Skip to main content

Advertisement

Log in

Landscape predictors of rodent dynamics in fragmented rainforests

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Land-use change threatens a large number of tropical species (so-called ‘loser’ species), but a small subset of disturbance-adapted species may proliferate in human-modified landscapes (‘winner’ species). Identifying such loser and winner species is critically needed to improve conservation plans, but this task requires longitudinal studies that are extremely rare. We assessed this topic with small rodent assemblages in the Lacandona rainforest, a relatively new and highly dynamic agricultural frontier from southeastern Mexico. In particular, we measured the abundance of four rodent species in 12 forest sites during a 6 year period. We related changes in abundance to differences across time in landscape structure (i.e., percentage of forest cover, matrix contrast, number of forest patches, and forest edge density) surrounding each site. Total rodent abundance was almost two times higher in 2016 than in 2011, although abundances were generally low in all years. The abundance of Heteromys desmarestianus increased through time, mainly in forest sites with increasing matrix contrast. Oryzomys sp. also tended to increase in abundance, especially in sites with decreasing edge density. Sigmodon toltecus remained stable through time, but Peromyscus mexicanus tended to decrease in abundance, particularly in sites with decreasing edge density and increasing matrix contrast across time. Therefore, spatial variations in landscape structure lead to species-specific responses. If current deforestation rates persist, we predict a population decline of forest-specialist species (P. mexicanus), and an increase in generalist species (S. toltecus and Oryzomys sp.). Improving matrix quality is crucial for preventing the extinction of forest-specialist rodent species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data used in this study are archived at Figshare (https://doi.org/10.6084/m9.figshare.6171623).

References

  • Andresen E, Arroyo-Rodríguez V, Escobar F (2018) Tropical biodiversity: the roles of biotic interactions in its origin, maintenance, function and conservation. In: Dáttilo W, Rico-Gray V (eds) Ecological networks in the tropics. Springer, New York, pp 1–13

    Google Scholar 

  • Arriaga L, Espinoza J, Aguilar C et al (2000) Regiones terrestres prioritarias de México. CONABIO, Mexico City

    Google Scholar 

  • Arroyo-Rodríguez V, Dias PAD (2010) Effects of habitat fragmentation and disturbance on howler monkeys: a review. Am J Primatol 72:1–16

    Article  PubMed  Google Scholar 

  • Arroyo-Rodríguez V, Rojas C, Saldaña-Vázquez RA et al (2016) Landscape composition is more important than landscape configuration for phyllostomid bat assemblages in a fragmented biodiversity hotspot. Biol Conserv 198:84–92

    Article  Google Scholar 

  • Arroyo-Rodríguez V, Saldaña-Vázquez RA, Fahrig L, Santos BA (2017) Does forest fragmentation cause an increase in forest temperature? Ecol Res 32:81–88

    Article  Google Scholar 

  • Banks-Leite C, Pardini R, Tambosi LR et al (2014) Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345:1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Barbaro L, Giffard B, Charbonnier Y et al (2013) Bird functional diversity enhances insectivory at forest edges: a transcontinental experiment. Divers Distrib 20:149–159

    Article  Google Scholar 

  • Bennett AF, Saunders DA (2010) Habitat fragmentation and landscape change. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, Oxford, pp 88–106

    Chapter  Google Scholar 

  • Bovendorp RS, Brum FT, McCleery RA et al (2018) Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography. https://doi.org/10.1111/ecog.03504

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Calcagno V, de Mazancourt C (2010) Glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Soft 34:1–29

    Article  Google Scholar 

  • Camara G, Souza RCM, Freitas UM et al (1996) SPRING: integrating remote sensing and GIS by object-oriented data modelling. Comp Graph 20:395–403

    Article  Google Scholar 

  • Campbell RE, Harding JS, Ewers RM et al (2011) Production land use alters edge response functions in remnant forest invertebrate communities. Ecol Appl 21:3147–3161

    Article  Google Scholar 

  • Carabias J, de la Maza J, Cadena R (2015) Conservación y desarrollo sustentable en la Selva Lacandona. 25 años de actividades y experiencias. Natura y Ecosistemas Mexicanos, Mexico City

    Google Scholar 

  • Carrara E, Arroyo-Rodríguez V, Vega-Rivera JH et al (2015) Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol Conserv 184:117–126

    Article  Google Scholar 

  • Ceballos G, Oliva G (2005) Los mamíferos silvestres de México. CONABIO & Fondo de Cultura Económica, Mexico City

    Google Scholar 

  • Courtier S, Núñez JM, Kolb M (2012) Measuring tropical deforestation with error margins: a method for REDD monitoring in south-eastern Mexico. In: Sudarshana P (ed) Tropical forests. InTech, Shanghai, pp 269–296

    Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, London

    Book  Google Scholar 

  • del Castillo RF (2015) A conceptual framework to describe the ecology of fragmented landscapes and implications for conservation and management. Ecol Appl 25:1447–1455

    Article  PubMed  Google Scholar 

  • Dirzo R, Mendoza E, Ortiz P (2007) Size-related differential seed predation in a heavily defaunated Neotropical rainforest. Biotropica 39:355–362

    Article  Google Scholar 

  • Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the Anthropocene. Science 345:401–406

    Article  CAS  Google Scholar 

  • Eigenbrod F, Hecnar SJ, Fahrig L (2011) Sub-optimal study design has major impacts on landscape-scale inference. Biol Conserv 144:298–305

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L et al (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  Google Scholar 

  • FAO (2016) State of the World’s Forests 2016. Forests and agriculture: land-use challenges and opportunities. FAO, Rome

    Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. SAGE publications Inc, Thousand Oaks

    Google Scholar 

  • Fryxell JM, Falls JB, Falls EA, Brooks RJ (1998) Long-term dynamics of small-mammal populations in Ontario. Ecology 79:213–225

    Article  Google Scholar 

  • Galán-Acedo C, Arroyo-Rodríguez V, Estrada A et al (2018) Drivers of the spatial scale that best predict primate responses to landscape structure. Ecography 41:1–11

    Article  Google Scholar 

  • Galetti M, Dirzo R (2013) Ecological and evolutionary consequences of living in a defaunated world. Biol Conserv 163:1–6

    Article  Google Scholar 

  • Galetti M, Bovendorp R, Guevara R (2015) Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Global Ecol Conserv 3:824–830

    Article  Google Scholar 

  • Garmendia A, Arroyo-Rodríguez V, Estrada A et al (2013) Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. J Trop Ecol 29:331–344

    Article  Google Scholar 

  • Gascon C, Lovejoy TE, Bierregaard ROJ et al (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229

    Article  Google Scholar 

  • Gibson L, Lynam AJ, Bradshaw CJA et al (2013) Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341:1508–1510

    Article  CAS  PubMed  Google Scholar 

  • Gorresen M, Willig MR (2004) Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. J Mamm 85:688–697

    Article  Google Scholar 

  • Hagolle O, Sylvander S, Huc M et al (2015) SPOT-4 (Take 5): simulation of Sentinel-2 time series on 45 large sites. Remote Sens 7:12242–12264

    Article  Google Scholar 

  • Howe HF, Davlantes J (2017) Waxing and waning of a cotton rat (Sigmodon toltecus) monoculture in early tropical restoration. Trop Conserv Sci 10:1–11

    Google Scholar 

  • Instituto Nacional de Ecología (2000) Programa de Manejo Reserva de la Biósfera Montes Azules. Secretaría de Medio Ambiente y Recursos Naturales, Mexico City

    Google Scholar 

  • Isabirye-Basuta G, Kasenene JM (1987) Small rodent populations in selectively felled and mature tracts of Kibale Forest, Uganda. Biotropica 19:260–266

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Global Ecol Biogeogr 24:52–63

    Article  Google Scholar 

  • Keesing F, Young TP (2014) Cascading consequences of the loss of large mammals in an African Savanna. Bioscience 64:487–495

    Article  Google Scholar 

  • Laurance WF (1991) Ecological correlates of extinction proneness in Australian tropical rain forest mammals. Conserv Biol 5:79–89

    Article  Google Scholar 

  • Laurance WF (1994) Rainforest fragmentation and the structure of small mammal communities in tropical Queensland. Biol Conserv 69:23–32

    Article  Google Scholar 

  • Lira PK, Ewers RM, Banks-Leite C, Pardini R, Metzger JP (2012) Evaluating the legacy of landscape history: extinction debt and species credit in bird and small mammal assemblages in the Brazilian Atlantic Forest. J Appl Ecol 49:1325–1333

    Article  Google Scholar 

  • Malcolm JR (1995) Forest structure and the abundance and diversity of Neotropical small mammals. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, San Diego, pp 179–197

    Google Scholar 

  • Maza BG, French NR, Aschwanden AP (1973) Home range dynamics in a population of heteromyid rodents. J Mamm 54:405–425

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 07 November 2018

  • McNab BK (1963) Bioenergetics and the determination of home range size. Am Nat 97:133–140

    Article  Google Scholar 

  • Mech SG, Hallett JG (2001) Evaluating the effectiveness of corridors: a genetic approach. Conserv Biol 15:467–474

    Article  Google Scholar 

  • Medellín R (1994) Mammal diversity and conservation in the Selva Lacandona, Chiapas, Mexico. Conserv Biol 8:780–799

    Article  Google Scholar 

  • Medellín R, Equihua W (1998) Mammal species richness and habitat use in rainforest and abandoned agricultural fields in Chiapas, Mexico. J Appl Ecol 35:13–23

    Article  Google Scholar 

  • Meli P, Hernández-Cárdenas G, Carabias J et al (2015) La deforestación de los ecosistemas naturales en Marqués de Comillas. In: Carabias J, de la Maza J, Cadena R (eds) Conservación y desarrollo sustentable de la Selva Lacandona. Natura y Ecosistemas Mexicanos A.C, Mexico City, pp 247–259

    Google Scholar 

  • Melo F, Arroyo-Rodríguez V, Fahrig L et al (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:462–468

    Article  PubMed  Google Scholar 

  • Mendes C (2014) Patch size, shape and edge distance influences seed predation in a keystone palm in tropical rainforests. MS Thesis, Universidade Estadual Paulista, Instituto de Biociencias de Rio Claro, Rio Claro

  • Mendes C, Ribeiro MC, Galetti M (2015) Patch size, shape and edge distance influence seed predation on a palm species in the Atlantic forest. Ecography 38:1–11

    Article  Google Scholar 

  • Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of spatial landscape effects on species? Landsc Ecol 31:1177–1194

    Article  Google Scholar 

  • Neter J, Kutner MH, Nachtshein CJ et al (1996) Applied linear statistical models, 4th edn. McGraw-Hill/Irwin, New York

    Google Scholar 

  • Pardini R (2004) Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodivers Conserv 13:2567–2586

    Article  Google Scholar 

  • Pardini R, Bueno AA, Gardner TA et al (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5:e13666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeifer M, Lefebvre V, Peres CA et al (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191

    Article  CAS  Google Scholar 

  • Reid FA (2009) A field guide to the mammals of Central America & Southeast Mexico. Oxford University Press, New York

    Google Scholar 

  • Rosin C, Poulsen JR (2016) Hunting-induced defaunation drives increased seed predation and decreased seedling establishment of commercially important tree species in an Afrotropical forest. Forest Ecol Manage 382:206–213

    Article  Google Scholar 

  • San-José M, Arroyo-Rodríguez V, Sánchez-Cordero V (2014) Association between small rodents and forest patch and landscape structure in the fragmented Lacandona rainforest, Mexico. Trop Conserv Sci 7:403–422

    Article  Google Scholar 

  • Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Mod Soft 24:135–139

    Article  Google Scholar 

  • Silvy NJ, López RR, Peterson MJ (2005) Wildlife marking techniques. In: Braun EE (ed) Research and management techniques for wildlife and habitats. The Wildlife Society Inc., Bethesda, pp 339–376

    Google Scholar 

  • Smith AC, Fahrig L, Francis CM (2011) Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography 34:103–113

    Article  Google Scholar 

  • Tabarelli M, Peres CA, Melo FPL (2012) The ‘few winners and many losers’ paradigm revisited: emerging prospects for tropical forest biodiversity. Biol Conserv 155:136–140

    Article  Google Scholar 

  • Terborgh J, López L, Nuñez P et al (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926

    Article  CAS  PubMed  Google Scholar 

  • Trujano-Álvarez AL, Álvarez-Castañeda ST (2010) Peromyscus mexicanus (Rodentia: Cricetidae). Mamm Species 42:111–118

    Article  Google Scholar 

  • Tuff KT, Tuff T, Davies KF (2016) A framework for integrating thermal biology into fragmentation research. Ecol Lett 19:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vetter D, Hansbauer MM, Végvári Z et al (2011) Predictors of forest fragmentation sensitivity in Neotropical vertebrates: a quantitative review. Ecography 34:1–8

    Article  Google Scholar 

  • Wolff PW, Sherman PW (2007) Rodent societies: an ecological & evolutionary perspective. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Young HS, McCauley DJ, Dirzo R et al (2015) Context-dependent effects of large-wildlife declines on small-mammal communities in central Kenya. Ecol Appl 25:348–360

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank financial support provided by PAPIIT-DGAPA, UNAM (Grant IN-204215), CONACyT (Project 2015-253946), and Rufford Small Grants (No. 22049-1). N.P.A.P. obtained a graduate scholarship from CONACyT. This paper constitutes a partial fulfillment of the PhD program of the Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM). V.A.-R. thanks PASPA-DGAPA-UNAM for funding his sabbatical stay at the Geomatics and Landscape Ecology Laboratory, Carleton University. The Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM, provided logistical support. We thank Carlos Palomares Magaña (Escuela Nacional de Estudios Superiores Morelia, UNAM) for his technical support in GIS. H. Ferreira, A. Valencia and A. López also provided technical support. Three anonymous reviewers provided valuable insights on the manuscript. Livia León Paniagua (Faculty of Sciences, UNAM) and IDEA WILD provided some Sherman traps. We thank the landowners from the Marqués de Comillas region (Ixcán, Loma Bonita, Chajul, Pirú, Reforma, Galacia, Flor de Marqués), for allowing us to collect data on their properties, as well as the Montes Azules Biosphere Reserve, Natura y Ecosistemas Mexicanos A.C., and the National Commission of Natural Protected Areas (CONANP). A special acknowledgement to Audón Jamangapé and his family, as this study would not have been possible without their assistance in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Arroyo-Rodríguez.

Ethics declarations

Conflict of interest

The authors declare that they have no other conflict of interest.

Ethical approval

This research adhered to national and international guidelines for the treatment of research animals, and was conducted in accordance with the legal requirements of the National Autonomous University of Mexico (UNAM), and the country of Mexico. We assured the welfare of all rodents captured in the study. We were granted access to the study sites by local communities, landowners, and the Montes Azules Biosphere Reserve, part of the National Commission of Natural Protected Areas of Mexico (CONANP).

Additional information

Communicated by Akihiro Nakamura.

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arce-Peña, N.P., Arroyo-Rodríguez, V., San-José, M. et al. Landscape predictors of rodent dynamics in fragmented rainforests. Biodivers Conserv 28, 655–669 (2019). https://doi.org/10.1007/s10531-018-1682-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-1682-z

Keywords

Navigation