Functioning. Oxford University Press, OxfordGoogle Scholar
  49. Hunter ML Jr, Acuña V, Bauer DM et al (2017) Conserving small natural features with large ecological roles: a synthetic overview. Biol Conserv 211:88–95Google Scholar
  50. Keppel G, Wardell-Johnson GW (2012) Refugia: keys to climate change management. Glob Change Biol. 18:2389–2391Google Scholar
  51. Keppel G, Van Niel KP, Wardell-Johnson GW et al (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21:393–404Google Scholar
  52. Kolár F, Stech M, Trávnícek P et al (2009) Towards resolving the Knautia arvensis agg (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Ann Bot 103:963–974Google Scholar
  53. Kuldna P, Peterson K, Poltimäe H, Luig J (2009) An application of DPSIR framework to identify issues of pollinator loss. Ecol Econ 69:32–42Google Scholar
  54. Kunin WE (1997) Sample shape, spatial scale and species counts: implications for reserve design. Biol Conserv 82:369–377Google Scholar
  55. Lamont BB, Klinkhamer PGL, Witkowski ETF (1993) Population fragmentation may reduce fertility to zero in Banksia goodii? A demonstration of the Allee effect. Oecologia 94:446–450Google Scholar
  56. Legendre P, Legendre L (1998) Numerical Ecology, 2nd edn. Elsevier, Amsterdam, p 853Google Scholar
  57. León de la Luz JL, Rebman J, Domínguez-León M, Domínguez-Cadena R (2008) The vascular flora and floristic relationships of the Sierra de La Giganta in Baja California Sur Mexico. Rev Mex Biodivers 79:29–65Google Scholar
  58. Loayza AP, Herrera-Madariaga MA, Carvajal DE et al (2017) Conspecific plants are better “nurses” than rocks: consistent results revealing intraspecific facilitation as a process that promotes establishment in a hyper-arid environment. AoB Plants 9:1–11Google Scholar
  59. Ludwig JA (2005) Disturbances and landscapes: the little things count. In: Wiens J, Moss M (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Edinburgh, pp 42–51Google Scholar
  60. Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Universitaria, SantiagoGoogle Scholar
  61. Lund R, Teillier S (2012) Flora vascular de Los Molles Región de Valparaíso Chile. Chloris chilensis 15. http://www.chlorischile.cl/Lund-Los%20Molles/flora%20de%20Los%20Molles.htm Accessed 12 June 2015
  62. Mackey B, Berry S, Hugh S et al (2012) Ecosystem greenspots: identifying potential drought fire and climate-change micro-refuges. Ecol Appl 22:1852–1864Google Scholar
  63. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220Google Scholar
  64. Mares MA, Seine RH (2000) The fauna of inselbergs. In: Porembski S, Barthlott S (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Berlin, Heidelberg, pp 483–491Google Scholar
  65. Milchunas D, Noy-Meir I (2002) Grazing refuges external avoidance of herbivory and plant diversity. Oikos 99:113–130Google Scholar
  66. Morales NS, Fernandez IC, Carrasco BA, Orchard C (2015) Combining niche modeling land use-change and genetic information to assess the conservation status of Pouteria splendens populations in Central Chile. Int J Ecol.  https://doi.org/10.1155/2015/612194 Google Scholar
  67. Morgan MT, Wilson WG, Knight TM (2005) Plant population dynamics pollinator foraging and the selection of self-fertilization. Am Nat 166:169–183Google Scholar
  68. Munguía-Rosas MA, Sosa VJ (2008) Nurse plants vs nurse objects: effects of woody plants and rocky cavities on the recruitment of the Pilosocereus leucocephalus columnar cactus. Ann Bot 101:175–185Google Scholar
  69. Muñoz M, Serra MT (2006) Estado de conservación de las plantas de Chile: Pouteria splendens. http://www.mma.gob.cl/clasificacionespecies/Anexos_segundo_proceso/Fichas_especies_segundo_proceso/Pouteria_splendensdoc. Accessed 4 May 2017
  70. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858Google Scholar
  71. Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406Google Scholar
  72. Owen CA, Bita EC, Banilas G et al (2005) AFLP reveals structural details of genetic diversity within cultivated olive germplasm from the Eastern Mediterranean. Theor Appl Genet 110:1169–1176Google Scholar
  73. Paula S, Naulin PI, Arce C et al (2016) Lignotubers in Mediterranean basin plants. Plant Ecol 217:661–676Google Scholar
  74. Peakall R, Smouse PE (2012) GenAlEx 65: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539Google Scholar
  75. Pecl GT, Araújo MB, Bell JD et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:eaai9214Google Scholar
  76. Pejchar L, Mooney HA (2009) Invasive species ecosystem services and human well-being. Trends Ecol Evol 24:497–504Google Scholar
  77. Peña-Egaña M, Loayza AP, Squeo FA (2018) Are pulp consumers effective seed dispersers? Tests with a large-seeded tropical relict tree. Biotropica.  https://doi.org/10.1111/btp12604 Google Scholar
  78. Pérez-Méndez N, Jordano P, García C, Valido A (2016) The signature of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci Rep 6:24820Google Scholar
  79. Peters EM, Martorell C, Ezcurra E (2008) Nurse rocks are more important than nurse plants in determining the distribution and establishment of globose cacti (Mammillaria) in the Tehuacán Valley Mexico. J Arid Environ 72:593–601Google Scholar
  80. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  81. Raimundo RLG, Guimarães PR Jr, Evans DM (2018) Adaptive networks for restoration ecology. Trends Ecol Evol 33:664–675Google Scholar
  82. Robinson NM, Leonard SWJ, Ritchie EG et al (2013) Refuges for fauna in fire-prone landscapes: their ecological function and importance. J Appl Ecol 50:1321–1329Google Scholar
  83. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32Google Scholar
  84. Schmitz OJ, Wilmers CC, Leroux SJ, Doughty CE et al (2018) Animals and the zoogeochemistry of the carbon cycle. Science 362:eaar3213Google Scholar
  85. Schroeder JW, Tran HT, Dick CW (2014) Fine scale spatial genetic structure in Pouteria reticulata (Engl.) Eyma (Sapotaceae), a dioecious, vertebrate dispersed tropical rain forest tree species. Glob Ecol Conserv 1:43–49Google Scholar
  86. Seine RH (2000) Human dimensions and conservation. In: Porembski S, Barthlott S (eds) Inselbergs biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Berlin, Heidelberg, pp 493–506Google Scholar
  87. Simberloff D (1988) The contribution of population and community biology to conservation science. Annl Rev Ecol Syst 19:473–511Google Scholar
  88. Simonetti JA (1989) Microhabitat use by small mammals in central Chile. Oikos 56:309–318Google Scholar
  89. Sotes GJ, Bustamante RO, Henríquez C (2013) Distribución de plántulas y germinación de semillas del lúcumo chileno (Pouteria splendens) en Los Molles Chile. Rev Chil Hist Nat 86:337–344Google Scholar
  90. Sotes GJ, Bustamante RO, Henríquez CA (2018) Leaf litter is essential for seed survival of the endemic endangered tree Pouteria splendens (Sapotaceae) from central Chile. Web Ecol 18:1–5Google Scholar
  91. Squeo FA, Arancio G, Gutiérrez J (2001) Libro rojo de la flora nativa y de los sitios prioritarios para su conservación: región de coquimbo. Ediciones Universidad de La Serena, La SerenaGoogle Scholar
  92. Squeo FA, Holmgren M, Jiménez M et al (2007) Tree establishment along an ENSO experimental gradient in the Atacama desert. J Veg Sci 18:195–202Google Scholar
  93. Steffen W, Richardson K, Rockström J et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:736–747Google Scholar
  94. Swenson U, Richardson JE, Bartish IV (2008) Multi-gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): evidence of generic polyphyly and extensive morphological homoplasy. Cladistic 24:1006–1031Google Scholar
  95. Szarzynski J (2000) Xeric Islands: Environmental Conditions on Inselbergs. In: Porembski S, Barthlott S (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Berlin Heidelberg, pp 37–48Google Scholar
  96. Tero N, Aspi J, Siikamäki P et al (2003) Genetic structure and gene flow in a metapopulation of an endangered plant species Silene tatarica. Mol Ecol 12:2073–2085Google Scholar
  97. Travis SE, Maschinski J, Keim P (1996) An analysis of genetic variation in Astragalus cremnophylax var cremnophylax a critically endangered plant using AFLP markers. Mol Ecol 5:735–745Google Scholar
  98. Vásquez RA (1996) Patch utilization by three species of Chilean rodents differing in body size and mode of locomotion. Ecology 77:2343–2351Google Scholar
  99. Verboom J, Wamelink W (2005) Spatial modeling in landscape ecology. In: Wiens J, Moss M (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Edinburgh, pp 79–89Google Scholar
  100. Verdú M, García-Fayos P (1996) Nucleation processes in a Mediterranean bird-dispersed plant. Funct Ecol 10:275–280Google Scholar
  101. Wolf AT, Howe RW, Hamrick JL (2000) Genetic diversity and population structure of the serpentine endemic Calystegia collina (Convolvulaceae) in northern California. Am J Bot 87:1138–1146Google Scholar
  102. World Conservation Monitoring Centre (1998) Pouteria splendens The IUCN red list of threatened species 1998: eT32051A9677515. http://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T32051A9677515en. Accessed 19 June 2018
  103. Wright S (1949) The genetical structure of populations. Annl Eugenic 15:323–354Google Scholar
  104. Wu FQ, Shen SK, Zhang XJ et al (2015) Genetic diversity and population structure of an extremely endangered species: the world’s largest Rhododendron. AoB Plants 7:plu082Google Scholar
  105. Yamaura Y, Kawahara T, Iida S, Ozaki K (2008) Relative importance of the area and shape of patches to the diversity of multiple taxa. Conserv Biol 22:1513–1522Google Scholar
  106. Yang J, Gao Z, Sun W, Zhang C (2016) High regional genetic differentiation of an endangered relict plant Craigia yunnanensis and implications for its conservation. Plant Divers 39:221–226Google Scholar
  107. Yeh FC, Yang RC, Boyle T (1999) POPGENE. Population genetics software. https://www.ualberta.ca/~fyeh/fyeh/. Accessed 27 Apr 2017
  108. Yu Z, Guo X (2004) Genetic analysis of selected strains of eastern oyster (Crassostrea virginica Gmelin) using AFLP and microsatellite markers. Mar Biotechnol 6:575–586Google Scholar
  109. Yu Y, Fan Q, Shen R et al (2014) Genetic variability and population structure of Disanthus cercidifolius subsp longipes (Hamamelidaceae) based on AFLP analysis. PLoS ONE 24:e107769Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto de Biología, Facultad de CienciasPontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  3. 3.Departamento de Zoología, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  4. 4.Instituto de EntomologíaUniversidad Metropolitana de Ciencias de la EducaciónSantiagoChile

Personalised recommendations