Skip to main content

Snow cover phenology is the main driver of foraging habitat selection for a high-alpine passerine during breeding: implications for species persistence in the face of climate change

Abstract

High-alpine ecosystems are strongly seasonal and adverse environments. In these ecosystems, the brevity of optimal breeding conditions means species must efficiently track spatiotemporal variations in resources in order to synchronise their reproductive effort with peaks in food availability. Understanding the details of prey-habitat associations and their seasonality in such ecosystems is thus key for deciphering species’ ecological niches and developing sound conservation action. However, the ecological requirements of high-alpine avifauna remain poorly documented. Furthermore, mountain ranges in the Old World are affected not only by profound alterations of climate, but also by changes in land-use, the interaction of which hampers both proper forecasting of species’ resilience to environmental change and delivery of evidence-based conservation guidance. Here, we investigate the prey-habitat associations of a high-alpine passerine, the White-winged Snowfinch (Montifringilla nivalis), by radio-tracking breeding adults in the Swiss Alps. In late spring and early summer, Snowfinches foraged preferentially next to invertebrate-rich, melting snow patches where Tipulidae larvae abound. Later, in mid-summer, they favoured flower-rich alpine meadows. When foraging, they always preferred short ground vegetation while avoiding rock and scree. Their pattern of foraging habitat selection reflects trade-offs between food abundance and accessibility, i.e. prey availability. The reliance of this passerine on a habitat mosaic where snow plays a major role questions its ability to cope with climate change due to future habitat loss and potential phenological mismatches. Targeted grazing could possibly help in habitat management by aiming at maintaining invertebrate-rich meadows with short vegetation. Yet, it remains an open question whether habitat management would suffice to compensate for the potentially detrimental effects of the progressive retreat of snow fields to higher elevations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aldridge G, Inouye DW, Forrest JRK, Barr WA, Miller-Rushing AJ (2011) Emergence of a mid-season period of low floral resources in a montane meadow ecosystem associated with climate change. J Ecol 99:905–913. https://doi.org/10.1111/j.1365-2745.2011.01826.x

    Article  Google Scholar 

  2. Antor RJ (1995) The importance of arthropod fallout on snow patches for the foraging of high-alpine birds. J Avian Biol 26:81–85. https://doi.org/10.2307/3677216

    Article  Google Scholar 

  3. Arlettaz R (1999) Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species Myotis myotis and Myotis blythii. J Anim Ecol 68:460–471. https://doi.org/10.1046/j.1365-2656.1999.00293.x

    Article  Google Scholar 

  4. Arlettaz R, Christe P, Schaub M (2017) Food availability as a major driver in the evolution of life-history strategies of sibling species. Ecol Evol 7:4163–4172. https://doi.org/10.1002/ece3.2909

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arthur SM, Manly BFJ, McDonald LL, Garner GW (1996) Assessing habitat selection when availability changes. Ecology 77:215–227. https://doi.org/10.2307/2265671

    Article  Google Scholar 

  6. Bastianelli G, Tavecchia G, Melendez L, Seoane J, Obeso JR, Laiolo P (2017) Surviving at high elevations: an inter- and intra-specific analysis in a mountain bird community. Oecologia 184:293–303. https://doi.org/10.1007/s00442-017-3852-1

    Article  CAS  PubMed  Google Scholar 

  7. Bates D, Machler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  8. Bears H, Martin K, White GC (2009) Breeding in high-elevation habitat results in shift to slower life-history strategy within a single species. J Anim Ecol 78:365–375. https://doi.org/10.1111/j.1365-2656.2008.01491.x

    Article  CAS  PubMed  Google Scholar 

  9. Becker PH (2003) Biomonitoring with birds. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors: principles, concepts and applications. Elsevier, Oxford, pp 677–736. https://doi.org/10.1016/S0927-5215(03)80149-2

    Chapter  Google Scholar 

  10. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31. https://doi.org/10.1023/A:1024458411589

    Article  Google Scholar 

  11. Brambilla M, Pedrini P, Rolando A, Chamberlain DE (2016) Climate change will increase the potential conflict between skiing and high-elevation bird species in the Alps. J Biogeogr 43:2299–2309. https://doi.org/10.1111/jbi.12796

    Article  Google Scholar 

  12. Brambilla M, Cortesi M, Capelli F, Chamberlain D, Pedrini P, Rubolini D (2017) Foraging habitat selection by Alpine White-winged Snowfinches Montifringilla nivalis during the nestling rearing period. J Ornithol 158:277–286. https://doi.org/10.1007/s10336-016-1392-9

    Article  Google Scholar 

  13. Brambilla M et al (2018) Past and future impact of climate change on foraging habitat suitability in a high-alpine bird species: management options to buffer against global warming effects. Biol Conserv 221:209–218. https://doi.org/10.1016/j.biocon.2018.03.008

    Article  Google Scholar 

  14. Chamberlain D, Arlettaz R, Caprio E, Maggini R, Pedrini P, Rolando A, Zbinden N (2012) The altitudinal frontier in avian climate impact research. Ibis 154:205–209. https://doi.org/10.1111/j.1474-919X.2011.01196.x

    Article  Google Scholar 

  15. Chinery M (1993) Collins guide to insects of Britain and Western Europe, 3rd edn. Harper-Collins, London

    Google Scholar 

  16. Cramp S, Perrins CM (1994) The birds of the Western Palearctic, vol VIII. Oxford University Press, Oxford

    Google Scholar 

  17. Del Hoyo J, Elliott A, Christie DA (2009) Handbook of the birds of the world. Bush-shrikes to old world sparrows, vol 14. Lynx Edicions, Barcelona

    Google Scholar 

  18. Dickey MH, Gauthier G, Cadieux MC (2008) Climatic effects on the breeding phenology and reproductive success of an arctic-nesting goose species. Glob Change Biol 14:1973–1985. https://doi.org/10.1111/j.1365-2486.2008.01622.x

    Article  Google Scholar 

  19. Douglas DJT, Evans DM, Redpath SM (2008) Selection of foraging habitat and nestling diet by Meadow Pipits Anthus pratensis breeding on intensively grazed moorland. Bird Study 55:290–296. https://doi.org/10.1080/00063650809461534

    Article  Google Scholar 

  20. Edwards AC, Scalenghe R, Freppaz M (2007) Changes in the seasonal snow cover of alpine regions and its effect on soil processes: a review. Quat Int 162:172–181. https://doi.org/10.1016/j.quaint.2006.10.027

    Article  Google Scholar 

  21. Eierman LE, Connor RC (2014) Foraging behavior, prey distribution, and microhabitat use by bottlenose dolphins Tursiops truncatus in a tropical atoll. Mar Ecol Prog Ser 503:279–288. https://doi.org/10.3354/meps10721

    Article  Google Scholar 

  22. Elsen PR, Tingley MW (2015) Global mountain topography and the fate of montane species under climate change. Nat Clim Change 5:772–776. https://doi.org/10.1038/nclimate2656

    Article  Google Scholar 

  23. Emlen JM (1966) The role of time and energy in food preference. Am Nat 100:611–617. https://doi.org/10.1086/282455

    Article  Google Scholar 

  24. Evans DM et al (2015) The cascading impacts of livestock grazing in upland ecosystems: a 10-year experiment. Ecosphere 6:1–15. https://doi.org/10.1890/ES14-00316.1

    Article  CAS  Google Scholar 

  25. Flousek J, Telensky T, Hanzelka J, Reif J (2015) Population trends of Central European montane birds provide evidence for adverse impacts of climate change on high-altitude species. PLoS ONE 10:e0139465. https://doi.org/10.1371/journal.pone.0139465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. García-González R, Aldezabal A, Laskurain NA, Margalida A, Novoa C (2016) Influence of snowmelt timing on the diet quality of Pyrenean rock ptarmigan (Lagopus muta pyrenaica): implications for reproductive success. PLoS ONE 11:e0148632. https://doi.org/10.1371/journal.pone.0148632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gehr B, Hofer EJ, Muff S, Ryser A, Vimercati E, Vogt K, Keller LF (2017) A landscape of coexistence for a large predator in a human dominated landscape. Oikos 126:1389–1399. https://doi.org/10.1111/oik.04182

    Article  Google Scholar 

  28. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge Universtiy Press, Cambridge. https://doi.org/10.1017/CBO9780511790942

    Book  Google Scholar 

  29. Giersch JJ, Hotaling S, Kovach RP, Jones LA, Muhlfeld CC (2017) Climate-induced glacier and snow loss imperils alpine stream insects. Glob Change Biol 23:2577–2589. https://doi.org/10.1111/gcb.13565

    Article  Google Scholar 

  30. Harwood JD, Sunderland KD, Symondson WOC (2003) Web-location by linyphiid spiders: prey-specific aggregation and foraging strategies. J Anim Ecol 72:745–756. https://doi.org/10.1046/j.1365-2656.2003.00746.x

    Article  Google Scholar 

  31. Heiniger PH (1991) Anpassungsstrategien des Schneefinken (Montifringilla nivalis) an die extremen Umweltbedingungen des Hochgebirges. Der Ornithol Beob 88:193–207

    Google Scholar 

  32. Jacobs J (1974) Quantitative measurement of food selection. Oecologia 14:413–417. https://doi.org/10.1007/BF00384581

    Article  Google Scholar 

  33. Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71. https://doi.org/10.2307/1937156

    Article  Google Scholar 

  34. Klein G, Vitasse Y, Rixen C, Marty C, Rebetez M (2016) Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Clim Change 139:637–649. https://doi.org/10.1007/s10584-016-1806-y

    Article  Google Scholar 

  35. La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Proc R Soc B 277:3401–3410. https://doi.org/10.1098/rspb.2010.0612

    Article  PubMed  Google Scholar 

  36. Laiolo P, Obeso JR (2017) Life-history responses to the altitudinal gradient. In: Catalan J, Ninot JM, Aniz MM (eds) Challenges for high mountain conservation in a changing world. Springer, Cham, pp 253–283. https://doi.org/10.1007/978-3-319-55982-7_11

    Chapter  Google Scholar 

  37. Laternser M, Schneebeli M (2003) Long-term snow climate trends of the Swiss Alps (1931–1999). Int J Climatol 23:733–750. https://doi.org/10.1002/joc.912

    Article  Google Scholar 

  38. Lehikoinen A, Green M, Husby M, Kalas JA, Lindstrom A (2014) Common montane birds are declining in northern Europe. J Avian Biol 45:3–14. https://doi.org/10.1111/j.1600-048X.2013.00177.x

    Article  Google Scholar 

  39. Liebezeit JR, Gurney KEB, Budde M, Zack S, Ward D (2014) Phenological advancement in arctic bird species: relative importance of snow melt and ecological factors. Polar Biol 37:1309–1320. https://doi.org/10.1007/s00300-014-1522-x

    Article  Google Scholar 

  40. Lindenmayer DB, Likens GE (2011) Direct measurement versus surrogate indicator species for evaluating environmental change and biodiversity loss. Ecosystems 14:47–59. https://doi.org/10.1007/s10021-010-9394-6

    Article  CAS  Google Scholar 

  41. Machin P, Fernandez-Elipe J, Flinks H, Laso M, Aguirre JI, Klaassen RHG (2017) Habitat selection, diet and food availability of European Golden Plover Pluvialis apricaria chicks in Swedish Lapland. Ibis 159:657–672. https://doi.org/10.1111/ibi.12479

    Article  Google Scholar 

  42. Maggini R, Lehmann A, Kery M, Schmid H, Beniston M, Jenni L, Zbinden N (2011) Are Swiss birds tracking climate change? Detecting elevational shifts using response curve shapes. Ecol Model 222:21–32. https://doi.org/10.1016/j.ecolmodel.2010.09.010

    Article  Google Scholar 

  43. Maggini R et al (2014) Assessing species vulnerability to climate and land use change: the case of the Swiss breeding birds. Divers Distrib 20:708–719. https://doi.org/10.1111/ddi.12207

    Article  Google Scholar 

  44. Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by animals: statistical design and analysis for field studies, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  45. Martin K (2001) Wildlife in alpine and sub-alpine habitats. In: Johnson DH, O’Neil TA (eds) Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, pp 285–310

    Google Scholar 

  46. McKinnon L, Picotin M, Bolduc E, Juillet C, Bety J (2012) Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can J Zool 90:961–971. https://doi.org/10.1139/z2012-064

    Article  Google Scholar 

  47. Miller-Rushing AJ, Hoye TT, Inouye DW, Post E (2010) The effects of phenological mismatches on demography. Philos Trans R Soc B 365:3177–3186. https://doi.org/10.1098/rstb.2010.0148

    Article  Google Scholar 

  48. Morris DW (2003) Toward an ecological synthesis: a case for habitat selection. Oecologia 136:1–13. https://doi.org/10.1007/s00442-003-1241-4

    Article  PubMed  Google Scholar 

  49. Naef-Daenzer B (2007) An allometric function to fit leg-loop harnesses to terrestrial birds. J Avian Biol 38:404–407. https://doi.org/10.1111/j.2007.0908-8857.03863.x

    Article  Google Scholar 

  50. Naef-Daenzer L, Naef-Daenzer B, Nager RG (2000) Prey selection and foraging performance of breeding Great Tits Parus major in relation to food availability. J Avian Biol 31:206–214. https://doi.org/10.1034/j.1600-048X.2000.310212.x

    Article  Google Scholar 

  51. Naef-Daenzer B, Widmer F, Nuber M (2001) A test for effects of radio-tagging on survival and movements of small birds. Avian Science 1:15–23

    Google Scholar 

  52. Neudorf DL, Pitcher TE (1997) Radio transmitters do not affect nestling feeding rates by female Hooded Warblers. J Field Ornithol 68:64–68

    Google Scholar 

  53. Pearce-Higgins JW, Yalden DW (2004) Habitat selection, diet, arthropod availability and growth of a moorland wader: the ecology of European Golden Plover Pluvialis apricaria chicks. Ibis 146:335–346. https://doi.org/10.1111/j.1474-919X.2004.00278.x

    Article  Google Scholar 

  54. Pearce-Higgins JW, Yalden DW, Whittingham MJ (2005) Warmer springs advance the breeding phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae). Oecologia 143:470–476. https://doi.org/10.1007/s00442-004-1820-z

    Article  CAS  PubMed  Google Scholar 

  55. Pepin N et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430. https://doi.org/10.1038/nclimate2563

    Article  Google Scholar 

  56. Pernollet CA, Korner-Nievergelt F, Jenni L (2015) Regional changes in the elevational distribution of the Alpine Rock Ptarmigan Lagopus muta helvetica in Switzerland. Ibis 157:823–836. https://doi.org/10.1111/ibi.12298

    Article  Google Scholar 

  57. Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52:137–154. https://doi.org/10.1086/409852

    Article  Google Scholar 

  58. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  59. Rappole JH, Tipton AR (1991) New harness design for attachment of radio transmitters to small passerines. J Field Ornithol 62:335–337

    Google Scholar 

  60. Rehnus M, Braunisch V, Hacklander K, Jost L, Bollmann K (2016) The seasonal trade-off between food and cover in the Alpine mountain hare (Lepus timidus). Eur J Wildl Res 62:11–21. https://doi.org/10.1007/s10344-015-0963-z

    Article  Google Scholar 

  61. Rehnus M, Bollmann K, Schmatz DR, Hackländer K, Braunisch V (2018) Alpine glacial relict species losing out to climate change: the case of the fragmented mountain hare population (Lepus timidus) in the Alps. Glob Change Biol 24:3236–3253. https://doi.org/10.1111/gcb.14087

    Article  Google Scholar 

  62. Rolando A, Laiolo P (1997) A comparative analysis of the diets of the Chough Pyrrhocorax pyrrhocorax and the Alpine Chough Pyrrhocorax graculus coexisting in the Alps. Ibis 139:388–395. https://doi.org/10.1111/j.1474-919X.1997.tb04639.x

    Article  Google Scholar 

  63. Rosvold J (2016) Perennial ice and snow-covered land as important ecosystems for birds and mammals. J Biogeogr 43:3–12. https://doi.org/10.1111/jbi.12609

    Article  Google Scholar 

  64. Schoener TW (1971) Theory of feeding strategies. Annu Rev Ecol Syst 2:369–404. https://doi.org/10.1146/annurev.es.02.110171.002101

    Article  Google Scholar 

  65. Scridel D et al (2018) A review and meta-analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis 160:489–515. https://doi.org/10.1111/ibi.12585

    Article  Google Scholar 

  66. Shannon CE, Weaver W (1949) The mathematical theory of communication, 1st edn. University of Illinois Press, Urbana

    Google Scholar 

  67. Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  68. Tufto J, Andersen R, Linnell JDC (1996) Habitat use and ecological correlates of home range size in a small cervid: the roe deer. J Anim Ecol 65:715–724. https://doi.org/10.2307/5670

    Article  Google Scholar 

  69. Umlauf N, Klein N, Zeileis A (2017) BAMLSS: Bayesian additive models for location, scale, and shape (and beyond). J Comput Graph Stat 27:612–627. https://doi.org/10.1080/10618600.2017.1407325

    Article  Google Scholar 

  70. Vickery J, Arlettaz R (2012) The importance of habitat heterogeneity at multiple scales for birds in European agricultural landscapes. In: Fuller RJ (ed) Birds and habitat: relationships in changing landscapes. Cambridge University Press, Cambridge, pp 177–204. https://doi.org/10.1017/CBO9781139021654.009

    Chapter  Google Scholar 

  71. Vickery JA, Tallowin JR, Feber RE, Asteraki EJ, Atkinson PW, Fuller RJ, Brown VK (2001) The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. J Appl Ecol 38:647–664. https://doi.org/10.1046/j.1365-2664.2001.00626.x

    Article  Google Scholar 

  72. Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc B 272:2561–2569. https://doi.org/10.1098/rspb.2005.3356

    Article  PubMed  Google Scholar 

  73. White TCR (2008) The role of food, weather and climate in limiting the abundance of animals. Biol Rev 83:227–248. https://doi.org/10.1111/j.1469-185X.2008.00041.x

    Article  CAS  PubMed  Google Scholar 

  74. Wilson S, Martin K (2010) Variable reproductive effort for two ptarmigan species in response to spring weather in a northern alpine ecosystem. J Avian Biol 41:319–326. https://doi.org/10.1111/j.1600-048X.2009.04945.x

    Article  Google Scholar 

  75. Wipf S, Rixen C (2010) A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res 29:95–109. https://doi.org/10.1111/j.1751-8369.2010.00153.x

    Article  Google Scholar 

  76. Zweifel-Schielly B, Kreuzer M, Ewald KC, Suter W (2009) Habitat selection by an Alpine ungulate: the significance of forage characteristics varies with scale and season. Ecography 32:103–113. https://doi.org/10.1111/j.1600-0587.2008.05178.x

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Julia Besimo, Laura Bosco, Estefi Jiménez, Clement Jourdan, Mattia Maldonado and Valentin Moser for their assistance in the field. We are also indebted to Roel van Klink and Lukas Lischer for a continuous support in the lab. We are grateful to the European Snowfinch Group (www.snowfinch.eu) for stimulating discussions. We are indebted to Prof. Craig Hamilton, from the Academic English Services at Bern University, and Dr James Hale, who kindly revised the use of English. We thank the two reviewers for valuable comments on the manuscript. Bird capture permit was provided by the Swiss Federal Office for the Environment (F044-0799).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaime Resano-Mayor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Donald C. Franklin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 683 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Resano-Mayor, J., Korner-Nievergelt, F., Vignali, S. et al. Snow cover phenology is the main driver of foraging habitat selection for a high-alpine passerine during breeding: implications for species persistence in the face of climate change. Biodivers Conserv 28, 2669–2685 (2019). https://doi.org/10.1007/s10531-019-01786-9

Download citation

Keywords

  • Alpine ecosystems
  • Climate change
  • European Alps
  • Invertebrates
  • Mountains
  • Seasonality