Persistence through tough times: fixed and shifting refuges in threatened species conservation

Abstract

It may be possible to avert threatened species declines by protecting refuges that promote species persistence during times of stress. To do this, we need to know where refuges are located, and when and which management actions are required to preserve, enhance or replicate them. Here we use a niche-based perspective to characterise refuges that are either fixed or shifting in location over ecological time scales (hours to centuries). We synthesise current knowledge of the role of fixed and shifting refuges, using threatened species examples where possible, and examine their relationships with stressors including drought, fire, introduced species, disease, and their interactions. Refuges often provide greater cover, water, food availability or protection from predators than other areas within the same landscapes. In many cases, landscape features provide refuge, but refuges can also arise through dynamic and shifting species interactions (e.g., mesopredator suppression). Elucidating the mechanisms by which species benefit from refuges can help guide the creation of new or artificial refuges. Importantly, we also need to recognise when refuges alone are insufficient to halt the decline of species, and where more intensive conservation intervention may be required. We argue that understanding the role of ecological refuges is an important part of strategies to stem further global biodiversity loss.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbott I (2000) Improving the conservation of threatened and rare mammal species through translocation to islands: case study Western Australia. Biol Conserv 93:195–201. https://doi.org/10.1016/s0006-3207(99)00144-5

    Article  Google Scholar 

  2. Abell SE, Gadek PA, Pearce CA, Congdon BC (2006) Seasonal resource availability and use by an endangered tropical mycophagous marsupial. Biol Conserv 132:533–540

    Article  Google Scholar 

  3. Baker J (1997) The decline, response to fire, status and management of the Eastern Bristlebird. Pac Conserv Biol 3:235–243

    Article  Google Scholar 

  4. Banks SC, Dujardin M, McBurney L, Blair D, Barker M, Lindenmayer DB (2011) Starting points for small mammal population recovery after wildfire: recolonisation or residual populations? Oikos 120:26–37. https://doi.org/10.1111/j.1600-0706.2010.18765.x

    Article  Google Scholar 

  5. Bateman BL, Kutt AS, Vanderduys EP, Kemp JE (2010) Small-mammal species richness and abundance along a tropical altitudinal gradient: an Australian example. J Trop Ecol 26:139–149

    Article  Google Scholar 

  6. Bateman BL, VanDerWal J, Johnson CN (2012) Nice weather for bettongs: using weather events, not climate means, in species distribution models. Ecography 35:306–314

    Article  Google Scholar 

  7. Bender EA, Case TJ, Gilpin ME (1984) Perturbation experiments in community ecology: theory and practice. Ecology 65:1–13. https://doi.org/10.2307/1939452

    Article  Google Scholar 

  8. Bennett AF, Nimmo DG, Radford JQ (2014a) Riparian vegetation has disproportionate benefits for landscape-scale conservation of woodland birds in highly modified environments. J Appl Ecol 51:514–523. https://doi.org/10.1111/1365-2664.12200

    Article  Google Scholar 

  9. Bennett JM et al (2014b) Resistance and resilience: can the abrupt end of extreme drought reverse avifaunal collapse? Divers Distrib 20:1321–1332. https://doi.org/10.1111/ddi.12230

    Article  Google Scholar 

  10. Berry LE, Driscoll DA, Banks SC, Lindenmayer DB (2015a) The use of topographic fire refuges by the greater glider (Petauroides volans) and the mountain brushtail possum (Trichosurus cunninghami) following a landscape-scale fire. Aust Mammal 37:39–45

    Article  Google Scholar 

  11. Berry LE, Driscoll DA, Stein JA, Blanchard W, Banks SC, Bradstock RA, Lindenmayer DB (2015b) Identifying the location of fire refuges in wet forest ecosystems. Ecol Appl 25:2337–2348. https://doi.org/10.1890/14-1699.1.sm

    Article  PubMed  Google Scholar 

  12. Berry LE, Lindenmayer DB, Driscoll DA (2015c) Large unburnt areas, not small unburnt patches, are needed to conserve avian diversity in fire-prone landscapes. J Appl Ecol 52:486–495. https://doi.org/10.1111/1365-2664.12387

    Article  Google Scholar 

  13. Berryman AA, Hawkins BA (2006) The refuge as an integrating concept in ecology and evolution. Oikos 115:192–196

    Article  Google Scholar 

  14. Beschta RL (2005) Reduced cottonwood recruitment following extirpation of wolves in Yellowstone’s northern range. Ecology 86:391–403. https://doi.org/10.1890/04-0964

    Article  Google Scholar 

  15. Biodiversity Conservation Act (2016) New South Wales Government

  16. Bosch J, Sanchez-Tomé E, Fernández-Loras A, Oliver JA, Fisher MC, Garner TWJ (2015) Successful elimination of a lethal wildlife infectious disease in nature. Biol Lett 11:20150874

    Article  Google Scholar 

  17. Brook LA, Johnson CN, Ritchie EG (2012) Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression. J Appl Ecol 49:1278–1286. https://doi.org/10.1111/j.1365-2664.2012.02207.x

    Article  Google Scholar 

  18. Brown S, Clarke M, Clarke R (2009) Fire is a key element in the landscape-scale habitat requirements and global population status of a threatened bird: the Mallee Emu-wren (Stipiturus mallee). Biol Conserv 142:432–445

    Article  Google Scholar 

  19. Bunn SE, Balcombe SR, Davies PM, Fellows CS, McKenzie-Smith FJ (2006a) Aquatic productivity and food webs of desert river ecosystems. In: Kingsford RT (ed) Desert rivers. Cambridge University Press, Melbourne

    Google Scholar 

  20. Bunn SE, Thoms MC, Hamilton SK, Capon SJ (2006b) Flow variability in dryland rivers: boom, bust and the bits in between. River Res Appl 22:179–186

    Article  Google Scholar 

  21. Burrows ND, Burbidge AA, Fuller PJ, Behn G (2006) Evidence of altered fire regimes in the western desert region of Australia. Conserv Sci West Aust 5:272–284

    Google Scholar 

  22. Butler DW, Fairfax RJ (2008) Buffel Grass and fire in a Gidgee and Brigalow woodland: a case study from central Queensland. Ecol Manag Restor 4:120–125. https://doi.org/10.1046/j.1442-8903.2003.00146.x

    Article  Google Scholar 

  23. Cadenhead NCR, Kearney MR, Moore D, McAlpin S, Wintle BA (2016) Climate and fire scenario uncertainty dominate the evaluation of options for conserving the Great Desert Skink. Conserv Lett 9:181–190. https://doi.org/10.1111/conl.12202

    Article  Google Scholar 

  24. Cahill D, Rookes J, Wilson BA, Gibson L, McDougall K (2008) Turner review no. 17. Phytophthora cinnamomi and Australia’s biodiversity: impacts, predictions and progress towards control. Aust J Bot 56:279–310

    Article  Google Scholar 

  25. Chandler GT, Crisp M, Cayzer LW, Bayer RJ (2002) Monograph of Gastrolobium (Fabaceae: Mirbelieae). Aust Syst Bot 15:619–739

    Article  Google Scholar 

  26. Channell R, Lomolino MV (2000) Dynamic biogeography and conservation of endangered species. Nature 403:84–86. https://doi.org/10.1038/47487

    CAS  Article  PubMed  Google Scholar 

  27. Chia EK, Bassett M, Nimmo DG, Leonard SWJ, Ritchie EG, Clarke MF, Bennett AF (2015) Fire severity and fire-induced landscape heterogeneity affect arboreal mammals in fire-prone forests. Ecosphere. https://doi.org/10.1890/es15-00327.1

    Article  Google Scholar 

  28. Côté IM, Darling ES, Brown CJ (2016) Interactions among ecosystem stressors and their importance in conservation. Proc R Soc B 283:20152592

    Article  Google Scholar 

  29. Danks A (1997) Conservation of the Noisy Scrub-bird: a review of 35 years of research and management. Pacific Conserv Biol 3:341–349

    Article  Google Scholar 

  30. Davis RA, Doherty TS, van Etten EJB, Radford JQ, Holmes F, Knuckey C, Davis BJ (2016) Conserving long unburnt vegetation is important for bird species, guilds and diversity. Biodivers Conserv 25:2709–2722. https://doi.org/10.1007/s10531-016-1196-5

    Article  Google Scholar 

  31. Davis JA, Kerezsy A, Nicol S (2017) Springs: conserving perennial water is critical in arid landscapes. Biol Conserv 211:30–35. https://doi.org/10.1016/j.biocon.2016.12.036

    Article  Google Scholar 

  32. De Tores P, Hayward MW, Dillon MJ, Brazell RI (2007) Review of the distribution, causes for the decline and recommendations for management of the quokka, Setonix brachyurus (Macropodidae: Marsupialia), an endemic macropodid marsupial from south-west Western Australia. Conserv Sci West Aust 6:13–73

    Google Scholar 

  33. De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2014) Estimating the normal background rate of species extinction. Conserv Biol 29:452–462. https://doi.org/10.1111/cobi.12380

    Article  PubMed  Google Scholar 

  34. Dean WRJ, Barnard P, Anderson MD (2009) When to stay, when to go: trade-offs for southern African arid-zone birds in times of drought. S Afr J Sci 105:24–28

    Article  Google Scholar 

  35. Dickman CR, Predavec M, Downey FJ (1995) Long-range movements of small mammals in arid Australia: implications for land management. J Arid Environ 31:441–452. https://doi.org/10.1016/s0140-1963(05)80127-2

    Article  Google Scholar 

  36. Dickman CR, Greenville AC, Tamayo B, Wardle GM (2011) Spatial dynamics of small mammals in central Australian desert habitats: the role of drought refugia. J Mammal 92:1193–1209. https://doi.org/10.1644/10-mamm-s-329.1

    Article  Google Scholar 

  37. Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17:1022–1035. https://doi.org/10.1111/j.1365-2486.2010.02263.x

    Article  Google Scholar 

  38. Doherty TS, Dickman CR, Nimmo DG, Ritchie EG (2015) Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances. Biol Conserv 190:60–68. https://doi.org/10.1016/j.biocon.2015.05.013

    Article  Google Scholar 

  39. Doherty TS, Glen AS, Nimmo DG, Ritchie EG, Dickman CR (2016) Invasive predators and global biodiversity loss. PNAS 113:11261–11265. https://doi.org/10.1073/pnas.1602480113

    CAS  Article  PubMed  Google Scholar 

  40. Environment Protection and Biodiversity Conservation Act (1999) Australian Government Department of Sustainability, Environment, Water, Population and Communities

  41. Fisher DO (2011) Trajectories from extinction: where are missing mammals rediscovered? Glob Ecol Biogeogr 20:415–425. https://doi.org/10.1111/j.1466-8238.2010.00624.x

    Article  Google Scholar 

  42. Fraser H, Simmonds JS, Kutt AS, Maron M (2019) Systematic definition of threatened fauna communities is critical to their conservation. Divers Distrib 25:462–477

    Article  Google Scholar 

  43. Geary WL, Ritchie EG, Lawton JA, Healey TR, Nimmo DG (2018) Incorporating disturbance into trophic ecology: fire history shapes mesopredator suppression by an apex predator. J Appl Ecol 5:2. https://doi.org/10.1111/1365-2664.13125

    Article  Google Scholar 

  44. GHD (2012) Appendix N3. Adani Mining Pty Ltd Carmichael Coal Mine Project Moray Downs Black-throated Finch Surveys. Adani Mining Pty Ltd, Brisbane

    Google Scholar 

  45. GHD (2013) Carmichael Coal Mine and Rail SEIS. Report for Black-throated Finch On-site Monitoring Survey 1. Adani Mining Pty Ltd, Brisbane

    Google Scholar 

  46. Greenville AC, Dickman CR, Wardle GM, Letnic M (2009) The fire history of an arid grassland: the influence of antecedent rainfall and ENSO. Int J Wildland Fire 18:631–639

    Article  Google Scholar 

  47. Greenville AC, Wardle GM, Tamayo B, Dickman CR (2014) Bottom-up and top-down processes interact to modify intraguild interactions in resource-pulse environments. Oecologia 175:1349–1358. https://doi.org/10.1007/s00442-014-2977-8

    Article  Google Scholar 

  48. Greenville AC, Wardle GM, Nguyen V, Dickman CR (2016) Population dynamics of desert mammals: similarities and contrasts within a multispecies assemblage. Ecosphere 7:e01343. https://doi.org/10.1002/ecs2.1343

    Article  Google Scholar 

  49. Haire LS, Coop DJ, Miller C (2017) Characterizing spatial neighborhoods of refugia following large fires in Northern New Mexico USA. Land 6:19. https://doi.org/10.3390/land6010019

    Article  Google Scholar 

  50. Haslem A, Nimmo DG, Radford JQ, Bennett AF (2015) Landscape properties mediate the homogenization of bird assemblages during climatic extremes. Ecology 96:3165–3174. https://doi.org/10.1890/14-2447.1

    Article  PubMed  Google Scholar 

  51. Hayward MW, Moseby K, Read JL (2014) The role of predator exclosures in the conservation of Australian fauna. Chapter 15. In: Glen AS, Dickman CR (eds) Carnivores of Australia. CSIRO Publishing, Collingwood, pp 363–379

    Google Scholar 

  52. Heard GW, Thomas CD, Hodgson JA, Scroggie MP, Ramsey DSL, Clemann N (2015) Refugia and connectivity sustain amphibian metapopulations afflicted by disease. Ecol Lett 18:853–863. https://doi.org/10.1111/ele.12463

    Article  PubMed  Google Scholar 

  53. Hernandez-Santin L, Goldizen AW, Fisher DO (2016) Introduced predators and habitat structure influence range contraction of an endangered native predator, the northern quoll. Biol Conserv 203:160–167. https://doi.org/10.1016/j.biocon.2016.09.023

    Article  Google Scholar 

  54. Hohnen R et al (2016) The significance of topographic complexity in habitat selection and persistence of a declining marsupial in the Kimberley region of Western Australia. Aust J Zool 64:198–216. https://doi.org/10.1071/ZO16015

    Article  Google Scholar 

  55. Holmgren M et al (2006) Extreme climatic events shape arid and semiarid ecosystems. Front Ecol Environ 4:87–95. https://doi.org/10.1890/1540-9295(2006)004%5b0087:ECESAA%5d2.0.CO;2

    Article  Google Scholar 

  56. Holt RD (2009) Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. PNAS 106:19659–19665. https://doi.org/10.1073/pnas.0905137106

    Article  PubMed  Google Scholar 

  57. Hopper SD (1991) Poison peas: deadly protectors. Landscope 6:44–50

    Google Scholar 

  58. Hutchinson GE (1957) Population studies: animal ecology and demography. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  59. Jenness J (2006) Topographic position index (tpi_jen.avx) extension for arcview 3.x, v. 1.2. Jenness Enterprises. http://www.jennessent.com/arcview/tpi.htm

  60. Johnson CN, Isaac JL, Fisher DO (2007) Rarity of a top predator triggers continent-wide collapse of mammal prey: dingoes and marsupials in Australia. Proc R Soc B 274:341–346

    Article  Google Scholar 

  61. Kasischke ES, Turetsky MR (2006) Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys Res Lett 33:L09703. https://doi.org/10.1029/2006GL025677

    Article  Google Scholar 

  62. Keppel G, Wardell-Johnson GW (2012) Refugia: keys to climate change management. Glob Change Biol 18:2389–2391. https://doi.org/10.1111/j.1365-2486.2012.02729.x

    Article  Google Scholar 

  63. Keppel G et al (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21:393–404. https://doi.org/10.1111/j.1466-8238.2011.00686.x

    Article  Google Scholar 

  64. Kerezsy A, Fensham R (2013) Conservation of the endangered red-finned blue-eye, Scaturiginichthys vermeilipinnis, and control of alien eastern gambusia, Gambusia holbrooki, in a spring wetland complex. Mar Freshw Res 64:851–863. https://doi.org/10.1071/MF12236

    Article  Google Scholar 

  65. Kerezsy A, Balcombe SR, Tischler M, Arthington AH (2013) Fish movement strategies in an ephemeral river in the Simpson Desert, Australia. Austral Ecol 38:798–808

    Article  Google Scholar 

  66. Krawchuk MA, Haire SL, Coop J, Parisien M-A, Whitman E, Chong G, Miller C (2016) Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America. Ecosphere 7:e01632. https://doi.org/10.1002/ecs2.1632

    Article  Google Scholar 

  67. Kutt AS (2012) Feral cat (Felis catus) prey size and selectivity in north-eastern Australia: implications for mammal conservation. J Zool 287:292–300. https://doi.org/10.1111/j.1469-7998.2012.00915.x

    Article  Google Scholar 

  68. Kutt AS, Fisher A (2011) Increased grazing and dominance of an exotic pasture (Bothriochloa pertusa) affects vertebrate fauna species composition, abundance and habitat in savanna woodland. Rangel J 33:49–58. https://doi.org/10.1071/RJ10065

    Article  Google Scholar 

  69. Kutt AS, Gordon IJ (2012) Variation in terrestrial mammal abundance on pastoral and conservation land tenures in north-eastern Australian tropical savannas. Anim Conserv 15:416–425. https://doi.org/10.1111/j.1469-1795.2012.00530.x

    Article  Google Scholar 

  70. Labbe TR, Fausch KD (2000) Dynamics of intermittent stream habitat regulate persistence of a threatened fish at multiple scales. Ecol Appl 10:1774–1791. https://doi.org/10.1890/1051-0761(2000)010[1774:DOISHR]2.0.CO;2

  71. Lake PS (2000) Disturbance, patchiness, and diversity in streams. J N Am Benthol Soc 19:573–592. https://doi.org/10.2307/1468118

    Article  Google Scholar 

  72. Leahy L, Legge SM, Tuft K, McGregor HW, Barmuta LA, Jones ME, Johnson CN (2016) Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildlife Res 42:705–716. https://doi.org/10.1071/WR15011

    Article  Google Scholar 

  73. Leonard SWJ, Bennett AF, Clarke MF (2014) Determinants of the occurrence of unburnt forest patches: potential biotic refuges within a large, intense wildfire in south-eastern Australia. Forest Ecol Manag 314:85–93. https://doi.org/10.1016/j.foreco.2013.11.036

    Article  Google Scholar 

  74. Letnic M, Dickman CR (2006) Boom means bust: interactions between the El Niño/Southern Oscillation (ENSO), rainfall and the processes threatening mammal species in arid Australia. Biodivers Conserv 15:3847–3880. https://doi.org/10.1007/s10531-005-0601-2

    Article  Google Scholar 

  75. Letnic M, Ritchie EG, Dickman CR (2012) Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study. Biol Rev 87:390–413. https://doi.org/10.1111/j.1469-185X.2011.00203.x

    Article  Google Scholar 

  76. Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press, Princeton

    Google Scholar 

  77. Lindenmayer D et al (2013) Principles and practices for biodiversity conservation and restoration forestry: a 30 year case study on the Victorian montane ash forests and the critically endangered Leadbeater’s Possum. Aust Zool 36:441–460. https://doi.org/10.7882/AZ.2013.007

    Article  Google Scholar 

  78. Mackey BG, Berry S, Hugh S, Ferrier S, Harwood TD, Williams KJ (2012) Ecosystem greenspots: identifying potential drought, fire, and climate-change micro-refuges. Ecol Appl 22:1852–1864

    Article  Google Scholar 

  79. Magoulick DD, Kobza RM (2003) The role of refugia for fishes during drought: a review and synthesis. Freshw Biol 48:1186–1198. https://doi.org/10.1046/j.1365-2427.2003.01089.x

    Article  Google Scholar 

  80. Mancini H (2013) Ecological condition assessment of Cooper Creek wetlands, South Australia. Report to South Australian Arid Lands Natural Resources Management Board, Port Augusta

  81. Margules CR, Pressey RL (2000) Systematic conservation planning. Syst Conserv Plan 405:243–253. https://doi.org/10.1038/35012251

    CAS  Article  Google Scholar 

  82. Marlow NJ et al (2015) Cats (Felis catus) are more abundant and are the dominant predator of woylies (Bettongia penicillata) after sustained fox (Vulpes vulpes) control. Aust J Zool 63:18–27. https://doi.org/10.1071/ZO14024

    Article  Google Scholar 

  83. Marshall JC, Sheldon F, Thoms M, Choy S (2006) The macroinvertebrate fauna of an Australian dryland river: spatial and temporal patterns and environmental relationships. Mar Freshw Res 57:61–74

    CAS  Article  Google Scholar 

  84. McDonald PJ, Pavey CR, Knights K, Grantham D, Ward SJ, Nano CEM (2013) Extant population of the critically endangered central rock-rat Zyzomys pedunculatus located in the Northern Territory, Australia. Oryx 47:303–306. https://doi.org/10.1017/s0030605313000136

    Article  Google Scholar 

  85. McDonald PJ, Griffiths AD, Nano CEM, Dickman CR, Ward SJ, Luck GW (2015) Landscape-scale factors determine occupancy of the critically endangered central rock-rat in arid Australia: the utility of camera trapping. Biol Conserv 191:93–100. https://doi.org/10.1016/j.biocon.2015.06.027

    Article  Google Scholar 

  86. McDonald PJ, Stewart A, Schubert AT, Nano CEM, Dickman CR, Luck GW (2016) Fire and grass cover influence occupancy patterns of rare rodents and feral cats in a mountain refuge: implications for management. Wildl Res 43:121–129. https://doi.org/10.1071/WR15220

    Article  Google Scholar 

  87. McDonald PJ, Nano CEM, Ward SJ, Stewart A, Pavey CR, Luck GW, Dickman CR (2017) Habitat as a mediator of mesopredator-driven mammal extinction. Conserv Biol 31:1183–1191. https://doi.org/10.1111/cobi.12905

    Article  PubMed  Google Scholar 

  88. McEvoy JF, Roshier DA, Ribot RFH, Bennett ATD (2015) Proximate cues to phases of movement in a highly dispersive waterfowl, Anas superciliosa. Mov Ecol 3:21. https://doi.org/10.1186/s40462-015-0048-3

    Article  PubMed  PubMed Central  Google Scholar 

  89. McGregor HW, Legge S, Jones ME, Johnson CN (2014) Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats. PLoS ONE 9:e109097. https://doi.org/10.1371/journal.pone.0109097

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. McGregor H, Legge S, Jones ME, Johnson CN (2015) Feral cats are better killers in open habitats, revealed by animal-borne video. PLoS ONE 10:e0133915. https://doi.org/10.1371/journal.pone.0133915

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. McGregor HW, Legge S, Jones ME, Johnson CN (2016) Extraterritorial hunting expeditions to intense fire scars by feral cats. Sci Rep 6:22559. https://doi.org/10.1038/srep22559

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. McLaughlin BC, Ackerly D, Klos PZ, Natali J, Dawson TE, Thompson SE (2017) Hydrologic refugia, plants, and climate change. Glob Change Biol 23:2941–2961. https://doi.org/10.1111/gcb.13629

    Article  Google Scholar 

  93. Milstead WB, Meserve PL, Campanella A, Previtali MA, Kelt DA, Gutiérrez JR (2007) Spatial ecology of small mammals in north-central Chile: role of precipitation and refuges. J Mammal 88:1532–1538. https://doi.org/10.1644/16-MAMM-A-407R.1

    Article  Google Scholar 

  94. Moore D, Kearney MR, Paltridge R, McAlpin S, Stow A (2015) Is fire a threatening process for Liopholis kintorei, a nationally listed threatened skink? Wildl Res 42:207–216

    Article  Google Scholar 

  95. Moore D, Kearney MR, Paltridge R, McAlpin S, Stow A (2017) Feeling the pressure at home: predator activity at the burrow entrance of an endangered arid-zone skink. Austral Ecol 43:102–109. https://doi.org/10.1111/aec.12547

    Article  Google Scholar 

  96. Moseby K (2011) National recovery plan for the plains mouse Pseudomys australis. Department of Environment and Natural Resources, Adelaide

    Google Scholar 

  97. Moseby KE, Hill BMAY, Read JL (2009) Arid recovery: a comparison of reptile and small mammal populations inside and outside a large rabbit, cat and fox-proof exclosure in arid South Australia. Austral Ecol 34:156–169. https://doi.org/10.1111/j.1442-9993.2008.01916.x

    Article  Google Scholar 

  98. Moseby KE, Read JL, Paton DC, Copley P, Hill BM, Crisp HA (2011) Predation determines the outcome of 10 reintroduction attempts in arid South Australia. Biol Conserv 144:2863–2872. https://doi.org/10.1016/j.biocon.2011.08.003

    Article  Google Scholar 

  99. Moseby KE, Peacock DE, Read JL (2015) Catastrophic cat predation: a call for predator profiling in wildlife protection programs. Biol Conserv 191:331–340. https://doi.org/10.1016/j.biocon.2015.07.026

    Article  Google Scholar 

  100. Moseby K, Read J, McLean A, Ward M, Rogers DJ (2016) How high is your hummock? The importance of triodia height as a habitat predictor for an endangered marsupial in a fire-prone environment. Austral Ecol 41:382–395. https://doi.org/10.1111/aec.12323

    Article  Google Scholar 

  101. Murphy SA, Paltridge R, Silcock J, Murphy R, Kutt AS, Read J (2018) Understanding and managing the threats to night parrots in south-western Queensland. Emu 118:135–145. https://doi.org/10.1080/01584197.2017.1388744

    Article  Google Scholar 

  102. Murray BR, Dickman CR (1994) Granivory and microhabitat use in Australian desert rodents: are seeds important? Oecologia 99:216–225. https://doi.org/10.1007/BF00627733

    Article  PubMed  Google Scholar 

  103. Newsome AE, Corbett LK (1975) VI. Outbreaks of rodents in semi-arid and arid Australia: causes, preventions, and evolutionary considerations. In: Prakash I, Ghosh PK (eds) Rodents in desert environments. Monographiae Biologicae, vol 28. Junk, The Hague, pp 117–153

  104. Nimmo DG, Mac Nally R, Cunningham SC, Haslem A, Bennett AF (2015) Vive la re´sistance: reviving resistance for 21st century conservation. Trends Ecol Evol 30:516–523. https://doi.org/10.1016/j.tree.2015.07.008

    CAS  Article  Google Scholar 

  105. Nimmo DG, Haslem A, Radford JQ, Hall M, Bennett AF (2016) Riparian tree cover enhances the resistance and stability of woodland bird communities during an extreme climatic event. J Appl Ecol 53:449–458. https://doi.org/10.1111/1365-2664.12535

    Article  Google Scholar 

  106. Nowakowski AJ et al (2016) Infection risk decreases with increasing mismatch in host and pathogen environmental tolerances. Ecol Lett 19:1051–1061. https://doi.org/10.1111/ele.12641

    Article  PubMed  Google Scholar 

  107. Ostendorf B, Boardman WSJ, Taggart DA (2016) Islands as refuges for threatened species: multispecies translocation and evidence of species interactions four decades on. Aust Mammal 38:204–212. https://doi.org/10.1071/AM15018

    Article  Google Scholar 

  108. Paget MJ, King EA (2008) MODIS land data sets for the Australian region. SIRO Marine and Atmospheric Research internal report number 004. CSIRO Marine and Atmospheric Research, Canberra, ACT, Australia

  109. Pavey CR, Cole JR, McDonald PJ, Nano CEM (2014) Population dynamics and spatial ecology of a declining desert rodent, Pseudomys australis: the importance of refuges for persistence. J Mammal 95:615–625. https://doi.org/10.1644/13-mamm-a-183

    Article  Google Scholar 

  110. Pavey CR, Jefferys EA, Nano CEM (2016) Persistence of the plains mouse, Pseudomys australis, with cattle grazing is facilitated by a diet dominated by disturbance-tolerant plants. J Mammal 97:1102–1110

    Article  Google Scholar 

  111. Pavey CR, Addison J, Brandle R, Dickman CR, McDonald PJ, Moseby KE, Young LI (2017) The role of refuges in the persistence of Australian dryland mammals. Biol Rev 92:647–664. https://doi.org/10.1111/brv.12247

    Article  PubMed  Google Scholar 

  112. Peacock D, Christensen P, Williams B (2011) Historical accounts of toxicity to introduced carnivores consuming bronzewing pigeons (Phaps chalcoptera and P. elegans) and other vertebrate fauna in south-west Western Australia. Aust Zool 35:826–842. https://doi.org/10.7882/AZ.2011.034

    Article  Google Scholar 

  113. Pedler RD, Ribot RFH, Bennett ATD (2014) Extreme nomadism in desert waterbirds: flights of the banded stilt. Biol Lett. https://doi.org/10.1098/rsbl.2014.0547

    Article  PubMed  PubMed Central  Google Scholar 

  114. Perry J, Fisher A, Palmer C (2011) Status and habitat of the carpentarian grasswren (Amytornis dorotheae) in the Northern Territory. Emu 111:155–161

    Article  Google Scholar 

  115. Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15. https://doi.org/10.1080/15572536.2005.11832990

    Article  Google Scholar 

  116. Pressey RL, Ferrier S, Hager TC, Woods CA, Tully SL, Weinman KM (1996) How well protected are the forests of north-eastern New South Wales? Analyses of forest environments in relation to formal protection measures, land tenure, and vulnerability to clearing. Forest Ecol Manag 85:311–333. https://doi.org/10.1016/S0378-1127(96)03766-8

    Article  Google Scholar 

  117. Puno VI, Laurence MH, Guest DI, Liew ECY (2015) Detection of Phytophthora multivora in the Wollemi Pine site and pathogenicity to Wollemia nobilis. Australas Plant Pathol 44:205–215. https://doi.org/10.1007/s13313-014-0344-1

    CAS  Article  Google Scholar 

  118. Puschendorf R, Hoskin CJ, Cashins SD, McDonald K, Skerratt LF, Vanderwal J, Alford RA (2011) Environmental refuge from disease-driven amphibian extinction. Conserv Biol 25:956–964. https://doi.org/10.1111/j.1523-1739.2011.01728.x

    Article  PubMed  Google Scholar 

  119. Pyke GH, Read DG (2002) Hastings river mouse Pseudomys oralis: a biological review. Aust Mammal 24:151–176

    Article  Google Scholar 

  120. Rayner MJ, Hauber ME, Imber MJ, Stamp RK, Clout MN (2007) Spatial heterogeneity of mesopredator release within an oceanic island system. PNAS 104:20862

    CAS  Article  Google Scholar 

  121. Read JL, Peacock D, Wayne AF, Moseby KE (2016) Toxic Trojans: can feral cat predation be mitigated by making their prey poisonous? Wildl Res 42:689–696. https://doi.org/10.1071/WR15125

    Article  Google Scholar 

  122. Reside AE et al (2014) Characteristics of climate change refugia for Australian biodiversity. Austral Ecol 39:887–897. https://doi.org/10.1111/aec.12146

    Article  Google Scholar 

  123. Reside AE, Cosgrove AJ, Pointon R, Trezise J, Watson JEM, Maron M (2019a) How to send a finch extinct. Environ Sci Policy 94:163–173. https://doi.org/10.1016/j.envsci.2019.01.005

    Article  Google Scholar 

  124. Reside AE et al (2019b) Beyond the model: expert knowledge improves predictions of species’ fates under climate change. Ecol Appl 29:e01824. https://doi.org/10.1002/eap.1824

    Article  PubMed  Google Scholar 

  125. Robinson NM et al (2013) Refuges for fauna in fire-prone landscapes: their ecological function and importance. J Appl Ecol 50:1321–1329. https://doi.org/10.1111/1365-2664.12153

    Article  Google Scholar 

  126. Robinson NM, Leonard SWJ, Bennett AF, Clarke MF (2016) Are forest gullies refuges for birds when burnt? The value of topographical heterogeneity to avian diversity in a fire-prone landscape. Biol Conserv 200:1–7. https://doi.org/10.1016/j.biocon.2016.05.010

    Article  Google Scholar 

  127. Robson BJ, Chester ET, Mitchell BD, Matthews TG (2008) Identification and management of refuges for aquatic organisms. Waterlines report. National Water Commission, Canberra

    Google Scholar 

  128. Roshier D, Reid J (2003) On animal distributions in dynamic landscapes. Ecography 26:539–544. https://doi.org/10.1034/j.1600-0587.2003.03473.x

    Article  Google Scholar 

  129. Roshier DA, Robertson AI, Kingsford RT, Green DG (2001) Continental-scale interactions with temporary resources may explain the paradox of large populations of desert waterbirds in Australia. Landsc Ecol 16:547–556

    Article  Google Scholar 

  130. Roshier DA, Robertson AI, Kingsford RT (2002) Responses of waterbirds to flooding in an arid region of Australia and implications for conservation. Biol Conserv 106:399–411

    Article  Google Scholar 

  131. Roshier DA, Klomp NI, Asmus M (2006) Movements of a nomadic waterfowl, Grey Teal Anas gracilis, across inland Australia—results from satellite telemetry spanning fifteen months. Ardea 94:461–475

    Google Scholar 

  132. Roznik EA, Sapsford SJ, Pike DA, Schwarzkopf L, Alford RA (2015) Natural disturbance reduces disease risk in endangered rainforest frog populations. Sci Rep 5:13472. https://doi.org/10.1038/srep13472

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  133. Rull V (2009) Microrefugia. J Biogeogr 36:481–484. https://doi.org/10.1111/j.1365-2699.2008.02023.x

    Article  Google Scholar 

  134. Russell JC, Innes JG, Brown PH, Byrom AE (2015) Predator-free New Zealand: conservation country. Bioscience 65:520–525. https://doi.org/10.1093/biosci/biv012

    Article  PubMed  PubMed Central  Google Scholar 

  135. Russell-Smith J, Whitehead PJ, Williams RJ, Flannigan M (2003) Fire and savanna landscapes in northern Australia: regional lessons and global challenges. Int J Wildland Fire 12:v–ix

    Article  Google Scholar 

  136. Sala OE et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770

    CAS  Article  PubMed  Google Scholar 

  137. Scheele BC et al (2014) Interventions for reducing extinction risk in Chytridiomycosis-threatened amphibians. Conserv Biol 28:1195–1205. https://doi.org/10.1111/cobi.12322

    Article  PubMed  Google Scholar 

  138. Scheele BC, Foster CN, Banks SC, Lindenmayer DB (2017) Niche contractions in declining species: mechanisms and consequences. Trends Ecol Evol 32:346–355. https://doi.org/10.1016/j.tree.2017.02.013

    Article  PubMed  Google Scholar 

  139. Scott JM, Murray D, Wright RG, Csuti B, Morgan P, Pressey RL (2001) Representation of natural vegetation in protected areas: capturing the geographic range. Biodivers Conserv 10:1297–1301

    Article  Google Scholar 

  140. Selwood KE, Clarke RH, Cunningham SC, Lada H, McGeoch MA, Mac Nally R (2015a) A bust but no boom: responses of floodplain bird assemblages during and after prolonged drought. J Anim Ecol 84:1700–1710. https://doi.org/10.1111/1365-2656.12424

    Article  PubMed  Google Scholar 

  141. Selwood KE, Thomson JR, Clarke RH, McGeoch MA, Mac Nally R (2015b) Resistance and resilience of terrestrial birds in drying climates: do floodplains provide drought refugia? Glob Ecol Biogeogr 24:838–848. https://doi.org/10.1111/geb.12305

    Article  Google Scholar 

  142. Selwood KE, Clarke RH, McGeoch MA, Mac Nally R (2016) Green tongues into the arid zone: river floodplains extend the distribution of terrestrial bird species. Ecosystems. https://doi.org/10.1007/s10021-016-0059-y

    Article  Google Scholar 

  143. Sheldon F, Bunn SE, Hughes JM, Arthington AH, Balcombe SR, Fellows CS (2010) Ecological roles and threats to aquatic refugia in arid landscapes: dryland river waterholes. Mar Freshw Res 61:885–895

    CAS  Article  Google Scholar 

  144. Short J, Atkins L, Turner B (2005) Diagnosis of mammal decline in Western Australia, with particular emphasis on the possible role of feral cats and poison peas. CSIRO Sustainable Ecosystems, Perth, Report to National Geographic Society, Washington, DC

    Google Scholar 

  145. Skerratt LF et al (2016) Priorities for management of chytridiomycosis in Australia: saving frogs from extinction. Wildl Res 43:105–120. https://doi.org/10.1071/WR15071

    Article  Google Scholar 

  146. Southgate R, Carthew S (2007) Post-fire ephemerals and spinifex-fuelled fires: a decision model for bilby habitat management in the Tanami Desert, Australia. Int J Wildland Fire 16:741–754

    Article  Google Scholar 

  147. Southgate R, Paltridge R, Masters P, Carthew S (2007) Bilby distribution and fire: a test of alternative models of habitat suitability in the Tanami Desert, Australia. Ecography 30:759–776. https://doi.org/10.1111/j.2007.0906-7590.04956.x

    Article  Google Scholar 

  148. Stead-Richardson E, Bradshaw D, Friend T, Fletcher T (2010) Monitoring reproduction in the critically endangered marsupial, Gilbert’s potoroo (Potorous gilbertii): preliminary analysis of faecal oestradiol-17β, cortisol and progestagens. Gen Comp Endocr 165:155–162. https://doi.org/10.1016/j.ygcen.2009.06.009

    CAS  Article  PubMed  Google Scholar 

  149. Stockwell MP, Storrie LJ, Pollard CJ, Clulow J, Mahony MJ (2014) Effects of pond salinization on survival rate of amphibian hosts infected with the chytrid fungus. Conserv Biol 29:391–399. https://doi.org/10.1111/cobi.12402

    Article  PubMed  Google Scholar 

  150. Stone ZL, Tasker E, Maron M (2018) Grassy patch size and structure are important for northern Eastern Bristlebird persistence in a dynamic ecosystem. Emu 118:269–280. https://doi.org/10.1080/01584197.2018.1425628

    Article  Google Scholar 

  151. Swan M, Galindez-Silva C, Christie F, York A, Di Stefano J (2016) Contrasting responses of small mammals to fire and topographic refugia. Austral Ecol 41:443–451. https://doi.org/10.1111/aec.12331

    Article  Google Scholar 

  152. Taylor RS, Watson SJ, Nimmo DG, Kelly LT, Bennett AF, Clarke MF (2012) Landscape-scale effects of fire on bird assemblages: does pyrodiversity beget biodiversity? Divers Distrib 18:519–529. https://doi.org/10.1111/j.1472-4642.2011.00842.x

    Article  Google Scholar 

  153. Van Etten EJB (2009) Inter-annual rainfall variability of arid Australia: greater than elsewhere? Aust Geogr 40:109–120

    Article  Google Scholar 

  154. Vanderduys EP, Kutt AS, Kemp JE (2012) Upland savannas: the vertebrate fauna of largely unknown but significant habitat in north-eastern Queensland. Aust Zool 36:59–74

    Article  Google Scholar 

  155. Venter O, Magrach A, Outram N, Klein CJ, Possingham HP, Di Marco M, Watson JEM (2018) Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions. Conserv Biol 32:127–134

    Article  Google Scholar 

  156. Vernes K, Pope LC (2001) Stability of nest range, home range and movement of the northern bettong (Bettongia tropica) following moderate-intensity fire in a tropical woodland, north-eastern Queensland. Wildl Res 28:141–150

    Article  Google Scholar 

  157. Vierling KT, Vierling LA, Gould WA, Martinuzzi S, Clawges RM (2008) Lidar: shedding new light on habitat characterization and modeling. Front Ecol Environ 6:90–98. https://doi.org/10.1890/070001

    Article  Google Scholar 

  158. Wallach AD, Johnson CN, Ritchie EG, O’Neill AJ (2010) Predator control promotes invasive dominated ecological states. Ecol Lett 13:1008–1018

    Google Scholar 

  159. Woinarski JCZ, Ward S, Mahney T, Bradley J, Brennan K, Ziembicki M, Fisher A (2011) The mammal fauna of the Sir Edward Pellew island group, Northern Territory, Australia: refuge and death-trap. Wildl Res 38:307–322. https://doi.org/10.1071/wr10184

    Article  Google Scholar 

  160. Woinarski JCZ, Burbidge AA, Harrison PL (2015) Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. PNAS 112:4531–4540. https://doi.org/10.1073/pnas.1417301112

    CAS  Article  PubMed  Google Scholar 

  161. Young LI, Dickman CR, Addison J, Pavey CR (2017) Spatial ecology and shelter resources of a threatened desert rodent (Pseudomys australis) in refuge habitat. J Mammal 98:1604–1614. https://doi.org/10.1093/jmammal/gyx129

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Australian Government’s National Environmental Science Programme through the Threatened Species Recovery Hub. B Hradsky was also supported by the Victorian Government Department of Environment, Land, Water and Planning, and Parks Victoria, and C Dickman by the Australian Research Council (DP140104621). Jack Tatler, John Wright and Peter McDonald contributed to the initial discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to April E. Reside.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by David Hawksworth.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reside, A.E., Briscoe, N.J., Dickman, C.R. et al. Persistence through tough times: fixed and shifting refuges in threatened species conservation. Biodivers Conserv 28, 1303–1330 (2019). https://doi.org/10.1007/s10531-019-01734-7

Download citation

Keywords

  • Endangered species
  • Biodiversity conservation
  • Fire
  • Niche
  • Predators
  • Press, pulse and ramp stressors