Skip to main content

The key role of protection status in safeguarding the ecological functions of some Neotropical mammals

Abstract

Protected areas can mediate negative effects of habitat loss and human-related pressures on key ecological groups. However, different protected area categories can vary substantially in their degree of enforcement, which may ensure different levels of effectiveness for biodiversity protection. Because little attempt has been made to quantify this, we investigated the protection effectiveness of different levels of protection (low, intermediate, and high) in maintaining the ecological functions of mammalian species. We assessed this on a selection of five species with varying ecological functions: nine-banded armadillo (insectivore), paca (seed disperser), tayra (omnivore), ocelot (carnivore), and collared peccary (seed predator). Their occupancy probability and the integrity of their ecological functions were estimated and spatialized across landscapes at all protection levels (low, intermediate, and high). In addition, we estimated how many of these species were maintained in each protection status using a minimum of 35% occupancy threshold for each. Our results indicated that higher protection statuses can hold more ecological functions of these mammalian species than areas with lower protection levels. Ocelot and paca heavily relied on areas with higher protection, which can impact the overall ecosystem functioning and ecological services of less protected areas, since these are species performing unique roles in our landscape (mixed-sized prey carnivory and large-sized seed dispersal, respectively). Our study suggests that the degrees of protection can influence the area effectiveness in maintaining certain mammalian species and their ecological functions and ecosystem services. Therefore, management strategies and degree of enforcement should be carefully planned when assigning areas for conservation to ensure the conservation of more sensitive species and preserve more ecological functions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Adapted from Nagy-Reis et al. (2017b). (Color figure online)

Fig. 3
Fig. 4
Fig. 5

References

  1. Álvarez B (2013) Plataforma QGIS. www.qgis.org. Accessed 10 Jan 2014

  2. Andam KS, Ferraro PJ, Pfaff A, Sanchez-Azofeifa GA, Robalino JA (2008) Measuring the effectiveness of protected area networks in reducing deforestation. PNAS 105(42):16089–16094

    CAS  Article  Google Scholar 

  3. Antunes AP, Fewster RM, Venticinque EM, Peres CA, Levi T, Rohe F, Shepard GH (2016) Empty forest or empty rivers? A century of commercial hunting in Amazonia. Sci Adv 2(10):e1600936

    Article  Google Scholar 

  4. Araújo M, Williams PH, Fuller RJ (2002) Dynamics of extinction and the selection of nature reserves. Proc R Soc Lond B 269:1971–1980

    Article  Google Scholar 

  5. Beck-King H, Helversen OV, Beck-King R (1999) Home range, population density, and food resources of Agouti paca (Rodentia: Agoutidae) in Costa Rica: a study using alternative methods. Biotropica 31(4):675–685

    Article  Google Scholar 

  6. Bezerra BM, Barnett AA, Souto A, Jones G (2009) Predation by the tayra on the common marmoset and the pale-throated three-toed sloth. J Ethol 27(1):91–96

    Article  Google Scholar 

  7. Bianchi RDC, Mendes SL, Júnior PDM (2010) Food habits of the ocelot, Leopardus pardalis, in two areas in southeast Brazil. Stud Neotrop Fauna Environ 45(3):111–119

    Article  Google Scholar 

  8. Bianchi RDC, Rosa AF, Gatti A, Mendes SL (2011) Diet of margay, Leopardus wiedii, and jaguarundi, Puma yagouaroundi, (Carnivora: Felidae) in Atlantic rainforest, Brazil. Zoologia 28(1):127–132

    Article  Google Scholar 

  9. Bisbal EF (1986) Food habits of some neotropical carnivores in Venezuela (Mammalia, Carnivora). Mammalia 50(3):329–340

    Article  Google Scholar 

  10. Bodmer RE (1991a) Influence of digestive morphology on resource partitioning in Amazonian ungulates. Oecologia 85:361–365

    Article  Google Scholar 

  11. Bodmer RE (1991b) Strategies of seed dispersal and seed predation in Amazonian ungulates. Biotropica 23:255–261

    Article  Google Scholar 

  12. Boscolo D, Metzger JP (2009) Is bird incidence in Atlantic forest fragments influenced by landscape patterns at multiple scales? Landsc Ecol 24:907–918

    Article  Google Scholar 

  13. Brooks TM, da Fonseca GAB, Rodrigues ASL (2004) Protected areas and species. Conserv Biol 18(3):616–618

    Article  Google Scholar 

  14. Bruner AG, Gullinson RE, Rice RE, Fonseca GAB (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291:125–128

    CAS  Article  Google Scholar 

  15. Burnham KP, Anderson D (2002) Model selection and multi-model inference: a practical information–theoretic approach. Springer, New York

    Google Scholar 

  16. Carvalho WD (2011) Mamíferos não voadores da Reserva Biológica da Serra do Japi, São Paulo – avaliação da eficiência e metodologia de captura. Master’s dissertation, Universidade Rural do Rio de Janeiro, Seropédica

  17. Chiarello AG (1999) Effects of fragmentation of the Atlantic Forest on mammal communities in south-eastern Brazil. Biol Conserv 89:71–82

    Article  Google Scholar 

  18. Corrêa HKM, Coutinho PEG, Ferrari SF (2000) Between-year differences in the feeding ecology of highland marmosets (Callithrix aurita and Callithrix flaviceps) in south-eastern Brazil. J Zool 252:421–427

    Article  Google Scholar 

  19. Crawshaw PG (1995) Comparative ecology of ocelots (Felis pardalis) and jaguar (Panthera onca) in a protected subtropical forest in Brazil and Argentina. Ph.D. dissertation, University of Florida, Gainesville

  20. Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400(6744):563–566

    CAS  Article  Google Scholar 

  21. DeFries R, Hansen A, Turner BL, Reid R, Liu J (2007) Land use change around protected areas: management to balance human needs and ecological function. Ecol Appl 17(4):1031–1038

    Article  Google Scholar 

  22. Dobson A, Lodge D, Alder J, Cumming SG, Keymer J, McGlade J, Mooney H et al (2006) Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87(8):1915–1924

    Article  Google Scholar 

  23. Dubost G, Henry O (2006) Comparison of diets of the acouchy, agouti and paca, the three largest terrestrial rodents of French Guianan forests. J Trop Ecol 22:641–651

    Article  Google Scholar 

  24. Emmons LH, Feer F (1997) Neotropical rainforest mammals: a field guide. University of Chicago Press, Chicago

    Google Scholar 

  25. ESRI (2009) ArcGIS. Environmental Systems Research Institute, Redlands

    Google Scholar 

  26. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR et al (2011) Trophic downgrading of planet Earth. Science 333(6040):301–306

    CAS  Article  Google Scholar 

  27. Galetti M, Donatti CI, Pires A, Guimarães P Jr, Jordano P (2006) Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation. Bot J 151(1):141–149

    Google Scholar 

  28. Galetti M, Giacomini HC, Bueno RS, Bernardo CS, Marques RM, Bovendorp RS, Steffler CE et al (2009) Priority areas for the conservation of Atlantic forest large mammals. Biol Conserv 142(6):1229–1241

    Article  Google Scholar 

  29. Galetti M, Guevara R, Côrtes MC, Fadini R, Von Matter S, Leite AB, Labecca F et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090

    CAS  Article  Google Scholar 

  30. Gatti A, Bianchi R, Rosa CRX, Mendes SL (2006) Diet of two sympatric carnivores, Cerdocyon thous and Procyon cancrivorus, in a restinga area of Espirito Santo State, Brazil. J Trop Ecol 22(2):227–230

    Article  Google Scholar 

  31. Giné GAF, Duarte JMB, Faria D (2010) Feeding ecology of a selective folivore, the thin-spined porcupine (Chaetomys subspinosus) in the Atlantic forest. J Mamm 91(4):931–941

    Article  Google Scholar 

  32. Hines JE (2006) PRESENCE - Software to estimate patch occupancy and related parameters. USGS-PWRC. www.mbr-pwrc.usgs.gov/software/presence.html. Accessed 2 Dec 2014

  33. Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35

    Article  Google Scholar 

  34. IUCN (2018) IUCN Red List of Threatened Species. Version 2018.2. www.iucnredlist.org. Accessed 10 Nov 2018

  35. Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either-or-presence-absence. Acta Oecol 31:361–369

    Article  Google Scholar 

  36. Kremen C (2005) Managing ecosystem services: what do we need to know about their ecology? Ecol Lett 8:468–479

    Article  Google Scholar 

  37. Lambeck RJ (1997) Focal species: a multi-species umbrella for nature conservation. Conserv Biol 11:849–856

    Article  Google Scholar 

  38. Licona M, McCleery R, Collier B, Brightsmith DJ, Lopez R (2011) Using ungulate occurrence to evaluate community-based conservation within a biosphere reserve model. Anim Conserv 14:206–214

    Article  Google Scholar 

  39. Loveridge AJ, Wang SW, Frank LG, Seidensticker J (2011) People and felids: conservation of cats and management of conflicts. In: Macdonald DW, Loveridge AJ (eds) Biology and conservation of wild felids. Oxford University Press, New York

    Google Scholar 

  40. Mackenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  41. Mackenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling. Academic Press, Oxford

    Google Scholar 

  42. Manly BFJ (1997) Randomization and Monte Carlo methods in biology. Chapman and Hall, New York

    Google Scholar 

  43. Massara RL, de Oliveira Paschoal AM, Doherty PF Jr, Hirsch A, Chiarello AG (2015) Ocelot population status in protected Brazilian Atlantic forest. PLoS ONE 10(11):e0141333

    Article  Google Scholar 

  44. Meachen-Samuels J, Van Valkenburgh B (2009) Craniodental indicators of prey size preference in the Felidae. Biol J Linn Soc 96:784–799

    Article  Google Scholar 

  45. Michalski F, Peres CA (2005) Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biol Conserv 124:383–396

    Article  Google Scholar 

  46. Morellato LPC (1992) História natural da Serra do Japi: ecologia e preservação de uma área florestal no sudeste do Brasil. Editora da Unicamp, Campinas

    Google Scholar 

  47. Moreno RS, Kays RW, Samudio R Jr (2006) Competitive release in diets of ocelot (Leopardus pardalis) and puma (Puma concolor) after jaguar (Panthera onca) decline. J Mamm 87(4):808–816

    Article  Google Scholar 

  48. Myers N, Mittermeier RA, Mittermeier CG, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  Article  Google Scholar 

  49. Nagendra H (2008) Do parks work? Impact of protected areas on land cover clearing. Ambio 37(5):330–337

    Article  Google Scholar 

  50. Nagy-Reis MB, Setz EZF (2017) Foraging strategies of black-fronted titi monkeys (Callicebus nigrifrons) in relation to food availability in a seasonal tropical forest. Primates 58:149–158

    Article  Google Scholar 

  51. Nagy-Reis MB, Estevo CA, Setz EZF, Ribeiro MC, Chiarello AG, Nichols JD (2017a) Relative importance of anthropogenic landscape characteristics on Neotropical frugivores in a multiple scale perspective. Anim Conserv 20(6):520–531

    Article  Google Scholar 

  52. Nagy-Reis MB, Nichols JD, Chiarello AG, Ribeiro MC, Setz EZF (2017b) Landscape use and co-occurrence patterns of Neotropical spotted cats. PLoS ONE 12(1):e0168441

    Article  Google Scholar 

  53. Neteler M, Bowman MH, Landa M, Metz M (2012) GRASS GIS: a multi-purpose open. Environ Modell Softw 31:124–130

    Article  Google Scholar 

  54. Noss RF, Quigley HB, Hornocker MG, Merril T, Paquet PC (1996) Conservation biology and carnivore conservation in the Rocky Mountains. Conserv Biol 10(4):949–963

    Article  Google Scholar 

  55. Nowell K, Jackson P (1996) Wild cats: status survey and conservation action plan. IUCN/SSC Cat Specialist Group, IUCN, Switzerland

  56. Peres CA, Palacios E (2007) Basin-wide effects of game harvest on vertebrate population densities in Amazonian forest: implications for animal-mediated seed dispersal. Biotropica 39(3):304–315

    Article  Google Scholar 

  57. Phillips A (2004) The history of the international system of protected area management categories. Parks 14(3):4–14

    Google Scholar 

  58. Pimentel DS, Tabarelli M (2004) Seed dispersal of the palm Attalea oleifera in a remnant of Brazilian Atlantic forest. Biotropica 36:74–84

    Article  Google Scholar 

  59. Primack RB (1993) Essentials of conservation biology. Sinauer Associates Inc, Sunderland

    Google Scholar 

  60. R Development Core Tea (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing. www.R-project.org. Accessed 2 Oct 2014

  61. Redford KH (1992) The empty forest. Bioscience 42:412–422

    Article  Google Scholar 

  62. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  63. Rodrigues TF, Chiarello AG (2018) Native forests within and outside protected areas are key for nine-banded armadillo (Dasypus novemcinctus) occupancy in agricultural landscapes. Agric Ecosyst Environ 266:133–141

    Article  Google Scholar 

  64. Rodrigues AS, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Cowling RM, Fishpool LDC et al (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428(8):640–643

    CAS  Article  Google Scholar 

  65. Rondinini C, Wilson KA, Boitani L, Grantham H, Possingham HP (2006) Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol Lett 9:1136–1145

    Article  Google Scholar 

  66. Royle A, Nichols JD, Kéry M (2005) Modelling occurrence and abundance of species when detection is imperfect. Oikos 110:353–359

    Article  Google Scholar 

  67. Santori RT, de Moraes DA, Cerqueira R (1995) Diet composition of Metachirus nudicaudatus and Didelphis aurita (Marsupialia, Didelphoidea) in southeastern Brazil. Mammalia 59(4):511–516

    Article  Google Scholar 

  68. Silva-Pereira JE, Moro-Rios RF, Bilski DR, Passos FC (2011) Diets of three sympatric Neotropical small cats: Food niche overlap and interspecies differences in prey consumption. Mamm Biol 76(3):308–312

    Article  Google Scholar 

  69. SMPMA - Secretaria Municipal de Planejamento e Meio Ambiente (2008) Plano de manejo - Reserva Biológica Municipal da Serra do Japi-Jundiaí-SP. Prefeitura de Jundiaí, Jundiaí

    Google Scholar 

  70. Steenweg R, Hebblewhite M, Whittington J, Lukacs P, McKelvey K (2018) Sampling scales define occupancy and underlying occupancy–abundance relationships in animals. Ecology 99(1):172–183

    Article  Google Scholar 

  71. Stoner C, Caro T, Mduma S, Mlingwa C, Sabuni G, Borner M (2007) Assessment of effectiveness of protection strategies in Tanzania based on a decade of survey data for large herbivores. Conserv Biol 21(3):635–646

    Article  Google Scholar 

  72. Sunquist M, Sunquist F (2002) Wild cats of the world. The University of Chicago Press, London

    Book  Google Scholar 

  73. TEAM Network (2011) Terrestrial Vertebrate protocol implementation manual, version 3.1. Arlington: tropical ecology, assessment and monitoring network, conservation international. www.teamnetwork.org/protocol/terrestrial-vertebrate-camera-trapping-monitoring-protocol. Accessed 5 Feb 2012

  74. Terborgh J, Lopez L, Nunez P, Rao M, Shahabuddin G, Orihuela G, Riveros M et al (2001) Ecological meltdown in predator-free forest fragments. Science 294(5548):1923–1926

    CAS  Article  Google Scholar 

  75. Vaz VC, Santori RT, Jansen AM, Delciellos AC, D’Andrea PS (2012) Notes on food habits of armadillos (Cingulata, Dasypodidae) and anteaters (Pilosa, Myrmecophagidae) at Serra da Capivara National Park (Piauí State, Brazil). Edentata 13:84–89

    Article  Google Scholar 

  76. Wright SJ (2003) The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspect Plant Ecol Evol Syst 6:73–86

    Article  Google Scholar 

  77. Wright SJ, Zeballos H, Domínguez I, Gallardo MM, Moreno MC, Ibáñez R (2000) Poachers alter mammal abundance, seed dispersal, and seed predation in a Neotropical forest. Conserv Biol 14:227–239

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Jundiaí City Hall and all private owners for permission to conduct this project at Serra do Japi, and to Coordination for the Improvement of Higher Education Personnel (CAPES), São Paulo Research Foundation (FAPESP; Grant 2013/07162-6), and Idea Wild for their financial and equipment support. We are also grateful to J. E. Hines and J. D. Nichols for assisting in our data analysis; V. H. Iwakami, C. A. Estevo, Traldi family, and Benê for assisting during data collection. The Brazilian Science Council (CNPq) provided a research Grant to AGC (process 305902/2014-8). MCR has been continuously supported by Grants and scholarships from CNPq (process 303101/2017-2) and FAPESP (Grant 2013/50421-2). Megan King, a native English speaker from British Columbia, CA, proofread the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mariana B. Nagy-Reis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Biodiversity protection and reserves.

Communicated by Iain James Gordon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 112 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagy-Reis, M.B., Ribeiro, M.C., Setz, E.Z.F. et al. The key role of protection status in safeguarding the ecological functions of some Neotropical mammals. Biodivers Conserv 28, 2599–2613 (2019). https://doi.org/10.1007/s10531-019-01783-y

Download citation

Keywords

  • Protected areas
  • Ecosystem services
  • Carnivory
  • Seed dispersal
  • Mammal conservation