Biodiversity and Conservation

, Volume 28, Issue 6, pp 1593–1610 | Cite as

Moths in the Pyrénées: spatio-temporal patterns and indicators of elevational assemblages

  • E. J. Dale
  • R. L. Kitching
  • C. Thebaud
  • S. C. Maunsell
  • L. A. AshtonEmail author
Original Paper


Understanding how assemblages of invertebrates change over continuous elevational gradients not only generates an understanding of current rules of community assembly but may also be useful for predicting the future distributions of species under global change. Temperature decreases predictably with increasing elevation and, accordingly, gradients in elevation permit the study of adjacent climates within small geographical areas. The present study examines if and how assemblages of moths change with increasing elevation in the eastern French Pyrenees. Elevation had a strong effect on the assemblage composition of moth species in both seasons. The species sets which contributed most to this strong pattern differed completely across seasons. Analysis of restrictions and fidelity to particular elevational ranges generated a set of indicator species which can be used to monitor future changes in distribution. Twelve species were identified as elevation-specific indicators (the ‘predictor set’) from the spring samples and summer samples. We note the strong contrasts between species that produce overall statistical pattern and those that show strong fidelity to particular elevations and discuss this in terms of the biologies of the species concerned. We discuss best practice for the identification and use of indicator species for monitoring future responses to climate change.


Moths Elevational gradients Indicator species Assemblage turnover 



We thank the Research and Exploration Committee of the National Geographic Society for providing financial support for this project (Grant 9724-15). EJD was funded by the Griffith University School of Environment and Environmental Futures Research Institute. CT was supported by the ‘Laboratoire d’Excellence’ TULIP (ANR-10-LABX-41; ANR-11-IDEX-0002-02). LAA was supported by the UK NERC-funded Biodiversity And Land-use Impacts on Tropical Ecosystem Function (BALI) consortium ( (NERC Grant No. NE/L000016/1). We thank also Drs Beverley Kitching and John Shillcock for their invaluable help as volunteers in the field. Thank you to the reviewers for making improvements this manuscript.


  1. Alonso-Rodríguez AM, Finegan B, Fiedler K (2017) Neotropical moth assemblages degrade due to oil palm expansion. Biodivers Conserv 26:1–32CrossRefGoogle Scholar
  2. Ashton LA, Kitching RL, Maunsell S, Bito D, Putland D (2011) Macrolepidopteran assemblages along an altitudinal gradient in subtropical rainforest: exploring indicators of climate change. Mem Queensl Mus 55:375–389Google Scholar
  3. Ashton LA, Barlow HS, Nakamura A, Kitching RL (2014) Diversity in tropical ecosystems: the species richness and turnover of moths in Malaysian rainforests. Insect Conserv Diver 8:132–142CrossRefGoogle Scholar
  4. Ashton L, Nakamura A, Burwell C, Tang Y, Cao M, Whitaker T, Sun Z, Huang H, Kitching R (2016a) Elevational sensitivity in an Asian ‘hotspot’: moth diversity across elevational gradients in tropical, sub-tropical and sub-alpine China. Sci Rep 6:26513CrossRefGoogle Scholar
  5. Ashton L, Odell E, Burwell C, Maunsell S, Nakamura A, McDonald W, Kitching R (2016b) Altitudinal patterns of moth diversity in tropical and subtropical Australian rainforests. Austral Ecol 41:197–208CrossRefGoogle Scholar
  6. Axmacher JC, Fiedler K (2008) Habitat type modifies geometry of elevational diversity gradients in geometrid moths (Lepidoptera Geometridae) on Mt Kilimanjaro, Tanzania. Trop Zool 21:243–251Google Scholar
  7. Bachelard P, Berard R, Colomb C, Demerges D, Doux Y, Fournier F, Gibeaux C, Maechier J, Robineau R, Schmit P, Tautet C (2011) Guide des papillons nocturnes de France Delachaux & Niestle, FranceGoogle Scholar
  8. Beck J, Schulze CH, Linsenmair KE, Fiedler K (2002) From forest to farmland: diversity of geometrid moths along two habitat gradients on Borneo. J Trop Ecol 18:33–51CrossRefGoogle Scholar
  9. Beck J, Altermatt F, Hagmann R, Lang S (2010) Seasonality in the altitude-diversity pattern of Alpine moths. Basic Appl Ecol 11:714–722CrossRefGoogle Scholar
  10. Beck J, McCain CM, Axmacher JC, Ashton LA, Bärtschi F, Brehm G, Choi S-W, Cizek O, Colwell RK, Fiedler K, Francois CL, Highland S, Holloway JD, Intachat J, Kadlec T, Kitching RL, Maunsell SC, Merckx T, Nakamura A, Odell E, Sang W, Toko PS, Zamecnik J, Zou Y, Novotny V (2017) Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths. Glob Ecol Biogeogr 26:412–424CrossRefGoogle Scholar
  11. Brehm G, Colwell RK, Kluge J (2007) The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob Ecol Biogeogr 16:205–219CrossRefGoogle Scholar
  12. Brehm G, Hebert PD, Colwell RK, Adams M-O, Bodner F, Friedemann K, Möckel L, Fiedler K (2016) Turning up the heat on a hotspot: DNA barcodes reveal 80% more species of geometrid moths along an Andean elevational gradient. PLoS ONE 11:e0150327CrossRefGoogle Scholar
  13. Chen IC, Shiu H, Benedick S, Holloway JD, Chey VK, Barlow HS, Hill JK, Thomas CD (2009) Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc Natl Acad Sci USA 106:1479–1483CrossRefGoogle Scholar
  14. Choi SW, An JS (2010) Altitudinal distribution of moths (Lepidoptera) in Mt. Jirisan National Park, South Korea. Eur J Entomol 107:229–245CrossRefGoogle Scholar
  15. Clarke K, Gorley R (2015) PRIMER-E, PlymouthGoogle Scholar
  16. Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from simples, version 8.0.
  17. Colwell RK, Gotelli NJ, Ashton LA, Beck J, Brehm G, Fayle TM, Fiedler K, Forister ML, Kessler M, Kitching RL, Klimes P, Kluge J, Longino JT, Maunsell SC, McCain CM, Moses J, Noben S, Sam K, Sam L, Shapiro AM, Wang X, Novotny V (2016) Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints. Ecol Lett 19:1009–1022CrossRefGoogle Scholar
  18. Common IFB (1990) Moths of Australia. Melbourne University Press, MelbourneCrossRefGoogle Scholar
  19. Dendaletche C (1997) Les Pyrénées: la vie sauvage en montagne et celle des hommes. Delachaux et Niéstle, ParisGoogle Scholar
  20. Didham RK, Fagan LL (2003) Project IBISCA—investigating the biodiversity of soil and canopy arthropods. Weta 26:1–6Google Scholar
  21. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  22. Dupias G (1985) Vegetation des pyrenees. Centre National De La Recherche Scientifique, ParisGoogle Scholar
  23. Fiedler K, Hilt N, Brehm G, Schulze CH (2007) Moths at tropical forest margins—how mega-diverse insect assemblages respond to forest disturbance and recovery. In: Tscharntke T, Leuschner C, Zeller M, Guhardja E, Bidin A (eds) Stability of tropical rainforest margins, linking ecological, economic and social constraints of land use and conservation. Springer, Berlin, pp 37–58Google Scholar
  24. Gaston KJ (2010) Valuing common species. Science 327:154–155CrossRefGoogle Scholar
  25. Hausmann A (2004) The geometrid moths of Europe 2: Sterrhinae. Apollo, SteenstrupGoogle Scholar
  26. Hausmann A, Viidalepp J (2012) The geometrid moths of Europe 3: subfamily Larentiinae 1. Apollo, SteenstrupGoogle Scholar
  27. Highland SA, Miller JC, Jones JA (2013) Determinants of moth diversity and community in a temperate mountain landscape: vegetation, topography, and seasonality. Ecosphere 4:1–22CrossRefGoogle Scholar
  28. Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513CrossRefGoogle Scholar
  29. Jaroš J, Spitzer K, Zikmundová H (2014) Variability of Lepidoptera communities (moths and butterflies) along an altitudinal gradient of peat bogs from the Třeboň Basin up to the Bohemian Forest (South Bohemia, Central Europe). Silva Gabreta 20:55–95Google Scholar
  30. Ji Y, Ashton L, Pedley SM, Edwards DP, Tang Y, Nakamura A, Kitching R, Dolman PM, Woodcock P, Edwards FA, Larsen TH, Hsu WW, Benedick S, Hamer KC, Wilcove DS, Bruce C, Wang X, Levi T, Lott M, Emerson BC, Yu DW (2013) Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol Lett 16:1245–1257CrossRefGoogle Scholar
  31. Kaltsas D, Dede K, Giannaka J, Nasapoulou T, Kechaglioglou S, Grigoriadou E, Raptis D, Damos P, Vasiliadis I, Christopolous V, Loukaki E, Franses R, Vlachaki D, Avtzis DN (2018) Taxonomic and functional diversity of butterflies along an altitudinal gradient in two NATURA 2000 sites in Greece. Insect Conserv Diver 11:464–478CrossRefGoogle Scholar
  32. Kitching R (2011) Lepidoptera in Vanuatu: fauna, geography and the IBISCA-Santo project. In: Bouchet P, Guyader HL, Pascal O (eds) The natural history of Santo. Museum National d’Historie naturelle, Paris, pp 155–160Google Scholar
  33. Kitching RL, Orr AG, Thalib L, Mitchell H, Hopkins MS, Graham AW (2000) Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. J Appl Ecol 37:284–297CrossRefGoogle Scholar
  34. Kitching RL, Boulter SL, Vickerman G, Laidlaw M, Hurley KL, Grimbacher PS (2005) The comparative assessment of arthropod and tree biodiversity in old-world rainforests, 2nd edn. Rainforest CRC & Earthwatch Institute, James Cook University, CairnsGoogle Scholar
  35. Kitching RL, Putland D, Ashton LA, Laidlaw MJ, Boulter SL, Christensen H, Lambkin CL (2011) Detecting biodiversity changes along climatic gradients: the IBISCA Queensland Project. Mem Queensl Mus 55:235–250Google Scholar
  36. Kitching RL, Ashton LA, Nakamura A, Whitaker T, Chey CV (2013) Distance-driven species turnover in Bornean rainforests: homogeneity and heterogeneity in primary and post-logging forests. Ecography 36:675–682CrossRefGoogle Scholar
  37. Kitching R, Nakamura A, Yasuda M, Hughes A, Min C (2015) Environmental determinism of community structure across trophic levels: moth assemblages and substrate type in the rain forests of south-western China. J Trop Ecol 31:81–89CrossRefGoogle Scholar
  38. Leguédois S, Party J-P, Dupouey J-L, Gauquelin T, Gégout J-C, Lecareux C, Badeau V, Rizetto S, Probst A (2014) The vegetation map of France going numerical: a new harmonised national geographical databaseGoogle Scholar
  39. Leraut P (2014) Moths of Europe, vol. 4: pyralids 2. NAP editions, ParisGoogle Scholar
  40. Majerus M (2002) Moths. New naturalist series. HarperCollins, LondonGoogle Scholar
  41. Merckx T (2015) Rewilding: pitfalls and opportunities for moths and butterflies, rewilding European landscapes. Springer, Cham, pp 107–125Google Scholar
  42. Merckx T, Slade EM (2014) Macro-moth families differ in their attraction to light: implications for light-trap monitoring programmes. Insect Conserv Diver 7:453–461CrossRefGoogle Scholar
  43. Nöske NM, Hilt N, Werner FA, Brehm G, Fiedler K, Sipman HJM, Gradstein SR (2008) Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic Appl Ecol 9:4–12CrossRefGoogle Scholar
  44. Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844CrossRefGoogle Scholar
  45. Odell EH, Ashton LA, Kitching RL (2016) Elevation and moths in a central eastern Queensland rainforest. Austral Ecol 41:133–144CrossRefGoogle Scholar
  46. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Henry M, Stevens H (2016) Vegan: community ecology package R Package version 2.3-2.
  47. Razowski J (2002) Tortricidae (Lepidoptera) of Europe. Tortricinae and Chlidanotinae, vol 1. Frantisek Slamka, BratislavaGoogle Scholar
  48. Razowski J (2003) Tortricidae (Lepidoptera) of Europe. Olethreutinae, vol 2. Franisek Slamka, BratislavaGoogle Scholar
  49. Roberts D (2007) Labdsv: ordination and multivariate analysis for ecology. R package version 1, 3-1Google Scholar
  50. Sabatini FM, Keeton WS, Levers C, Lindner M, Pötzschner F, Verkerk PJ, Bauhus J, Buchwald E, Chaskovsky O, Debaive N, Horváth F, Garbarino M, Grigoriadis N, Lombardi F, Duarte IM, Meyer P, Midteng R, Mikac S, Mikolás M, Motta R, Mozgeris M, Nunes L, Panayotov M, Odor P, Ruete A, Simovski B, Stillhard I, Svoboda M, Szwagrzyk J, Tikkanen O-P, Volosyanchuk R, Vrska T, Zlatanov T, Kuemmerle T (2018) Where are Europe’s last primary forests. Divers Distrib 24:1426–1439CrossRefGoogle Scholar
  51. Scoble MJ (1992) The Lepidoptera: form, function, and diversity. Oxford University Press, OxfordGoogle Scholar
  52. Skinner B (1998) Colour identification guide to moths of the British Isles (Macrolepidoptera), 2nd edn. Viking, LondonGoogle Scholar
  53. Skou P, Sihvonen P (2015) The geometrid moths of Europe 5: subfamily Ennominae 1. Brill, LeidenGoogle Scholar
  54. Slamka F (2006) Pyraloidea of Europe: Pyralinae, Galleriinae, Epipaschiinae, Cathariinae & Odontiinae, Privately published, BratislavaGoogle Scholar
  55. Slamka F (2008) Pyraloidea of Europe: Crambidae & Schoenobinae, Privately published, BratislavaGoogle Scholar
  56. Slamka F (2013) Pyraloidea of Europe: Pyraustinae & Spilomelinae, Privately published, BratislavaGoogle Scholar
  57. Truxa C, Fiedler K (2016) Massive structural redundancies in species composition patterns of floodplain forest moths. Ecography 39:253–260CrossRefGoogle Scholar
  58. Van Rensburg BJ, McGeoch MA, Chown SL, Van Jaarsveld AS (1999) Conservation of heterogeneity among dung beetles in the Maputaland Centre of Endemism, South Africa. Biol Conserv 88:145–153CrossRefGoogle Scholar
  59. Wang Y, Naumann U, Wright S, Warton D (2012a) mvabund: statistical methods for analysing multivariate abundance data. R package version 2.3-1.1Google Scholar
  60. Wang Y, Neuman U, Wright S, Warton DI (2012b) Mvabund: an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol 3:471–473CrossRefGoogle Scholar
  61. Warton DI, Wright ST, Wang Y (2012) Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol Evol 3:89–101CrossRefGoogle Scholar
  62. Yela JL, Holyoak M (1997) Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae). Environ Entomol 26:1283–1290CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • E. J. Dale
    • 1
  • R. L. Kitching
    • 1
  • C. Thebaud
    • 2
  • S. C. Maunsell
    • 1
    • 3
  • L. A. Ashton
    • 1
    • 4
    • 5
    Email author
  1. 1.Environmental Futures Research InstituteGriffith UniversityBrisbaneAustralia
  2. 2.Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse IIIToulouseFrance
  3. 3.Museum of Comparative ZoologyHarvard UniversityCambridgeUSA
  4. 4.Department of Life SciencesNatural History MuseumLondonUK
  5. 5.School of Biological SciencesThe University of Hong KongHong KongChina

Personalised recommendations