Moths in the Pyrénées: spatio-temporal patterns and indicators of elevational assemblages

Abstract

Understanding how assemblages of invertebrates change over continuous elevational gradients not only generates an understanding of current rules of community assembly but may also be useful for predicting the future distributions of species under global change. Temperature decreases predictably with increasing elevation and, accordingly, gradients in elevation permit the study of adjacent climates within small geographical areas. The present study examines if and how assemblages of moths change with increasing elevation in the eastern French Pyrenees. Elevation had a strong effect on the assemblage composition of moth species in both seasons. The species sets which contributed most to this strong pattern differed completely across seasons. Analysis of restrictions and fidelity to particular elevational ranges generated a set of indicator species which can be used to monitor future changes in distribution. Twelve species were identified as elevation-specific indicators (the ‘predictor set’) from the spring samples and summer samples. We note the strong contrasts between species that produce overall statistical pattern and those that show strong fidelity to particular elevations and discuss this in terms of the biologies of the species concerned. We discuss best practice for the identification and use of indicator species for monitoring future responses to climate change.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Data availability

Data has been deposited at https://osf.io/w2tdz/.

References

  1. Alonso-Rodríguez AM, Finegan B, Fiedler K (2017) Neotropical moth assemblages degrade due to oil palm expansion. Biodivers Conserv 26:1–32

    Article  Google Scholar 

  2. Ashton LA, Kitching RL, Maunsell S, Bito D, Putland D (2011) Macrolepidopteran assemblages along an altitudinal gradient in subtropical rainforest: exploring indicators of climate change. Mem Queensl Mus 55:375–389

    Google Scholar 

  3. Ashton LA, Barlow HS, Nakamura A, Kitching RL (2014) Diversity in tropical ecosystems: the species richness and turnover of moths in Malaysian rainforests. Insect Conserv Diver 8:132–142

    Article  Google Scholar 

  4. Ashton L, Nakamura A, Burwell C, Tang Y, Cao M, Whitaker T, Sun Z, Huang H, Kitching R (2016a) Elevational sensitivity in an Asian ‘hotspot’: moth diversity across elevational gradients in tropical, sub-tropical and sub-alpine China. Sci Rep 6:26513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ashton L, Odell E, Burwell C, Maunsell S, Nakamura A, McDonald W, Kitching R (2016b) Altitudinal patterns of moth diversity in tropical and subtropical Australian rainforests. Austral Ecol 41:197–208

    Article  Google Scholar 

  6. Axmacher JC, Fiedler K (2008) Habitat type modifies geometry of elevational diversity gradients in geometrid moths (Lepidoptera Geometridae) on Mt Kilimanjaro, Tanzania. Trop Zool 21:243–251

    Google Scholar 

  7. Bachelard P, Berard R, Colomb C, Demerges D, Doux Y, Fournier F, Gibeaux C, Maechier J, Robineau R, Schmit P, Tautet C (2011) Guide des papillons nocturnes de France Delachaux & Niestle, France

  8. Beck J, Schulze CH, Linsenmair KE, Fiedler K (2002) From forest to farmland: diversity of geometrid moths along two habitat gradients on Borneo. J Trop Ecol 18:33–51

    Article  Google Scholar 

  9. Beck J, Altermatt F, Hagmann R, Lang S (2010) Seasonality in the altitude-diversity pattern of Alpine moths. Basic Appl Ecol 11:714–722

    Article  Google Scholar 

  10. Beck J, McCain CM, Axmacher JC, Ashton LA, Bärtschi F, Brehm G, Choi S-W, Cizek O, Colwell RK, Fiedler K, Francois CL, Highland S, Holloway JD, Intachat J, Kadlec T, Kitching RL, Maunsell SC, Merckx T, Nakamura A, Odell E, Sang W, Toko PS, Zamecnik J, Zou Y, Novotny V (2017) Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths. Glob Ecol Biogeogr 26:412–424

    Article  Google Scholar 

  11. Brehm G, Colwell RK, Kluge J (2007) The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob Ecol Biogeogr 16:205–219

    Article  Google Scholar 

  12. Brehm G, Hebert PD, Colwell RK, Adams M-O, Bodner F, Friedemann K, Möckel L, Fiedler K (2016) Turning up the heat on a hotspot: DNA barcodes reveal 80% more species of geometrid moths along an Andean elevational gradient. PLoS ONE 11:e0150327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen IC, Shiu H, Benedick S, Holloway JD, Chey VK, Barlow HS, Hill JK, Thomas CD (2009) Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc Natl Acad Sci USA 106:1479–1483

    Article  PubMed  Google Scholar 

  14. Choi SW, An JS (2010) Altitudinal distribution of moths (Lepidoptera) in Mt. Jirisan National Park, South Korea. Eur J Entomol 107:229–245

    Article  Google Scholar 

  15. Clarke K, Gorley R (2015) PRIMER-E, Plymouth

  16. Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from simples, version 8.0. http://purl.oclc.org/estimates

  17. Colwell RK, Gotelli NJ, Ashton LA, Beck J, Brehm G, Fayle TM, Fiedler K, Forister ML, Kessler M, Kitching RL, Klimes P, Kluge J, Longino JT, Maunsell SC, McCain CM, Moses J, Noben S, Sam K, Sam L, Shapiro AM, Wang X, Novotny V (2016) Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints. Ecol Lett 19:1009–1022

    Article  PubMed  Google Scholar 

  18. Common IFB (1990) Moths of Australia. Melbourne University Press, Melbourne

    Google Scholar 

  19. Dendaletche C (1997) Les Pyrénées: la vie sauvage en montagne et celle des hommes. Delachaux et Niéstle, Paris

    Google Scholar 

  20. Didham RK, Fagan LL (2003) Project IBISCA—investigating the biodiversity of soil and canopy arthropods. Weta 26:1–6

    Google Scholar 

  21. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  22. Dupias G (1985) Vegetation des pyrenees. Centre National De La Recherche Scientifique, Paris

    Google Scholar 

  23. Fiedler K, Hilt N, Brehm G, Schulze CH (2007) Moths at tropical forest margins—how mega-diverse insect assemblages respond to forest disturbance and recovery. In: Tscharntke T, Leuschner C, Zeller M, Guhardja E, Bidin A (eds) Stability of tropical rainforest margins, linking ecological, economic and social constraints of land use and conservation. Springer, Berlin, pp 37–58

    Google Scholar 

  24. Gaston KJ (2010) Valuing common species. Science 327:154–155

    Article  CAS  Google Scholar 

  25. Hausmann A (2004) The geometrid moths of Europe 2: Sterrhinae. Apollo, Steenstrup

    Google Scholar 

  26. Hausmann A, Viidalepp J (2012) The geometrid moths of Europe 3: subfamily Larentiinae 1. Apollo, Steenstrup

    Google Scholar 

  27. Highland SA, Miller JC, Jones JA (2013) Determinants of moth diversity and community in a temperate mountain landscape: vegetation, topography, and seasonality. Ecosphere 4:1–22

    Article  Google Scholar 

  28. Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    Article  Google Scholar 

  29. Jaroš J, Spitzer K, Zikmundová H (2014) Variability of Lepidoptera communities (moths and butterflies) along an altitudinal gradient of peat bogs from the Třeboň Basin up to the Bohemian Forest (South Bohemia, Central Europe). Silva Gabreta 20:55–95

    Google Scholar 

  30. Ji Y, Ashton L, Pedley SM, Edwards DP, Tang Y, Nakamura A, Kitching R, Dolman PM, Woodcock P, Edwards FA, Larsen TH, Hsu WW, Benedick S, Hamer KC, Wilcove DS, Bruce C, Wang X, Levi T, Lott M, Emerson BC, Yu DW (2013) Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol Lett 16:1245–1257

    Article  PubMed  Google Scholar 

  31. Kaltsas D, Dede K, Giannaka J, Nasapoulou T, Kechaglioglou S, Grigoriadou E, Raptis D, Damos P, Vasiliadis I, Christopolous V, Loukaki E, Franses R, Vlachaki D, Avtzis DN (2018) Taxonomic and functional diversity of butterflies along an altitudinal gradient in two NATURA 2000 sites in Greece. Insect Conserv Diver 11:464–478

    Article  Google Scholar 

  32. Kitching R (2011) Lepidoptera in Vanuatu: fauna, geography and the IBISCA-Santo project. In: Bouchet P, Guyader HL, Pascal O (eds) The natural history of Santo. Museum National d’Historie naturelle, Paris, pp 155–160

    Google Scholar 

  33. Kitching RL, Orr AG, Thalib L, Mitchell H, Hopkins MS, Graham AW (2000) Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. J Appl Ecol 37:284–297

    Article  Google Scholar 

  34. Kitching RL, Boulter SL, Vickerman G, Laidlaw M, Hurley KL, Grimbacher PS (2005) The comparative assessment of arthropod and tree biodiversity in old-world rainforests, 2nd edn. Rainforest CRC & Earthwatch Institute, James Cook University, Cairns

    Google Scholar 

  35. Kitching RL, Putland D, Ashton LA, Laidlaw MJ, Boulter SL, Christensen H, Lambkin CL (2011) Detecting biodiversity changes along climatic gradients: the IBISCA Queensland Project. Mem Queensl Mus 55:235–250

    Google Scholar 

  36. Kitching RL, Ashton LA, Nakamura A, Whitaker T, Chey CV (2013) Distance-driven species turnover in Bornean rainforests: homogeneity and heterogeneity in primary and post-logging forests. Ecography 36:675–682

    Article  Google Scholar 

  37. Kitching R, Nakamura A, Yasuda M, Hughes A, Min C (2015) Environmental determinism of community structure across trophic levels: moth assemblages and substrate type in the rain forests of south-western China. J Trop Ecol 31:81–89

    Article  Google Scholar 

  38. Leguédois S, Party J-P, Dupouey J-L, Gauquelin T, Gégout J-C, Lecareux C, Badeau V, Rizetto S, Probst A (2014) The vegetation map of France going numerical: a new harmonised national geographical database

  39. Leraut P (2014) Moths of Europe, vol. 4: pyralids 2. NAP editions, Paris

  40. Majerus M (2002) Moths. New naturalist series. HarperCollins, London

    Google Scholar 

  41. Merckx T (2015) Rewilding: pitfalls and opportunities for moths and butterflies, rewilding European landscapes. Springer, Cham, pp 107–125

    Google Scholar 

  42. Merckx T, Slade EM (2014) Macro-moth families differ in their attraction to light: implications for light-trap monitoring programmes. Insect Conserv Diver 7:453–461

    Article  Google Scholar 

  43. Nöske NM, Hilt N, Werner FA, Brehm G, Fiedler K, Sipman HJM, Gradstein SR (2008) Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic Appl Ecol 9:4–12

    Article  Google Scholar 

  44. Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844

    Article  CAS  PubMed  Google Scholar 

  45. Odell EH, Ashton LA, Kitching RL (2016) Elevation and moths in a central eastern Queensland rainforest. Austral Ecol 41:133–144

    Article  Google Scholar 

  46. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Henry M, Stevens H (2016) Vegan: community ecology package R Package version 2.3-2. https://cran.r-project.org/web/packages/vegan

  47. Razowski J (2002) Tortricidae (Lepidoptera) of Europe. Tortricinae and Chlidanotinae, vol 1. Frantisek Slamka, Bratislava

    Google Scholar 

  48. Razowski J (2003) Tortricidae (Lepidoptera) of Europe. Olethreutinae, vol 2. Franisek Slamka, Bratislava

    Google Scholar 

  49. Roberts D (2007) Labdsv: ordination and multivariate analysis for ecology. R package version 1, 3-1

  50. Sabatini FM, Keeton WS, Levers C, Lindner M, Pötzschner F, Verkerk PJ, Bauhus J, Buchwald E, Chaskovsky O, Debaive N, Horváth F, Garbarino M, Grigoriadis N, Lombardi F, Duarte IM, Meyer P, Midteng R, Mikac S, Mikolás M, Motta R, Mozgeris M, Nunes L, Panayotov M, Odor P, Ruete A, Simovski B, Stillhard I, Svoboda M, Szwagrzyk J, Tikkanen O-P, Volosyanchuk R, Vrska T, Zlatanov T, Kuemmerle T (2018) Where are Europe’s last primary forests. Divers Distrib 24:1426–1439

    Article  Google Scholar 

  51. Scoble MJ (1992) The Lepidoptera: form, function, and diversity. Oxford University Press, Oxford

    Google Scholar 

  52. Skinner B (1998) Colour identification guide to moths of the British Isles (Macrolepidoptera), 2nd edn. Viking, London

    Google Scholar 

  53. Skou P, Sihvonen P (2015) The geometrid moths of Europe 5: subfamily Ennominae 1. Brill, Leiden

    Google Scholar 

  54. Slamka F (2006) Pyraloidea of Europe: Pyralinae, Galleriinae, Epipaschiinae, Cathariinae & Odontiinae, Privately published, Bratislava

  55. Slamka F (2008) Pyraloidea of Europe: Crambidae & Schoenobinae, Privately published, Bratislava

  56. Slamka F (2013) Pyraloidea of Europe: Pyraustinae & Spilomelinae, Privately published, Bratislava

  57. Truxa C, Fiedler K (2016) Massive structural redundancies in species composition patterns of floodplain forest moths. Ecography 39:253–260

    Article  Google Scholar 

  58. Van Rensburg BJ, McGeoch MA, Chown SL, Van Jaarsveld AS (1999) Conservation of heterogeneity among dung beetles in the Maputaland Centre of Endemism, South Africa. Biol Conserv 88:145–153

    Article  Google Scholar 

  59. Wang Y, Naumann U, Wright S, Warton D (2012a) mvabund: statistical methods for analysing multivariate abundance data. R package version 2.3-1.1

  60. Wang Y, Neuman U, Wright S, Warton DI (2012b) Mvabund: an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol 3:471–473

    Article  Google Scholar 

  61. Warton DI, Wright ST, Wang Y (2012) Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol Evol 3:89–101

    Article  Google Scholar 

  62. Yela JL, Holyoak M (1997) Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae). Environ Entomol 26:1283–1290

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Research and Exploration Committee of the National Geographic Society for providing financial support for this project (Grant 9724-15). EJD was funded by the Griffith University School of Environment and Environmental Futures Research Institute. CT was supported by the ‘Laboratoire d’Excellence’ TULIP (ANR-10-LABX-41; ANR-11-IDEX-0002-02). LAA was supported by the UK NERC-funded Biodiversity And Land-use Impacts on Tropical Ecosystem Function (BALI) consortium (http://bali.hmtf.info) (NERC Grant No. NE/L000016/1). We thank also Drs Beverley Kitching and John Shillcock for their invaluable help as volunteers in the field. Thank you to the reviewers for making improvements this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. A. Ashton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Nigel E. Stork.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dale, E.J., Kitching, R.L., Thebaud, C. et al. Moths in the Pyrénées: spatio-temporal patterns and indicators of elevational assemblages. Biodivers Conserv 28, 1593–1610 (2019). https://doi.org/10.1007/s10531-019-01745-4

Download citation

Keywords

  • Moths
  • Elevational gradients
  • Indicator species
  • Assemblage turnover