Advertisement

Biodiversity and Conservation

, Volume 28, Issue 2, pp 315–327 | Cite as

Reconstruction of native vegetation based upon integrated landscape approaches

  • Valerio Castro López
  • Alejandro VelazquezEmail author
Original Paper
  • 176 Downloads

Abstract

Reconstructing the vegetation landscape, as an indicator of climatic oscillations, has been often based upon pollen records guided by the so-called paleoecolocical approach. Outcomes of this approach, however, have limited chorological implications. The main objective of this manuscript is to develop an integrative method of approaches (bioclimatic and geographical) for the chorological reconstruction of the vegetation at the Purepecha region in central Mexico. The bioclimatic indexes were calculated from the raster layers of the Digital Climatic Atlas of Mexico and were analyzed via a Geographic Information System. The raster were reclassified into isobioclimates. The isobioclimates were overlapped with the current land cover, vertical dissection and rocks types to find correlation patterns. Originally, native vegetation types were forested, whereas currently these were replaced by agricultural encroachment. Correlations among isobioclimate, land form and rock type were used to reconstruct plant communities in polygons where native vegetation was vanished. The reconstruction was verified with 216 vegetation surveys and literature information, so that remaining vegetation elements and earlier reports were used as ground truth validation. On the whole, six vegetation types were recognized. The Tropical dry broadleaved sub-deciduous of Albizia-Senna-Bursera forest was the most outstanding and the one that occupied the largest surface with 51%. On the other hand, the Tropical dry spiny-succulent evergreen-sub-deciduous of Randia-Opuntia-Stenocereus shrubland was the least represented with 1%. The integration of landscape approaches, hierarchically analyzed, were key to reconstruct the native vegetation. Our results contribute to the understanding of plant communities in a region with a large degree of vegetation transformation. The above may further serve to enrich ongoing research about the chorological reconstruction of the historical landscape.

Keywords

Bioclimatology Native arboreal vegetation SECLAVEMEX GIS Purepecha region Mexico 

Notes

Acknowledgements

We would like to acknowledge Rocio Aguirre, Consuelo Medina, and Estefania Cano for their valuable help during the fieldwork. Fernando Gopar kindly help for implementing the methodology for bioclimatic analysis. The National Council of Science and Technology of Mexico (CONACYT) provided a PhD Scholarship to the first author.

Supplementary material

10531_2018_1655_MOESM1_ESM.pdf (104 kb)
Supplementary material 1 (PDF 103 kb)
10531_2018_1655_MOESM2_ESM.pdf (205 kb)
Supplementary material 2 (PDF 204 kb)

References

  1. Barco-Gómez C (2005) Álgebra booleana. Aplicaciones tecnológicas. Universidad de Caldas, ManizalesGoogle Scholar
  2. Bautista F, Palma-López D, Huchin-Malta W (2005) Actualización de la clasificación de suelos del estado de Yucatán. In: Bautista F, Palacio G (eds) Caracterización y manejo de los suelos de la península de Yucatán: implicaciones agropecuarias, forestales y ambientales. Universidad Autónoma de Campeche, Universidad Autónoma de Yucatán, Instituto Nacional de Ecología, Campeche, pp 105–122Google Scholar
  3. Brinkmann K, Patzelt A, Schlecht E, Buerkert A (2011) Use of environmental predictors for vegetation mapping in semi-arid mountain rangelands and the determination of conservation hotspots. Appl Veg Sci 14:17–30.  https://doi.org/10.1111/j.1654-109X.2010.01097.x CrossRefGoogle Scholar
  4. Brouwer M (2013) Reconstructing “total” paleo-landscapes for archaeological investigation: an example from the central Netherlands. J Archaeol Sci 40(5):2308–2320.  https://doi.org/10.1016/j.jas.2013.01.008 CrossRefGoogle Scholar
  5. Brubaker LB, Anderson PM, Edwards ME, Lozhkin AV (2005) Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data. J Biogeogr 32:833–848.  https://doi.org/10.1111/j.1365-2699.2004.01203.x CrossRefGoogle Scholar
  6. Brzeziecki B, Kienast F, Wildi O (1993) A Simulated map of the potential natural forest vegetation of Switzerland. J Veg Sci 4:499–508.  https://doi.org/10.2307/3236077 CrossRefGoogle Scholar
  7. Cano-Cruz M, Carrasco-Núñez G (2008) Evolución de un cráter de explosión (maar) riolítico: hoya de Estrada, Campo Volcánico Valle de Santiago, Guanajuato, México. Revista Mexicana de Ciencias Geológicas 25(3):549–564Google Scholar
  8. Carrillo-Bastos A, Islebe GA, Torrescano-Valle N (2012) Geospatial analysis of pollen records from the Yucatán peninsula, Mexico. Veg Hist Archaeobot 21(6):429–437.  https://doi.org/10.1007/s00334-012-0355-1 CrossRefGoogle Scholar
  9. Caseldine C, Fyfe R (2006) A modelling approach to locating and characterising elm decline/landnam landscapes. Quatern Sci Rev 25(5–6):632–644.  https://doi.org/10.1016/j.quascirev.2005.07.015 CrossRefGoogle Scholar
  10. Cué-Bär EM, Villaseñor JL, Arredondo-Amezcua L, Cornejo-Tenorio G, Ibarra-Manríquez G (2006) La Flora arbórea de Michoacán, México. Boletín de La Sociedad Botánica de México 78:47–81Google Scholar
  11. Foody GM (2008) gis: biodiversity applications. Prog Phys Geogr 32(2):223–235.  https://doi.org/10.1177/0309133308094656 CrossRefGoogle Scholar
  12. Garduño-Monrroy V (2009) El relieve. In: Villaseñor-Gómez LE (ed) La biodiversidad en Michoacán: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Secretaría de Urbanismo y Medio Ambiente (SUMA), Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Michoacán, México, pp 21–24Google Scholar
  13. Gaudin L, Dominique M, Lanos P (2008) Correlation between spatial distributions of pollen data, archaeological records and physical parameters from north-western France: a GIS and numerical analysis Approach. Veg Hist Archaeobot 17(5):585–595.  https://doi.org/10.1007/s00334-008-0172-8 CrossRefGoogle Scholar
  14. Giménez de Azcárate J, Macías-Rodríguez MA, Gopar-Merino LF (2013) Bioclimatic belts of Sierra Madre Occidental (México): a preliminary approach. Int J Geobot Res 3:19–35.  https://doi.org/10.5616/ijgr130002 CrossRefGoogle Scholar
  15. Goman M, Byrne R (1998) A 5000-year record of agriculture and tropical forest clearance in the Tuxtlas, Veracruz, Mexico. Holocene 8(1):83–89CrossRefGoogle Scholar
  16. Gopar-Merino LF, Velázquez A (2016) Componentes del paisaje como predictores de cubiertas de vegetación: estudio de caso del estado de Michoacán, México. Investig Geogr 90:75–88.  https://doi.org/10.14350/rig.46688 Google Scholar
  17. Gopar-Merino LF, Velázquez A, Giménez de Azcárate J (2015) Bioclimatic mapping as a new method to assess effects of climatic change. Ecosphere 6(1):1–12.  https://doi.org/10.1890/ES14-00138.1 CrossRefGoogle Scholar
  18. He M, Bräuning A, Grießinger J, Hochreuther P, Wernicke J (2018) May-June drought reconstruction over the past 821 years on the south-central Tibetan Plateau derived from tree-ring width series. Dendrochronologia 47:48–57.  https://doi.org/10.1016/j.dendro.2017.12.006 CrossRefGoogle Scholar
  19. INEGI (1984) Mapa geológico de México a escala 1:250 000, Instituto Nacional de Estadística y Geografía, México (map). http://www.beta.inegi.org.mx/app/biblioteca/ficha.html?upc=702825004662. Accessed 30 May 2018
  20. INEGI (2009) Prontuario de información geográfica municipal de los estados unidos mexicanos. León, GuanajuatoGoogle Scholar
  21. INEGI (2013) Conjunto de datos vectoriales de uso del suelo y vegetación escala 1:250 000, Serie V (Capa Unión), Instituto Nacional de Estadística y Geografía, México. http://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/Default.aspx. Accessed 30 May 2018
  22. Islebe GA, Domínguez-Vázquez G, Espadas-Manrique C, Figueroa-Rangel B, González-Yajimovich O, Hernández-Arana H, Lozano-García S, Martínez-López A, Olvera-Vargas M, Orellana-Lanza R, Pérez-Cruz L, Ramírez-Barajas P, Priyadarsi R, Torrescano-Valle N (2016) Cambio climático: contexto histórico, paleoecológico y paleoclimático. Tendencias actuales y perspectivas. In: Balvanera P, Arias-González JE, Rodríguez-Estrella R, Almeida-Leñero L, Schmitter-Soto JJ (eds) Una mirada al conocimiento de los ecosistemas de México. Universidad Nacional Autónoma de México (UNAM), Ciudad de México, pp 25–56Google Scholar
  23. Lozano-García S, Caballero M, Ortega B, Sosa S, Rodríguez A, Schaal P (2010) Late Holocene palaeoecology of Lago Verde: evidence of human impact and climate change in the northern limit of the neotropics during the late formative and classic periods. Veg Hist Archaeobot 19(3):177–190.  https://doi.org/10.1007/s00334-010-0240-8 CrossRefGoogle Scholar
  24. Lozano-García S, Torres-Rodríguez E, Ortega B, Vázquez G, Caballero M (2013) Ecosystem responses to climate and disturbances in western central Mexico during the late Pleistocene and Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 370:184–195.  https://doi.org/10.1016/j.palaeo.2012.12.006 CrossRefGoogle Scholar
  25. Mas JF, Velázquez A, Díaz-Gallegosa JR, Mayorga-Saucedo R, Alcántara C, Bocco G, Castro R, Fernández T, Pérez-Vega A (2004) Assessing land use/cover changes: a nationwide multidate spatial database for Mexico. Int J Appl Earth Obs Geoinf 5(4):249–261.  https://doi.org/10.1016/j.jag.2004.06.002 CrossRefGoogle Scholar
  26. Medina-García C (2016) Bases para el conocimiento de los pisos bioclimáticos, la vegetación y la flora del occidente de Michoacán (México). Dissertation, Universidad de Santiago Compostela, Galicia, EspañaGoogle Scholar
  27. Medina-García M, Gopar-Merino LF, Giménez de Azcárate J, Velázquez A (2012) Análisis bioclimático y estudio de la vegetación del transecto pico de Tancítaro-Valle de Apatzingán, Michoacán, México. In: Mas JF, Cuevas-García G (eds) XIX reunión nacional sociedad de percepción remota y sistema de información geográfica (Memorias). Centro de Investigaciones en Geografía Ambiental (CIGA), Universidad Nacional Autónoma de México (UNAM), Morelia, pp 293–301Google Scholar
  28. Molina-Paniagua ME, Zamudio-Ruiz S (2010) Estudio florístico del pedregal de Arócutin, en la cuenca del Lago de Pátzcuaro, Michoacán, México. Flora Bajío Regiones Adyacentes Fascículo Complement XXV:1–42Google Scholar
  29. Moravec J (1998) Reconstructed natural versus potential natural vegetation in vegetation mapping: a discussion of concepts. Appl Veg Sci 1:173–176CrossRefGoogle Scholar
  30. Mueller-Dombois D, Ellenberg D (1974) Aims and methods of vegetation ecology. Wiley, New YorkGoogle Scholar
  31. Newmark WD, McNeally PB (2018) Impact of habitat fragmentation on the spatial structure of the Eastern Arc forests in East Africa: implications for biodiversity conservation. Biodivers Conserv 27(6):1387–1402.  https://doi.org/10.1007/s10531-018-1498-x CrossRefGoogle Scholar
  32. Novenko EY, Tsyganov AN, Rudenko OV, Volkova EV, Zuyganova IS, Babeshko KV, Ochev AV, Losbenev NI, Payne RJ, Mazei YA (2016) Mid- and late-Holocene vegetation history, climate and human impact in the forest-steppe ecotone of European Russia: new data and a regional synthesis. Biodivers Conserv 25(12):2453–2472.  https://doi.org/10.1007/s10531-016-1051-8 CrossRefGoogle Scholar
  33. Pedrotti F (2004) Cartografia Geobotánica. Pitagora Bologna, ItalyGoogle Scholar
  34. Portillo-Quintero CA, Sánchez-Azofeifa GA (2010) Extent and conservation of tropical dry forests in the Americas. Biol Cons 143(1):144–155.  https://doi.org/10.1016/j.biocon.2009.09.020 CrossRefGoogle Scholar
  35. Priego-Santander AG, Isunza-Vera E, Luna-González N, Pérez-Damián JL (2003) Tipos morfométricos del relieve de México, a escala 1:250 000. Dirección General de Investigaciones en Ordenamiento Ecológico y Conservación de Ecosistemas. Instituto Nacional de Ecología (INE), Secretaría de medio ambiente y recursos naturales (SEMARNAT), México. http://www.emapas.inecc.gob.mx/. Accessed 30 May 2018
  36. Rivas-Martínez S, Rivas-Sáenz S, Penas A (2011) Worldwide bioclimatic classification system. Glob Geobot 1:1–634.  https://doi.org/10.5616/gg110001 Google Scholar
  37. Rzedowski J, Calderón de Rzedowski G (1987) El bosque tropical caducifolio de la región Mexicana del Bajío. Trace 12:12–21Google Scholar
  38. Rzedowski J, Calderón de Rzedowski G (2013) Datos para la apreciación de la flora fanerogámica del bosque tropical caducifolio de México. Acta Botánica Mexicana 102:1–23Google Scholar
  39. Sugita S, Parshall T, Calcote R, Walker K (2010) Testing the landscape reconstruction algorithm for spatially explicit reconstruction of vegetation in Northern Michigan and Wisconsin. Quatern Res 74(2):289–300.  https://doi.org/10.1016/j.yqres.2010.07.008 CrossRefGoogle Scholar
  40. Vaca RA, Golicher JD, Cayuela L (2011) Using climatically based random forests to downscale coarse-grained potential natural vegetation maps in tropical Mexico. Appl Veg Sci 14:388–401.  https://doi.org/10.1111/j.1654-109X.2011.01132.x CrossRefGoogle Scholar
  41. Velázquez A, Durán E, Mas JF, Bray D, Bocco G (2005) Situación actual y prospectiva del cambio de la cubierta vegetal y usos del suelo en México. In: Zuñiga-Herrera E (ed) México ante los desafíos de desarrollo del milenio. Comisión Nacional de Población (CONAPO), México, pp 391–416Google Scholar
  42. Velázquez A, Medina-García C, Durán-Medina E, Amador A, Gopar-Merino LF (2016) Standardized hierarchical vegetation classification. Mexican and global patterns. Springer, SwitzerlandCrossRefGoogle Scholar
  43. Zerbe S (1998) Potential natural vegetation: validity and applicability in landscape planning and nature conservation. Appl Veg Sci 1:165–172.  https://doi.org/10.2307/1478945 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Centre for Research in Environmental GeographyCampus Morelia, Universidad Nacional Autónoma de MéxicoMoreliaMexico

Personalised recommendations