Redefining the Cerrado–Amazonia transition: implications for conservation

Abstract

Understanding the nature and extent of ecosystem boundaries has important implications for the management and conservation of biodiversity. However, characterizing and establishing such boundary limits has been a persistent challenge worldwide. The Cerrado–Amazonia transition (CAT) in Brazil is the world’s largest savanna-forest transition. However, the CAT is represented in official maps used by Brazilian governmental agencies as a simple line separating the two biomes. Here, we demonstrate that the CAT is in fact broad, complex and interdigitating and that its traditional linear representation is not adequate for recognizing and conserving biodiversity in this region. Over the 30 years of our analysis, the CAT suffered more deforestation than the forests and savannas in each individual biomes (Amazonia and Cerrado). The complexity of tropical savanna-forest boundaries has been misunderstood and misrepresented by current maps, severely threatening the complex CAT biota. As a consequence, vegetation losses have reached levels close to collapse in areas of intense human activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ab’Sáber AN (1958) Conhecimento sobre as flutuações climáticas do quaternário no Brasil. Notícia Geomorfológica 01:24–30

    Google Scholar 

  2. Ab’Saber AN (2002) Bases para o estudo dos ecossistemas da Amazônia brasileira. Estudos Avançados 16:7–30

    Article  Google Scholar 

  3. Adams JB, Sabol DE, Kapos V, Almeida Filho R, Roberts DA, Smith MO, Gillespie AR (1995) Classification of multispectral images based on fractions of endmembers: application to land-cover change in the Brazilian Amazon. Remote Sens Environ 52:137–154

    Article  Google Scholar 

  4. Alencar A, Nepstad D, Mcgrath D, Moutinho P, Pacheco P, Vera Diaz MDC, Soares-Filho B (2004) Desmatamento na Amazônia: indo além da ‘‘emergência crônica’’. IPAM, Belém

    Google Scholar 

  5. Alvares CA, Stape JL, Sentelhas PC, Goncalves JLD, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  6. Behling H, Hooghiemstra H (2000) Holocene Amazon rainforest–savanna dynamics and climatic implications: high-resolution pollen record from Laguna Loma Linda in eastern Colombia. J Quat Sci 15:687–695

    Article  Google Scholar 

  7. Brando PM, Coe MT, Defries R, Azevedo AA (2013) Ecology, economy and management of an agroindustrial frontier landscape in the southeast Amazon. Phil Trans R Soc B 368:1–9

    Article  Google Scholar 

  8. Brasil (1981) Ministério das Minas e Energia. Secretaria Geral. Projeto RADAMBRASIL. Folha SD.22 Goiás: geologia, geomorfologia, pedologia, vegetação, uso potencial da terra. Rio de Janeiro, v.25 636p

  9. Breukelen MR, Vonhof HB, Hellstrom JC, Wester WCG, Kroon D (2008) Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet Sci Lett 275:54–60

    Article  CAS  Google Scholar 

  10. Congalton RG (1997) Exploring and evaluating the consequences of vector-to-raster and raster-to-vector conversion. Photogramm Eng Remote Sens 63:425–434

    Google Scholar 

  11. da Silva A, Mews H, Marimon-Junior BH, de Oliveira B, Morandi P, Oliveras I, Marimon BS (2018) Recurrent wildfires drive rapid taxonomic homogenization of seasonally flooded Neotropical forests. Environ Conserv 45(4):378–386

    Article  Google Scholar 

  12. Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MM, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Sousa CM Jr, Wofsy SC (2012) The Amazon basin in transition. Nature 481:321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Oliveira B, Junior BH, Mews HA, Valadão MB, Marimon BS (2017) Unraveling the ecosystem functions in the Amazonia-Cerrado transition: evidence of hyperdynamic nutrient cycling. Plant Ecol 218(2):225–239

    Article  Google Scholar 

  14. Ducke A, Black GA (1953) Phytogeographical notes on the Brazilian Amazon. Academia Brazileira de Ciencias

  15. EMBRAPA (2013) Código Florestal - adequação ambiental da paisagem rural: área de Reserva Legal. Available in: https://www.embrapa.br/codigo-florestal/area-de-reserva-legal-arl. Accessed 14 Nov 2018

  16. ENVI (2004) ENVI Version 4.1 User’s Guide, Research Systems, Inc

  17. ERDAS (2011) ERDAS Imagine Spectral Analysis Users Guide. ERDAS Imagine

  18. Esquivel‐Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJW, Feldpausch TR, Lloyd J, Monteagudo‐Mendoza A, Arroyo L et al (2018) Compositional response of Amazon forests to climate change. Glob Change Biol. https://doi.org/10.1111/gcb.14413

    Article  Google Scholar 

  19. ESRI (2011) Using ArcGIS Desktop: Realease 10. Instituto de Pesquisas Ambientais, Redlands

    Google Scholar 

  20. Fearnside PM (2005) Desmatamento na Amazônia brasileira: história, índices e conseqüências. Megadiversidade 1:113–123

    Google Scholar 

  21. Gloor M, Brienen RJW, Galbraith D, Feldpausch TR, Schöngart J, Guyot JL, Phillips OL (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1729–1733

    Article  Google Scholar 

  22. Hoffmann WA, Jackson RB (2000) Vegetation-climate feedbacks in the conversion of tropical savanna to grassland. J Clim 13:1593–1602

    Article  Google Scholar 

  23. IBGE (2004) Instituto Brasileiro de Geografia e Estatística - Mapa de Biomas do Brasil: Primeira aproximação. Rio de Janeiro: IBGE. Escala 1:5.000.000. <ftp://geoftp.ibge.gov.br/mapas/tematicos/mapas_murais/biomas.pdf>. Accessed 13 Oct 2014

  24. IBGE (2014) Instituto Brasileiro de Geografia e Estatística – Área territorial brasileira. http://www.ibge.gov.br/. Accessed 13 Oct 2014

  25. Ivanauskas NM, Monteiro R, Rodrigues RR (2008) Classificação fitogeográficas das florestas do Alto Rio Xingu. Acta Amazonica 38:387–402

    Article  Google Scholar 

  26. Levis C, Costa FR, Bongers F, Peña-Claros M, Clement CR, Junqueira AB, Neves EG, Tamanaha EK, Figueiredo FO, Salomão RP, Castilho CV (2017) Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355(6328):925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lewis SL, Brando PM, Phillips OL, van der Heijden GM, Nepstad D (2011) The 2010 amazon drought. Science 331:554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:1–5

    Article  Google Scholar 

  29. Marimon BS, Felfili JM, Haridasan M (2001) Studies in monodominant forests in eastern Mato Grosso, Brazil: I. A forest of Brosimum rubescens Taub. Edinb J Bot 58:123–137

    Article  Google Scholar 

  30. Marimon BS, Lima ES, Duarte TG, Chieregatto LC, Ratter JA (2006) Observations on the vegetation of northeastern Mato Grosso, Brazil. IV. An analysis of the Cerrado-Amazonian Forest ecotone. Edinb J Bot 63:323–341

    Article  Google Scholar 

  31. Marimon BS, Marimon-Junior BH, Mews HA et al (2012) Floristics of floodplain ‘murundus’ of the Pantanal of Araguaia, Mato Grosso, Brazil. Acta Botanica Brasilica 26:181–196

    Article  Google Scholar 

  32. Marimon BS, Marimon-Junior BH, Feldpausch TR, Santos CO, Mews HA, Lopez-Gonzalez G, Lloyd J, Franczak DD, Oliveira EA, Maracahipes L, Miguel A, Lenza E, Phillips OL (2014) Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecol Divers 7:37–41

    Article  Google Scholar 

  33. Marimon-Junior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Bot Bras 19:913–992

    Article  Google Scholar 

  34. Matricardi EAT, Skole DL, Pedlowski MA, Chomentowski K, Fernandes LC (2010) Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens Environ 114:1117–1129

    Article  Google Scholar 

  35. Matricardi EAT, Skole DL, Pedlowski MA, Chomentowski K (2013) Assessment of forest disturbances by selective logging and forest fires in the Brazilian Amazon using Landsat data. Int J Remote Sens 34:1057–1086

    Article  Google Scholar 

  36. Meneses PR, Almeida T (2012) Introdução ao Processamento de Imagens de Sensoriamento Remoto. UnB/CNPq, Brasília

    Google Scholar 

  37. Metzger JP (2006) Como lidar com regras pouco óbvias para conservação da biodiversidade em paisagens fragmentadas. Natureza & Conservação 4:11–23

    Google Scholar 

  38. Mews HA, Marimon BS, Ratter JA (2012) Observations on the vegetation of Mato Grosso, Brazil. V.* changes in the woody species diversity of a forest in the Cerrado-Amazonian Forest Transition zone and notes on the forests of the region. Edinb J Bot 69:239–253

    Article  Google Scholar 

  39. Mittermeier RA, Myers N, Thomsen JB, Fonseca GAB, Olivieri S (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520

    Article  Google Scholar 

  40. Morandi PS, Marimon-Junior BH, Oliveira E, Reis S, Valadão MBX, Forsthofer M, Marimon BS (2016a) Vegetation Succesion in the Cerrado-Amazonian forest transition zone of Mato Grosso State, Brazil. Edinb J Bot 73:83–93

    Article  Google Scholar 

  41. Morandi PS, Marimon BS, Eisenlohr PV, Marimon-Junior BH, Oliveira-Santos C, Feldpausch TR, Oliveira EA, Reis SM, Lloyd J, Phillips OL (2016b) Patterns of tree species composition at watershed-scale in the Amazon ‘arc of deforestation’: implications for conservation. Environ Conserv 43(4):317–326

    Article  Google Scholar 

  42. Morandi PS, Marimon BS, Marimon-Junior BH, Ratter JA, Feldpausch TR, Colli GR, Munhoz CB, Silva-Júnior MC, Souza-Lima E, Haidar RF, Arroyo L, Araujo-Murakami A, Góis FA, Walter BMT, Ribeiro JS, Françoso R, Elias F, Oliveira EA, Reis SM, Oliveira B, Neves EC, Nogueira DS, Lima HS, Carvalho TP, Rodrigues S, Villarroel D, Felfili JM, Phillips OL (2018) Tree diversity and above-ground biomass in the South America Cerrado biome and their conservation implications. Biodivers Conserv. https://doi.org/10.1007/s10531-018-1589-8

    Article  Google Scholar 

  43. Nogueira EM, Fearnside PM, Nelson BW, França MB (2007) Wood density in forests of Brazil’s ‘arc of deforestation’: implications for biomass and flux of carbon from land-use change in Amazonia. For Ecol Manage 248:119–135

    Article  Google Scholar 

  44. Nogueira EM, Nelson BW, Fearnside PM, França MB, Oliveira ACA (2008) Tree height in Brazil’s ‘arc of deforestation’: shorter trees in south and southwest Amazonia imply lower biomass. For Ecol Manage 255:2963–2972

    Article  Google Scholar 

  45. Oliveira B, Marimon-Junior BH, Mews HA, Valadão MBX, Marimon BS (2017) Unraveling the ecosystem functions in the Amazonia-Cerrado transition: evidence of hyperdynamic nutrient cycling. Plant Ecol 218:225–239

    Article  Google Scholar 

  46. Overbeck GE, Vélez-Martin E, Scarano FR et al (2015) Conservation in Brazil needs to include non-forest ecosystems. Divers Distrib 21:1455–1460

    Article  Google Scholar 

  47. Pacheco CSGR, Oliveira NMGA (2016) Conservação das espécies vegetais em paleoambientes dunares na APA Dunas e Veredas do Baixo-Médio São Francisco, Bahia, Brasil. Nat Resour 6:6–17

    Google Scholar 

  48. Papp L (2012) Comentários ao Novo Código Florestal Brasileiro - Lei 12.651/12. 1a. Ed. Millennium, 352 p

  49. Passos FB, Marimon BS, Phillips OL, Morandi PS, Neves EC, Elias S, Reis SM, Oiveira B, Feldpausch TR, Marimon-Junior BH (2018) Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and “Cerrado” biomes. Braz J Bot 41:611–619

    Article  Google Scholar 

  50. Peixoto KS, Marimon-Junior BH, Marimon BS, Elias F, de Farias J, Freitag R, Mews HA, das Neves EC, Prestes NC, Malhi Y (2017) Unravelling ecosystem functions at the Amazonia-Cerrado transition: II. Carbon stocks and CO2 soil efflux in cerradao forest undergoing ecological succession. Acta Oecologica 82:23–31

    Article  Google Scholar 

  51. Peixoto KD, Marimon-Junior BH, Cavalheiro KA, Silva NA, das Neves EC, Freitag R, Mews HA, Valadão MB (2018) Assessing the effects of rainfall reduction on litterfall and the litter layer in phytophysiognomies of the Amazonia-Cerrado transition. Braz J Bot 41(3):589–600

    Article  Google Scholar 

  52. Pessenda LC, Boulet R, Aravena R, Rosolen V, Gouveia SEM, Ribeiro AS, Lamotte M (2001) Origin and dynamics of soil organic matter and vegetation changes during the Holocene in a forest-savanna transition zone, Brazilian Amazon region. Holocene 11:250–254

    Article  Google Scholar 

  53. Pessenda LCR, Gouveia SEM, de Souza Ribeiro A, De Oliveira PE, Aravena R (2010) Late Pleistocene and Holocene vegetation changes in northeastern Brazil determined from carbon isotopes and charcoal records in soils. Palaeogeogr Palaeoclimatol Palaeoecol 297:597–608

    Article  Google Scholar 

  54. Phillips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282(5388):439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ratter JA (1993) Transition between cerrado and forest vegetation in Brazil. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-Savanna Boundaries. Chapman & hall, London, pp 417–429

    Google Scholar 

  56. Ratter JA, Richards PW, Argent G, Gifford DR (1973) Observations on the vegetation of northeastern Mato Grosso – The wood vegetation types of the Xavantina – Cachimbo Expedition Area. Philos Trans R Soc 226:229–492

    Google Scholar 

  57. Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian Cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230

    Article  Google Scholar 

  58. Ratter JA, Bridgewater S, Ribeiro JF (2003) Analysis of the floristic composition of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinb J Bot 60:57–109

    Article  Google Scholar 

  59. Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do bioma Cerrado. In: Sano SM, Almeida SP (eds) Cerrado: Ecologia e flora, 2nd edn. Embrapa–Cerrados, Brasilia, pp 151–212

    Google Scholar 

  60. Ronnenberg KL (2013) How landscapes change: human disturbance and ecosystem fragmentation in the Americas. Springer, New York

    Google Scholar 

  61. Silvério DV, Brando PM, Balch JK, Putz FE, Nepstad DC, Oliveira-Santos C, Bustamante MMC (2013) Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Phil Trans R Soc B 368:1–9

    Article  Google Scholar 

  62. Soares LC (1953) Limites meridionais e orientais da área de ocorrência da Floresta amazônica em território Brasileiro. Rev bras Geografia 1:3–122

    Google Scholar 

  63. Torello-Raventos M, Feldpausch TR, Veenendaal E, Schrodt F, Saiz G, Domingues TF, Marimon-Junior BH (2013) On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecol Divers 6(1):101–137

    Article  Google Scholar 

  64. Valadão MBX, Marimon JB, Oliveira BD, Lucio NW, Souza M, Marimon BS (2016) Biomass hyperdynamics as a key modulator of forest self-maintenance in a dystrophic soil in the Amazonia-Cerrado transition. Scientia Forestalis 44:475–485

    Article  Google Scholar 

  65. Werneck FP, Nogueira C, Colli GR, Sites JW, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39:1695–1706

    Article  Google Scholar 

Download references

Acknowledgements

We thank CAPES for the MSc scholarship to the first author and the National Council of Science and Technology of Brazil (CNPq) for the financial funding of the project PPBIO 457602/2012-0 (Rede Biota do Cerrado) and productivity grants to BH Marimon, BS Marimon and GR Colli. GRC thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF), and the Partnerships for Enhanced Engagement in Research (PEER) program for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ben Hur Marimon-Junior.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Guarino Rinaldi Colli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 774 kb). Appendix Fig. A1 Filtered using a 5 km2 grid size for the reclassification and smoothing tools used as the base of the manually refined ecotone complex

Supplementary material 2 (TIFF 801 kb). Appendix Fig. A2 Result of the smoothing used as the base for the manually refined ecotone complex

Supplementary material 3 (TIFF 6593 kb). Appendix Fig. A3 Cerrado–Amazonia limit defined by considering the types of vegetation occurring in this region. The dividing line between biomes defined in this study (in blue) clearly does not match the line previously defined by the IBGE’s official mapping (in black)

Supplementary material 4 (TIFF 1748 kb). Appendix Fig. A4 Scheme showing events that may potentially lead to encroachment or retraction of forests or savannas, contributing to the floristic complexity of the Cerrado–Amazonia transition in Brazil

Supplementary material 5 (TIFF 1811 kb). Appendix Fig. A5 Land cover classes and protected areas. Indigenous Lands and Conservation Units, accounting for 16.7% of the landscape in the Cerrado–Amazonia transition in Brazil in 2014

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marques, E.Q., Marimon-Junior, B.H., Marimon, B.S. et al. Redefining the Cerrado–Amazonia transition: implications for conservation. Biodivers Conserv 29, 1501–1517 (2020). https://doi.org/10.1007/s10531-019-01720-z

Download citation

Keywords

  • Ecotonal forests
  • Official mapping
  • Arc of deforestation
  • Biodiversity losses
  • Land use
  • Deforestation
  • Ecosystem boundaries