Advertisement

Soil microbiome: a key player for conservation of soil health under changing climate

  • Anamika Dubey
  • Muneer Ahmad Malla
  • Farhat Khan
  • Kanika Chowdhary
  • Shweta Yadav
  • Ashwani KumarEmail author
  • Satyawati Sharma
  • Pramod K. Khare
  • Mohammad Latif Khan
Original Paper

Abstract

Maintenance of soil health is central to agricultural sustainability and a key factor that reflects the productivity of agro ecosystems. However, at present the soil resources are under severe threats from various anthropogenic activities including climate change. Climate changes add more uncertainties and complexities to agriculture, ecosystem and intimidate their sustainability. Plant-associated microbial communities stimulate the plant growth and increase their resistance to various abiotic and biotic stresses. Linking the distribution of microbial diversity and ecosystem functioning is essential to understand ecosystem responses to changing environment. Soil microbial taxa are imperative in relation to global climate changes as they play important and undisputable roles in biogeochemical cycling, plant growth and carbon sequestration. Modern genomic approaches show tremendous potential for identification of uncultivated diversity and finding shifts in the bacterial community associated with sensitive and disease tolerant plants, and understanding how microbes are affected by climate change. In this review, we discussed how the climate change influences soil microbial communities and plant–microbe interactions. Further, in this review the we have highlighted the role of metagenomics for unlocking the soil microbial black box.

Keywords

Metagenomics Biodiversity conservation Agriculture sustainability Climate change 

Notes

Acknowledgements

AD would like to acknowledge Department of Science and Technology, New Delhi, India for providing financial support in the form of DST Inspire Ph.D. Fellowship (IF160797). FK was supported by Indira Gandhi fellowship of EPCO (/EPCO/RES/CC18), M.P, India. MM was supported by the University Ph.D. Fellowship. MLK, PKK and AK sincerely thanks the Department of Biotechnology (DBT), Government of India for partial financial assistance in the form of project “Mapping and quantitative assessment of plant resources and its distribution in Madhya Pradesh, Central India” (Ref. No. BT/PR12899/NDB/39/506/2015 dt. 20/06/2017).

References

  1. A’Bear AD, Jones TH, Boddy L (2014) Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecol 10:34–43.  https://doi.org/10.1016/j.funeco.2013.01.009 CrossRefGoogle Scholar
  2. Abhilash PC, Dubey RK, Tripathi V et al (2013) Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives. Environ Sci Pollut Res 20:5879–5885.  https://doi.org/10.1007/s11356-013-1808-5 CrossRefGoogle Scholar
  3. Adler PB, Dalgleish HJ, Ellner SP (2012) Forecasting plant community impacts of climate variability and change: when do competitive interactions matter? J Ecol 100:478–487.  https://doi.org/10.1111/j.1365-2745.2011.01930.x CrossRefGoogle Scholar
  4. Agrawal AA, Weber MG (2015) On the study of plant defence and herbivory using comparative approaches: how important are secondary plant compounds. Ecol Lett 18:985–991.  https://doi.org/10.1111/ele.12482 CrossRefPubMedGoogle Scholar
  5. Ahmad P, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11(11):2694–2703.  https://doi.org/10.5897/AJB11.3203 CrossRefGoogle Scholar
  6. Ahmad P, Hameed A, Abd-Allah EF, Sheikh SA, Wani MR, Rasool S, Jamsheed S, Kumar A (2013) Biochemical and molecular approaches for drought tolerance in plants. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, pp 1–29.  https://doi.org/10.1007/978-1-4614-8600-8_1 CrossRefGoogle Scholar
  7. Aislabie J, Deslippe JR, Dymond JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand: conditions and trends. Manaaki Whenua Press, Lincoln, pp 143–161Google Scholar
  8. Allende A, Monaghan J (2015) Irrigation water quality for leafy crops: a perspective of risks and potential solutions. Int J Environ Res Public Health.  https://doi.org/10.3390/ijerph120707457 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Amundson R, Berhe AA, Hopmans JW et al (2015) Soil and human security in the 21st century. Science.  https://doi.org/10.1126/science.1261071 CrossRefPubMedGoogle Scholar
  10. Auffret MD, Karhu K, Khachane A et al (2016) The role of microbial community composition in controlling soil respiration responses to temperature. PLoS ONE 11:e0165448.  https://doi.org/10.1371/journal.pone.0165448 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98.  https://doi.org/10.1016/j.tplants.2013.11.006 CrossRefPubMedGoogle Scholar
  12. Bagri DS, Upadhyaya DC, Kumar A, Upadhyaya CP (2018) Overexpression of PDX-II gene in potato (Solanum tuberosum L.) leads to the enhanced accumulation of vitamin B6 in tuber tissues and tolerance to abiotic stresses. Plant Sci 272:267–275.  https://doi.org/10.1016/j.plantsci.2018.04.024 CrossRefPubMedGoogle Scholar
  13. Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol.  https://doi.org/10.1146/annurev.arplant.57.032905.105159 CrossRefPubMedGoogle Scholar
  14. Baldrian P (2017) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev.  https://doi.org/10.1093/femsre/fuw040 CrossRefPubMedGoogle Scholar
  15. Baldrian P, Kolaiřík M, Štursová M et al (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J.  https://doi.org/10.1038/ismej.2011.95 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Barant S, Radbata D, Oberweis D et al (2016) Abdominal necrotizing fasciitis after caesarean delivery. Rev Med Brux 37:178–182.  https://doi.org/10.1126/science.1097396 CrossRefPubMedGoogle Scholar
  17. Bardgett RD, Van Der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511.  https://doi.org/10.1038/nature13855 CrossRefPubMedGoogle Scholar
  18. Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1711842115 CrossRefPubMedGoogle Scholar
  19. Bell CW, Asao S, Calderon F et al (2015) Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biol Biochem 85:170–182.  https://doi.org/10.1016/j.soilbio.2015.03.006 CrossRefGoogle Scholar
  20. Bell-Dereske L, Takacs-Vesbach C, Kivlin SN (2017) Leaf endophytic fungus interacts with precipitation to alter belowground microbial communities in primary successional dunes. FEMS Microbiol Ecol.  https://doi.org/10.1093/femsec/fix036 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol.  https://doi.org/10.1016/j.tree.2016.02.016 CrossRefPubMedGoogle Scholar
  22. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486.  https://doi.org/10.1016/j.tplants.2012.04.001 CrossRefPubMedGoogle Scholar
  23. Berg MP, Toby Kiers E, Driessen G et al (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol 16:587–598.  https://doi.org/10.1111/j.1365-2486.2009.02014.x CrossRefGoogle Scholar
  24. Beutin L, Martin A (2012) Outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 infection in Germany causes a paradigm shift with regard to human pathogenicity of STEC strains. J Food Prot 75:408–418.  https://doi.org/10.4315/0362-028X.JFP-11-452 CrossRefPubMedGoogle Scholar
  25. Bever JD (2015) Preferential allocation, physio-evolutionary feedbacks, and the stability and environmental patterns of mutualism between plants and their root symbionts. New Phytol 205:1503–1514.  https://doi.org/10.1111/nph.13239 CrossRefPubMedGoogle Scholar
  26. Bhogal P (2016) ORF_Issue_Brief_167_Small_Farmers. Observer Res FoundGoogle Scholar
  27. Bintanja R (2018) The impact of Arctic warming on increased rainfall. Sci Rep.  https://doi.org/10.1038/s41598-018-34450-3 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Blaser MJ, Cardon ZG, Cho MK et al (2016) Toward a predictive understanding of earth’s microbiomes to address 21st century challenges. MBio.  https://doi.org/10.1128/mBio.00714-16 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Bojko O, Kabala C (2017) Organic carbon pools in mountain soils—sources of variability and predicted changes in relation to climate and land use changes. CATENA.  https://doi.org/10.1016/j.catena.2016.09.022 CrossRefGoogle Scholar
  30. Bonanomi G, Lorito M, Vinale F, Woo SL (2018) Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu Rev Phytopathol 56:1–20.  https://doi.org/10.1146/annurev-phyto-080615-100046 CrossRefPubMedGoogle Scholar
  31. Bradford MA, Davies CA, Frey SD et al (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327.  https://doi.org/10.1111/j.1461-0248.2008.01251.x CrossRefPubMedGoogle Scholar
  32. Briones MJI, Mcnamara NP, Poskitt J et al (2014) Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils. Glob Chang Biol 20:2971–2982.  https://doi.org/10.1111/gcb.12585 CrossRefPubMedGoogle Scholar
  33. Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ.  https://doi.org/10.1016/j.agee.2006.12.013 CrossRefGoogle Scholar
  34. Bulgarelli D, Schlaeppi K, Spaepen S et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838.  https://doi.org/10.1146/annurev-arplant-050312-120106 CrossRefPubMedGoogle Scholar
  35. Busby PE, Soman C, Wagner MR et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:1–14.  https://doi.org/10.1371/journal.pbio.2001793 CrossRefGoogle Scholar
  36. Callaway E (2016) Devastating wheat fungus appears in Asia for first time. Nature 532:421–422.  https://doi.org/10.1038/532421a CrossRefPubMedGoogle Scholar
  37. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41.  https://doi.org/10.1007/s11104-014-2131-8 CrossRefGoogle Scholar
  38. Caporaso JG, Kuczynski J et al (2010) QIIME allows high throughput community sequencing data. Nat Methods 7:335–336.  https://doi.org/10.1038/nmeth0510-335 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Castro HF, Classen AT, Austin EE et al (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007.  https://doi.org/10.1128/AEM.02874-09 CrossRefPubMedGoogle Scholar
  40. Castro HF, Classen AT, Austin EE et al (2012) Development and validation of a citrate synthase directed quantitative PCR marker for soil bacterial communities. Appl Soil Ecol 61:69–75.  https://doi.org/10.1016/j.apsoil.2012.05.007 CrossRefGoogle Scholar
  41. Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MGA (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20:283–290.  https://doi.org/10.1016/j.tplants.2015.03.004 CrossRefPubMedGoogle Scholar
  42. Ceuppens S, Johannessen GS, Allende A et al (2015) Risk factors for Salmonella, shiga toxin-producing Escherichia coli and Campylobacter occurrence in primary production of leafy greens and strawberries. Int J Environ Res Public Health.  https://doi.org/10.3390/ijerph120809809 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J.  https://doi.org/10.1038/ismej.2013.196 CrossRefPubMedGoogle Scholar
  44. Charubin K, Papoutsakis ET (2019) Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space. Metab Eng 52:9–19.  https://doi.org/10.1016/j.ymben.2018.10.006 CrossRefPubMedGoogle Scholar
  45. Chen X-P, Cui Z-L, Vitousek PM et al (2011) Integrated soil-crop system management for food security. Proc Natl Acad Sci USA 108:6399–6404.  https://doi.org/10.1073/pnas.1101419108 CrossRefPubMedGoogle Scholar
  46. Chen S, Zou J, Hu Z et al (2014) Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: summary of available data. Agric For Meteorol 198:335–346.  https://doi.org/10.1016/j.agrformet.2014.08.020 CrossRefGoogle Scholar
  47. Chen D, Cheng J, Chu P et al (2015a) Regional-scale patterns of soil microbes and nematodes across grasslands on the Mongolian plateau: relationships with climate, soil, and plants. Ecography (Cop) 38:622–631.  https://doi.org/10.1111/ecog.01226 CrossRefGoogle Scholar
  48. Chen Z, Yu G, Ge J et al (2015b) Roles of climate, vegetation and soil in regulating the spatial variations in ecosystem carbon dioxide fluxes in the Northern Hemisphere. PLoS ONE.  https://doi.org/10.1371/journal.pone.0125265 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Chowdhary K, Sharma S (2017) Potential of fungal endophytes in plant growth and disease management. In: Singh D, Singh H, Prabha R (eds) Plant–microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 275–290.  https://doi.org/10.1007/978-981-10-5813-4_14 CrossRefGoogle Scholar
  50. Chowdhary K, Kumar A, Sharma S, Pathak R, Jangir M (2018) Ocimum sp.: source of biorational pesticides. Ind Crops Prod 122:686–701.  https://doi.org/10.1016/j.indcrop.2018.05.068 CrossRefGoogle Scholar
  51. Classen AT, Sundqvist MK, Henning JA et al (2015) Direct and indirect effects of climate change on soil microbial and soil microbial–plant interactions: what lies ahead? Ecosphere.  https://doi.org/10.1890/ES15-00217.1 CrossRefGoogle Scholar
  52. Compant S, Van Der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol Ecol.  https://doi.org/10.1111/j.1574-6941.2010.00900.x CrossRefPubMedGoogle Scholar
  53. Curtis TP, Sloan WT (2005) Exploring microbial diversity—a vast below. Science 309:1331–1333.  https://doi.org/10.1126/science.1118176 CrossRefPubMedGoogle Scholar
  54. Da Silva Felício MT, Hald T, Liebana E et al (2015) Risk ranking of pathogens in ready-to-eat unprocessed foods of non-animal origin (FoNAO) in the EU: initial evaluation using outbreak data (2007–2011). Int J Food Microbiol.  https://doi.org/10.1016/j.ijfoodmicro.2014.11.005 CrossRefPubMedGoogle Scholar
  55. DeAngelis KM, Pold G, Topçuoğlu BD et al (2015) Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol.  https://doi.org/10.3389/fmicb.2015.00104 CrossRefPubMedPubMedCentralGoogle Scholar
  56. de Vries FT, Wallenstein MD (2017) Below-ground connections underlying above-ground food production: a framework for optimising ecological connections in the rhizosphere. J Ecol 105:913–920CrossRefGoogle Scholar
  57. De Vries FT, Liiri ME, Bjørnlund L et al (2012) Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Change 2:276–280.  https://doi.org/10.1038/nclimate1368 CrossRefGoogle Scholar
  58. de Weert S, Vermeiren H, Mulders IHM et al (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180.  https://doi.org/10.1094/MPMI.2002.15.11.1173 CrossRefPubMedGoogle Scholar
  59. Deemer BR, Harrison JA, Li S et al (2016) Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience 66:949–964.  https://doi.org/10.1093/biosci/biw117 CrossRefGoogle Scholar
  60. Delgado-Baquerizo M, Maestre FT, Escolar C et al (2014) Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semiarid grassland. J Ecol 102:1592–1605.  https://doi.org/10.1111/1365-2745.12303 CrossRefGoogle Scholar
  61. Delmont TO, Malandain C, Prestat E et al (2011) Metagenomic mining for microbiologists. ISME J 5:1837–1843.  https://doi.org/10.1038/ismej.2011.61 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Dias T, Antunes PM (2014) Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J Sci Food Agric.  https://doi.org/10.1002/jsfa.6565 CrossRefPubMedGoogle Scholar
  63. Dinsdale E, Edwards R, Hall D et al (2008) Functional metagenomic profiling of 9 biomes. Earth 452:1–30.  https://doi.org/10.1038/nature06810 CrossRefGoogle Scholar
  64. Dubey A, Kumar A, Abd_Allah EF et al (2018) Growing more with less: breeding and developing drought resilient soybean to improve food security. Ecol Indic.  https://doi.org/10.1016/j.ecolind.2018.03.003 CrossRefGoogle Scholar
  65. Engelkes T, Morriën E, Verhoeven KJF et al (2008) Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456:946–948.  https://doi.org/10.1038/nature07474 CrossRefPubMedGoogle Scholar
  66. Erisman JW, Galloway JN, Seitzinger S et al (2013) Consequences of human modification of the global nitrogen cycle. Philos Trans R Soc B Biol Sci.  https://doi.org/10.1098/rstb.2013.0116 CrossRefGoogle Scholar
  67. Fang J, Yu G, Liu L et al (2018) Climate change, human impacts, and carbon sequestration in China. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1700304115 CrossRefPubMedGoogle Scholar
  68. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology.  https://doi.org/10.1890/05-1839 CrossRefPubMedGoogle Scholar
  69. Fierer N, Lauber CL, Ramirez KS et al (2012a) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J.  https://doi.org/10.1038/ismej.2011.159 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Fierer N, Leff JW, Adams BJ et al (2012b) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA 109:21390–21395.  https://doi.org/10.1073/pnas.1215210110 CrossRefPubMedGoogle Scholar
  71. Foley JA, Ramankutty N, Brauman KA et al (2011) Solutions for a cultivated planet. Nature 478:337–342.  https://doi.org/10.1038/nature10452 CrossRefPubMedGoogle Scholar
  72. Fones HN, Mardon C, Gurr SJ (2016) A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus. Sci Rep.  https://doi.org/10.1038/srep34638 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Change 3:395–398.  https://doi.org/10.1038/nclimate1796 CrossRefGoogle Scholar
  74. Gao D, Hagedorn F, Zhang L et al (2018) Small and transient response of winter soil respiration and microbial communities to altered snow depth in a mid-temperate forest. Appl Soil Ecol 130:40–49.  https://doi.org/10.1016/j.apsoil.2018.05.010 CrossRefGoogle Scholar
  75. Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual-and colony-level traits in bees. Nature.  https://doi.org/10.1038/nature11585 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Glass EM, Meyer F (2011) The metagenomics RAST server: a public resource for the automatic phylogenetic and functional analysis of metagenomes. In: Handbook of molecular microbial ecology. I: metagenomics and complementary approaches. Wiley, Hoboken, pp 325–331.  https://doi.org/10.1002/9781118010518.ch37
  77. Goecks J, Nekrutenko A, Taylor J et al (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol.  https://doi.org/10.1186/gb-2010-11-8-r86 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Gottfried M, Pauli H, Futschik A et al (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change 2:111–115.  https://doi.org/10.1038/nclimate1329 CrossRefGoogle Scholar
  79. Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371.  https://doi.org/10.1002/jsfa.6577 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Graham EB, Knelman JE, Schindlbacher A et al (2016) Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol 7:1–10.  https://doi.org/10.3389/fmicb.2016.00214 CrossRefGoogle Scholar
  81. Gray SB, Classen AT, Kardol P et al (2011) Multiple climate change factors interact to alter soil microbial community structure in an old-field ecosystem. Soil Sci Soc Am J 75:2217.  https://doi.org/10.2136/sssaj2011.0135 CrossRefGoogle Scholar
  82. Gross A, Hosoya T, Queloz V (2014) Population structure of the invasive forest pathogen Hymenoscyphus pseudoalbidus. Mol Ecol.  https://doi.org/10.1111/mec.12792 CrossRefPubMedGoogle Scholar
  83. Gupta C, Prakash DG (2014) Role of microbes in combating global warming. Int J Pharm Sci Lett 4:359–363Google Scholar
  84. Gururaj B, Hamsa KR, Ramesh Mahadevaiah GS (2017) Doubling of small and marginal farmers income through rural non-farm and farm sector in Karnataka. Econ Aff 62:581.  https://doi.org/10.5958/0976-4666.2017.00070.5 CrossRefGoogle Scholar
  85. Hagerty SB, Van Groenigen KJ, Allison SD et al (2014) Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat Clim Change 4:903–906.  https://doi.org/10.1038/nclimate2361 CrossRefGoogle Scholar
  86. Hameed A, Wu QS, Abd-Allah EF, Hashem A, Kumar A, Lone HA, Ahmad P (2014) Role of AM fungi in alleviating drought stress in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New YorkGoogle Scholar
  87. Hashem A, Abd_Allah EF, Alqarawi AA, Radhakrishnan R, Kumar A (2017) Plant defense approach of bacillus subtilis (Bera 71) against Macrophomina phaseolina (tassi) Goid in mung bean. J Plant Interact 12:390–401.  https://doi.org/10.1080/17429145.2017.1373871 CrossRefGoogle Scholar
  88. Hashem A, Kumar A, Al-Dbass AM, Alqarawi AA, Al-Arjani ABF, Singh G, Farooq M, Abd_Allah EF (2018) Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J Biol Sci 26(3):614–624.  https://doi.org/10.1016/j.sjbs.2018.11.005 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58.  https://doi.org/10.1186/s40168-018-0445-0 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Henry HAL (2013) Reprint of “Soil extracellular enzyme dynamics in a changing climate”. Soil Biol Biochem 56:53–59.  https://doi.org/10.1016/j.soilbio.2012.10.022 CrossRefGoogle Scholar
  91. Hicks N, Vik U, Taylor P et al (2017) Using prokaryotes for carbon capture storage. Trends Biotechnol 35:22–32.  https://doi.org/10.1016/j.tibtech.2016.06.011 CrossRefPubMedGoogle Scholar
  92. Hiruma K, Gerlach N, Sacristán S et al (2016) Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell.  https://doi.org/10.1016/j.cell.2016.02.028 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Hol WHG, Bezemer TM, Biere A (2013) Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Front Plant Sci.  https://doi.org/10.3389/fpls.2013.00081 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Hou PF, Chien CH, Chiang-Hsieh YF et al (2018) Paddy-upland rotation for sustainable agriculture with regards to diverse soil microbial community. Sci Rep.  https://doi.org/10.1038/s41598-018-26181-2 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Huson DH, Weber N (2013) Microbial community analysis using MEGAN. In: DeLong EF (ed) Methods in enzymology. Elsevier, San Diego, pp 465–485Google Scholar
  96. IPCC (2007) Climate change 2007 synthesis report. IPCC, GenevaGoogle Scholar
  97. Ji B, Bever JD (2016) Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism. Ecosphere.  https://doi.org/10.1002/ecs2.1256 CrossRefGoogle Scholar
  98. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329.  https://doi.org/10.1038/nature05286 CrossRefPubMedGoogle Scholar
  99. Jones CM, Spor A, Brennan FP et al (2014) Recently identified microbial guild mediates soil N2O sink capacity. Nat Clim Change 4:801–805.  https://doi.org/10.1038/nclimate2301 CrossRefGoogle Scholar
  100. Kamthan A, Chaudhuri A, Kamthan M, Datta A (2016) Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor Appl Genet 129:1639–1655.  https://doi.org/10.1007/s00122-016-2747-6 CrossRefPubMedGoogle Scholar
  101. Karhu K, Auffret MD, Dungait JA et al (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–84.  https://doi.org/10.1038/nature13604 CrossRefPubMedGoogle Scholar
  102. Kato S, Yoshida R, Yamaguchi T et al (2014) The effects of elevated CO2 concentration on competitive interaction between aceticlastic and syntrophic methanogenesis in a model microbial consortium. Front Microbiol.  https://doi.org/10.3389/fmicb.2014.00575 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Keesstra SD, Geissen V, Mosse K et al (2012) Soil as a filter for groundwater quality. Curr Opin Environ Sustain 4:507–516.  https://doi.org/10.1016/j.cosust.2012.10.007 CrossRefGoogle Scholar
  104. Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc B Biol Sci 363:685–701.  https://doi.org/10.1098/rstb.2007.2178 CrossRefGoogle Scholar
  105. King GM (2011) Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes. Trends Microbiol 19:75–84.  https://doi.org/10.1016/j.tim.2010.11.006 CrossRefPubMedGoogle Scholar
  106. Köhl L, Oehl F, Van Der Heijden MGA (2014) Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota. Ecol Appl 24:1842–1853.  https://doi.org/10.1890/13-1821.1 CrossRefPubMedGoogle Scholar
  107. Kristiansson E, Hugenholtz P, Dalevi D (2009) Shotgun functionalize R: an R-package for functional comparison of metagenomes. Bioinformatics 25:2737–2738CrossRefPubMedGoogle Scholar
  108. Kumar A, Sharma S, Mishra S (2010) Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. J Plant Growth Regul 29:297–306.  https://doi.org/10.1007/s00344-009-9136-1 CrossRefGoogle Scholar
  109. Kumar A, Gupta A, Azooz MM, Sharma S, Ahmad P, Dames J (2013) Genetic approaches to improve salinity tolerance in plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants. Springer, New YorkGoogle Scholar
  110. Kumar A, Sharma S, Mishra S, Dames JF (2015) Arbuscular mycorrhizal inoculation improves growth and antioxidative response of Jatropha curcas (L.) under Na2SO4 salt stress. Plant Biosyst.  https://doi.org/10.1080/11263504.2013.845268 CrossRefGoogle Scholar
  111. Kumar A, Sharma S, Mishra S (2016) Evaluating effect of arbuscular mycorrhizal fungal consortia and Azotobacter chroococcum in improving biomass yield of Jatropha curcas. Plant Biosyst 150:1056–1064.  https://doi.org/10.1080/11263504.2014.1001001 CrossRefGoogle Scholar
  112. Lal R (2016) Soil health and carbon management. Food Energy Secur 5:212–222.  https://doi.org/10.1002/fes3.96 CrossRefGoogle Scholar
  113. Langley JA, Hungate BA (2014) Plant community feedbacks and long-term ecosystem responses to multi-factored global change. AoB Plants.  https://doi.org/10.1093/aobpla/plu035 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Larimer AL, Clay K, Bever JD (2014) Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology 95:1045–1054.  https://doi.org/10.1890/13-0025.1 CrossRefPubMedGoogle Scholar
  115. Lau JA, Lennon JT, Heath KD (2017) Trees harness the power of microbes to survive climate change. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1715417114 CrossRefPubMedGoogle Scholar
  116. Lazcano C, Gómez-Brandón M, Revilla P, Domínguez J (2013) Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function: a field study with sweet corn. Biol Fertil Soils.  https://doi.org/10.1007/s00374-012-0761-7 CrossRefGoogle Scholar
  117. Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR (2012) Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93:1867–1879.  https://doi.org/10.1890/11-1745.1 CrossRefPubMedGoogle Scholar
  118. Lewis K, Epstein S, D’Onofrio A, Ling LL (2010) Uncultured microorganisms as a source of secondary metabolites. J Antibiot (Tokyo) 63:468–476.  https://doi.org/10.1038/ja.2010.87 CrossRefGoogle Scholar
  119. Lombard N, Prestat E, van Elsas JD, Simonet P (2011) Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol 78:31–49.  https://doi.org/10.1111/j.1574-6941.2011.01140.x CrossRefPubMedGoogle Scholar
  120. Lu JX, Burton SD, Xu YS et al (2014) The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength. Front Physiol 100:101.  https://doi.org/10.3389/fphys.2014.00254 CrossRefGoogle Scholar
  121. Lynch MDJ, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229.  https://doi.org/10.1038/nrmicro3400 CrossRefPubMedGoogle Scholar
  122. Mahuku G, Lockhart BE, Wanjala B et al (2015) Maize Lethal Necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology.  https://doi.org/10.1094/PHYTO-12-14-0367-FI CrossRefPubMedGoogle Scholar
  123. Malla MA, Dubey A, Yadav S, Hashem A, Abd_Allah EF (2018a) Exploring the human microbiome: the potential future role of next-generation sequencing in disease diagnosis and treatment. Front Immunol 9:1–23.  https://doi.org/10.3389/fimmu.2018.02868 CrossRefGoogle Scholar
  124. Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd_Allah EF (2018b) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol. 9.  https://doi.org/10.3389/fmicb.2018.01132 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93:930–938.  https://doi.org/10.1890/11-0026.1 CrossRefPubMedGoogle Scholar
  126. Mau RL, Liu CM, Aziz M et al (2015) Linking soil bacterial biodiversity and soil carbon stability. ISME J 9:1477–1480.  https://doi.org/10.1038/ismej.2014.205 CrossRefPubMedGoogle Scholar
  127. Mavi AK, Kaur P (2014) Poverty among small and marginal farmers in Sangrur District. Int J Sci Res 3:1438–1449Google Scholar
  128. Mee MT, Collins JJ, Church GM, Wang HH (2014) Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci USA 111:E2149–E2156.  https://doi.org/10.1073/pnas.1405641111 CrossRefPubMedGoogle Scholar
  129. Mortenson LA, Flint Hughes R, Friday JB et al (2016) Assessing spatial distribution, stand impacts and rate of Ceratocystis fimbriata induced ‘ōhi‘a (Metrosideros polymorpha) mortality in a tropical wet forest, Hawai‘i Island, USA. For Ecol Manag.  https://doi.org/10.1016/j.foreco.2016.06.026 CrossRefGoogle Scholar
  130. Muleta D (2017) Legume response to arbuscular mycorrhizal fungi inoculation in sustainable agriculture. In: Zaidi A, Khan M, Musarrat J (eds) Microbes for legume improvement. Springer, ChamGoogle Scholar
  131. Muller EEL, Glaab E, May P et al (2013) Condensing the omics fog of microbial communities. Trends Microbiol 21:325–333CrossRefPubMedGoogle Scholar
  132. Nannipieri P, Ascher J, Ceccherini MT et al (2017) Microbial diversity and soil functions. Eur J Soil Sci.  https://doi.org/10.1111/ejss.4_12398 CrossRefGoogle Scholar
  133. Narh Tetteh R (2015) Chemical soil degradation as a result of contamination: a review. J Soil Sci Environ Manag 6:301–3018.  https://doi.org/10.5897/JSSEM15 CrossRefGoogle Scholar
  134. Nazaries L, Murrell JC, Millard P et al (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15:2395–2417.  https://doi.org/10.1111/1462-2920.12149 CrossRefPubMedGoogle Scholar
  135. Nie S, Li H, Yang X et al (2015) Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. ISME J 9:2059–2067.  https://doi.org/10.1038/ismej.2015.25 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Oertel C, Matschullat J, Zurba K et al (2016) Greenhouse gas emissions from soils—a review. Chem Erde Geochem 76:327–352.  https://doi.org/10.1016/j.chemer.2016.04.002 CrossRefGoogle Scholar
  137. Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263.  https://doi.org/10.1038/nrmicro2990 CrossRefPubMedGoogle Scholar
  138. Orozco-Mosqueda MDC, Rocha-Granados MDC, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31.  https://doi.org/10.1016/j.micres.2018.01.005 CrossRefPubMedGoogle Scholar
  139. Peng X, Gilmore SP, O’Malley MA (2016) Microbial communities for bioprocessing: lessons learned from nature. Curr Opin Chem Eng. 14:103–109.  https://doi.org/10.1016/j.coche.2016.09.003 CrossRefGoogle Scholar
  140. Pielaat A, van Leusden FM, Wijnands LM (2014) Microbiological risk from minimally processed packaged salads in the Dutch food chain. J Food Prot.  https://doi.org/10.4315/0362-028X.JFP-13-136 CrossRefPubMedGoogle Scholar
  141. Putten W, Bardgett RD, Bever JD et al (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276.  https://doi.org/10.1111/1365-2745.12054 CrossRefGoogle Scholar
  142. Rasmann S, Turlings TCJ (2016) Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol 32:62–68.  https://doi.org/10.1016/j.pbi.2016.06.017 CrossRefPubMedGoogle Scholar
  143. Ren CG, Bai YJ, Kong CC et al (2016) Synergistic interactions between salt-tolerant rhizobia and arbuscular mycorrhizal fungi on salinity tolerance of Sesbania cannabina plants. J Plant Growth Regul 35:1098–1107.  https://doi.org/10.1007/s00344-016-9607-0 CrossRefGoogle Scholar
  144. Robertson GP, Hamilton SK, Barham BL et al (2017) Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science.  https://doi.org/10.1126/science.aal2324 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol.  https://doi.org/10.1046/j.1365-2664.2002.00695.x CrossRefGoogle Scholar
  146. Sanschagrin S, Yergeau E (2014) Next-generation sequencing of 16S ribosomal RNA gene amplicons. J Vis Exp.  https://doi.org/10.3791/51709 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci.  https://doi.org/10.1016/j.tplants.2017.09.003 CrossRefPubMedGoogle Scholar
  148. Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol.  https://doi.org/10.3389/fmicb.2012.00348 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Scholz NL, Fleishman E, Brown L et al (2012) A perspective on modern pesticides, pelagic fish declines, and unknown ecological resilience in highly managed ecosystems. Bioscience.  https://doi.org/10.1525/bio.2012.62.4.13 CrossRefGoogle Scholar
  151. Sergaki C, Lagunas B, Lidbury I et al (2018) Challenges and approaches in microbiome research: from fundamental to applied. Front Plant Sci.  https://doi.org/10.3389/fpls.2018.01205 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Shade A, Jones SE, Gregory Caporaso J et al (2014) Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio.  https://doi.org/10.1128/mBio.01371-14 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Sharma S, Kaur R, Singh A (2017) Recent advances in CRISPR/Cas mediated genome editing for crop improvement. Plant Biotechnol Rep 11:193–207.  https://doi.org/10.1007/s11816-017-0446-7 CrossRefGoogle Scholar
  154. Shong J, Jimenez Diaz MR, Collins CH (2012) Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotechnol 23:798–802.  https://doi.org/10.1016/j.copbio.2012.02.001 CrossRefPubMedGoogle Scholar
  155. Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790.  https://doi.org/10.1038/nrmicro2439 CrossRefPubMedGoogle Scholar
  156. Smith CR, Blair PL, Boyd C et al (2016) Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem. Ecol Evol 6:8075–8084.  https://doi.org/10.1002/ece3.2553 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Steffen W, Richardson K, Rockström J et al (2015) Supplementary materials, planetary boundaries: guiding human development on a changing planet. Science.  https://doi.org/10.1126/science.1259855 CrossRefPubMedGoogle Scholar
  158. Steinauer K, Tilman D, Wragg PD et al (2015) Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology 96:99–112.  https://doi.org/10.1890/14-0088.1 CrossRefPubMedGoogle Scholar
  159. Subbarao KV, Sundin GW, Klosterman SJ (2015) Focus issue articles on emerging and re-emerging plant diseases. Phytopathology.  https://doi.org/10.1094/PHYTO-105-7-0001 CrossRefPubMedGoogle Scholar
  160. Subburaj S, Tu L, Jin YT et al (2016) Targeted genome editing, an alternative tool for trait improvement in horticultural crops. Hortic Environ Biotechnol 57:531–543.  https://doi.org/10.1007/s13580-016-0281-8 CrossRefGoogle Scholar
  161. Thornton PK, Herrero M (2010) Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.0912890107 CrossRefPubMedGoogle Scholar
  162. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1116437108 CrossRefPubMedGoogle Scholar
  163. Tringe SG, Von Mering C, Kobayashi A et al (2005) Comparative metagenomics of microbial communities. Science 308:554–557.  https://doi.org/10.1126/science.1107851 CrossRefPubMedGoogle Scholar
  164. Tripathi V, Fraceto LF, Abhilash PC (2015) Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant–microbe–pollutant and climate nexus. Ecol Eng.  https://doi.org/10.1016/j.ecoleng.2015.05.027 CrossRefGoogle Scholar
  165. Trivedi P, Anderson IC, Singh BK (2013) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21:641–651.  https://doi.org/10.1016/j.tim.2013.09.005 CrossRefPubMedGoogle Scholar
  166. Uroz S, Ioannidis P, Lengelle J et al (2013) Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS ONE.  https://doi.org/10.1371/journal.pone.0055929 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Uroz S, Buée M, Deveau A et al (2016) Ecology of the forest microbiome: highlights of temperate and boreal ecosystems. Soil Biol Biochem 103:471–488.  https://doi.org/10.1016/j.soilbio.2016.09.006 CrossRefGoogle Scholar
  168. Vakilian K (2017) Using networks in plant disease diagnosis. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour.  https://doi.org/10.1079/PAVSNNR201712047 CrossRefGoogle Scholar
  169. Valverde A, De Maayer P, Oberholster T et al (2016) Specific microbial communities associate with the rhizosphere of Welwitschia mirabilis, a living fossil. PLoS ONE.  https://doi.org/10.1371/journal.pone.0153353 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310.  https://doi.org/10.1111/j.1461-0248.2007.01139.x CrossRefPubMedGoogle Scholar
  171. van der Heijden MGA, de Bruin S, Luckerhoff L et al (2015) A widespread plant–fungal–bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J 10:389–399.  https://doi.org/10.1038/ismej.2015.120 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Van der Putten WH (2012) Climate change, aboveground–belowground interactions, and species’ range shifts. Annu Rev Ecol Evol Syst 43:365–383.  https://doi.org/10.1146/annurev-ecolsys-110411-160423 CrossRefGoogle Scholar
  173. Vandenkoornhuyse P, Quaiser A, Duhamel M et al (2015a) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206.  https://doi.org/10.1111/nph.13312 CrossRefPubMedGoogle Scholar
  174. Vandenkoornhuyse et al (2015b) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206.  https://doi.org/10.1111/nph.13312 CrossRefPubMedGoogle Scholar
  175. Venter ZS, Jacobs K, Hawkins HJ (2016) The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia (Jena) 59:215–223.  https://doi.org/10.1016/j.pedobi.2016.04.001 CrossRefGoogle Scholar
  176. Vibha B, Neelam G (2012) Importance of exploration of microbial biodiversity. ISCA J Biol Sci 1:78–83Google Scholar
  177. Vorholt JA, Vogel C, Carlström CI, Müller DB (2017) Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22:142–155.  https://doi.org/10.1016/j.chom.2017.07.004 CrossRefPubMedGoogle Scholar
  178. Vyas P, Kumar D, Dubey A, Kumar A (2018) Screening and characterization of Achromobacter xylosoxidans isolated from rhizosphere of Jatropha curcas L. (energy crop) for plant-growth-promoting traits. J Adv Res Biotechnol.  https://doi.org/10.15226/2475-4714/3/1/00134 CrossRefGoogle Scholar
  179. Whitaker J, Ostle N, Nottingham AT et al (2014) Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient. J Ecol 102:1058–1071.  https://doi.org/10.1111/1365-2745.12247 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Xu S, Reuter T, Gilroyed BH et al (2013) Microbial communities and greenhouse gas emissions associated with the biodegradation of specified risk material in compost. Waste Manag.  https://doi.org/10.1016/j.wasman.2013.01.036 CrossRefPubMedGoogle Scholar
  181. Yandigeri MS, Meena KK, Singh D et al (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul.  https://doi.org/10.1007/s10725-012-9730-2 CrossRefGoogle Scholar
  182. Yang L, Lu F, Zhou X et al (2014) Progress in the studies on the greenhouse gas emissions from reservoirs. Acta Ecol Sin.  https://doi.org/10.1016/j.chnaes.2013.05.011 CrossRefGoogle Scholar
  183. Yuan H, Ge T, Chen C et al (2012) Significant role for microbial autotrophy in the sequestration of soil carbon. Appl Environ Microbiol 78:2328–2336.  https://doi.org/10.1128/AEM.06881-11 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Zavala-Gonzalez EA, Rodríguez-Cazorla E, Escudero N et al (2017) Arabidopsis thaliana root colonization by the nematophagous fungus Pochonia chlamydosporia is modulated by jasmonate signaling and leads to accelerated flowering and improved yield. New Phytol.  https://doi.org/10.1111/nph.14106 CrossRefPubMedGoogle Scholar
  185. Zhang X, Zhang G, Chen Q, Han X (2013) Soil bacterial communities respond to climate changes in a temperate steppe. PLoS ONE.  https://doi.org/10.1371/journal.pone.0078616 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Zhang D, Wang C, Li X et al (2018a) Linking plant ecological stoichiometry with soil nutrient and bacterial communities in apple orchards. Appl Soil Ecol 126:1–10.  https://doi.org/10.1016/j.apsoil.2017.12.017 CrossRefGoogle Scholar
  187. Zhang L, Xie Z, Zhao R, Zhang Y (2018b) Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland. Appl Soil Ecol 127:87–95.  https://doi.org/10.1016/j.apsoil.2018.02.005 CrossRefGoogle Scholar
  188. Zheng XY, Sinclair JB (1996) Chemotactic response of Bacillus megaterium strain B153-2-2 to soybean root and seed exudates. Physiol Mol Plant Pathol 48:21–35.  https://doi.org/10.1006/pmpp.1996.0003 CrossRefGoogle Scholar
  189. Zhou J, He Z, Yang Y et al (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio.  https://doi.org/10.1128/mBio.02288-14 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Metagenomics and Secretomics Research Laboratory, Department of BotanyDr. Harisingh Gour University (A Central University)SagarIndia
  2. 2.Department of ZoologyDr. Harisingh Gour University (A Central University)SagarIndia
  3. 3.Centre for Rural Development and TechnologyIIT-DelhiDelhiIndia

Personalised recommendations