Long lasting breeding performance differences between wild-born and released females in a reinforced North African Houbara bustard (Chlamydotis undulata undulata) population: a matter of release strategy

Abstract

The success of translocation programmes is reflected by the ability of translocated individuals to survive and reproduce in their new environment. However, it has previously been reported that translocated individuals have lower demographic performance than their wild-born conspecifics, due to management and individual factors (such as release conditions or age). Here, we study six breeding parameters in free-ranging females of the North African Houbara bustard (Chlamydotis undulata undulata) and compare these parameters between captive-bred released (n = 204) and wild-born (n = 101) birds, considering the age of individuals and the period of release (autumn versus spring). Our results indicate that (1) captive-bred released females successfully breed in the wild; (2) for three out of the six breeding parameters studied, released females show lower performances than wild-born females; but, (3) Although we observed consistently reduced breeding performances in 1 year old females relative to older females, we did not uncover any interaction between age and the origin of females, suggesting that the impairment of breeding parameters in released females is long lasting; and, (4) interestingly, this impairment of breeding parameters depends on the period of release, with lower breeding performances for spring releases compared to autumn releases. Overall, our study highlights the capacity of captive-bred females to reproduce in the wild, contributing to the dynamics of the population beyond their individual history. Our results also uncover complex variations of breeding parameters in translocated birds, but suggest that these differences can be minimized through an appropriate translocation strategy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Amundsen T, Stokland JN (1990) Egg size and parental quality influence nestling growth in the shag. Auk 107:410–413

    Article  Google Scholar 

  2. Araki H, Cooper B, Blouin MS (2007) Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318:100–103

    Article  CAS  PubMed  Google Scholar 

  3. Armstrong DP, Ewen JG (2001) Assessing the value of follow-up translocations: a case study using New Zealand robins. Biol Conserv 101:239–247. https://doi.org/10.1016/S0006-3207(01)00071-4

    Article  Google Scholar 

  4. Armstrong DP, Seddon PJ (2008) Directions in reintroduction biology. Trends Ecol Evol 23:20–25. https://doi.org/10.1016/j.tree.2007.10.003

    Article  PubMed  Google Scholar 

  5. Armstrong DP, Le Coeur C, Thorne JM, Panfylova J, Lovegrove TG, Frost PGH, Ewen JG (2017) Using Bayesian mark-recapture modelling to quantify the strength and duration of post-release effects in reintroduced populations. Biol Conserv 215:39–45. https://doi.org/10.1016/j.biocon.2017.08.033

    Article  Google Scholar 

  6. Azar JF, Rautureau P, Lawrence M, Calabuig G, Hingrat Y (2016) Survival of reintroduced Asian houbara in United Arab Emirates’ reserves. J Wildl Manag 80:1031–1039. https://doi.org/10.1002/jwmg.21085

    Article  Google Scholar 

  7. Bacon L (2017) Etude des paramètres de reproduction et de la dynamique d’une population renforcée d’outardes Houbara nord-africaines (Chlamydotis undulata undulata) au Maroc. Thèse, Muséum National d’Histoire Naturelle, p 192

    Google Scholar 

  8. Bacon L, Hingrat Y, Robert A (2017a) Evidence of reproductive senescence of released individuals in a reinforced bird population. Biol Conserv 215:288–295. https://doi.org/10.1016/j.biocon.2017.08.023

    Article  Google Scholar 

  9. Bacon L, Hingrat Y, Jiguet F, Monnet AC, Sarrazin F, Robert A (2017b) Habitat suitability and demography, a time dependent relationship. Ecol Evol 7(7):2214–2222

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barbanera F, Pergams ORW, Guerrini M, Forcina G, Panayides P, Dini F (2010) Genetic consequences of intensive management in game birds. Biol Conserv 143:1259–1268. https://doi.org/10.1016/j.biocon.2010.02.035

    Article  Google Scholar 

  11. Barron DG, Brawn JD, Weatherhead PJ (2010) Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol Evol 1:180–187. https://doi.org/10.1111/j.2041-210X.2010.00013.x

    Article  Google Scholar 

  12. Barton K (2015) MuMIn: multi-model inference. R package version 1 (9), 13

  13. Bates D, Martin M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  14. Benchari A, El Aich A, Mahyou H, Baghdad M, Bendaou M (2014) Analyse de l’évolution du système pastoral du Maroc oriental. Revue d’élevage et de médecine vétérinaire des pays tropicaux 67(4):151–162

    Article  Google Scholar 

  15. Bertolero A, Oro D (2009) Conservation diagnosis of reintroducing Mediterranean pond turtles: what is wrong? Anim Conserv 12:581–591. https://doi.org/10.1111/j.1469-1795.2009.00284.x

    Article  Google Scholar 

  16. Bertolero A, Oro D, Besnard A (2007) Assessing the efficacy of reintroduction programmes by modelling adult survival: the example of Hermann’s tortoise. Anim Conserv 10:360–368. https://doi.org/10.1111/j.1469-1795.2007.00121.x

    Article  Google Scholar 

  17. Blomqvist D, Johansson OC, Götmark F (1997) Parental quality and egg size affect chick survival in a precocial bird, the lapwing Vanellus vanellus. Oecologia 110:18–24. https://doi.org/10.1007/s004420050128

    Article  Google Scholar 

  18. Boulanouar B, Paquay R (1994) L’élevage du mouton et ses systèmes de prodution au Maroc. Institut National de la Recherche Agronomique – Royaume du Maroc.

  19. Bourass K, Hingrat Y (2015) Diet of released captive-bred North-African houbara bustards. Eur J Wildl Res 61:563–574. https://doi.org/10.1007/s10344-015-0930-8

    Article  Google Scholar 

  20. Bourass K, Zaime A, Qninba A, Benhoussa A, Rguibi H, Hingrat Y (2012) Evolution saisonnière du régime alimentaire de l’Outarde houbara nord-africain, Chlamydotis undulata. Bull l’Instut Sci Rabat 34:29–43

    Google Scholar 

  21. Brown JL, Collopy MW, Gott EJ, Juergens PW, Montoya AB, Hunt WG (2006) Wild-reared aplomado falcons survive and recruit at higher rates than hacked falcons in a common environment. Biol Conserv 131:453–458. https://doi.org/10.1016/j.biocon.2006.02.021

    Article  Google Scholar 

  22. Buner F, Schaub M (2008) How do different releasing techniques affect the survival of reintroduced grey partridges Perdix perdix? Wildl Biol 14:26–35. https://doi.org/10.2981/0909-6396(2008)14%5b26:HDDRTA%5d2.0.CO;2

    Article  Google Scholar 

  23. Buner FD, Browne SJ, Aebischer NJ (2011) Experimental assessment of release methods for the re-establishment of a red-listed galliform, the grey partridge (Perdix perdix). Biol Conserv 144:593–601. https://doi.org/10.1016/j.biocon.2010.10.017

    Article  Google Scholar 

  24. Burnham KP, Anderson DE (2002) Model selection and multimodel inference—a practical information-theoric approach, 2nd edn. Springer, New York

    Google Scholar 

  25. Cam E, Aubry LM, Authier M (2016) The conundrum of heterogeneities in life history studies. Trends Ecol Evol 31:872–886. https://doi.org/10.1016/j.tree.2016.08.002

    Article  PubMed  Google Scholar 

  26. Casas F, Benítez-López A, García JT, Martín CA, Viñuela J, Mougeot F (2015) Assessing the short-term effects of capture, handling and tagging of sandgrouse. Ibis 157:115–124. https://doi.org/10.1111/ibi.12222

    Article  Google Scholar 

  27. Champagnon J, Guillemain M, Elmberg J, Massez G, Cavallo F, Gauthier-Clerc M (2012) Low survival after release into the wild: assessing “the burden of captivity” on Mallard physiology and behaviour. Eur J Wildl Res 58:255–267. https://doi.org/10.1007/s10344-011-0573-3

    Article  Google Scholar 

  28. Chargé R, Saint Jalme M, Lacroix F, Cadet A, Sorci G (2010) Male health status, signalled by courtship display, reveals ejaculate quality and hatching success in a lekking species. J Anim Ecol 79:843–850. https://doi.org/10.1111/j.1365-2656.2010.01696.x

    Article  PubMed  Google Scholar 

  29. Chargé R, Sorci G, Saint Jalme M, Lesobre L, Hingrat Y, Lacroix F, Teplitsky C (2014) Does recognized genetic management in supportive breeding prevent genetic changes in life-history traits? Evol Appl 7:521–532. https://doi.org/10.1111/eva.12150

    Article  PubMed  PubMed Central  Google Scholar 

  30. Christensen RHB (2015) Ordinal—regression models for ordinal data. R package version 2015, 6–28

  31. Converse SJ, Moore CT, Armstrong DP (2013) Demographics of reintroduced populations: estimation, modelling, and decision analysis. J Wildl Manag 77:1081–1093. https://doi.org/10.1002/jwmg.590

    Article  Google Scholar 

  32. Curio E (1983) Why young birds reproduce less well? Ibis 125:400–404. https://doi.org/10.1111/j.1474-919X.1983.tb03130.x

    Article  Google Scholar 

  33. Development Core Team R (2017) R: a language and environment for statistical computing. R Found Stat Comput, Vienna, Austria

    Google Scholar 

  34. Dickens MJ, Delehanty DJ, Michael Romero L (2010) Stress: an inevitable component of animal translocation. Biol Conserv 143:1329–1341. https://doi.org/10.1016/j.biocon.2010.02.032

    Article  Google Scholar 

  35. Ewen JG, Armstrong DP, Parker KA, Seddon PJ (2012) Reintroduction biology: integrating science and management. Wiley-Blackwell, Hoboken

    Google Scholar 

  36. Fischer J, Lindenmayer DB (2000) An assessment of the published results of animal relocations. Biol Conserv 96:1–11. https://doi.org/10.1016/S0006-3207(00)00048-3

    Article  Google Scholar 

  37. Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333. https://doi.org/10.1111/j.1365-294X.2007.03399.x

    Article  PubMed  Google Scholar 

  38. Galbraith H (1988) Effects of egg size and composition on the size, quality and survival of lapwing Vanellus vanellus chicks. J Zool 214:383–398. https://doi.org/10.1111/j.1469-7998.1988.tb03747.x

    Article  Google Scholar 

  39. Gaucher P (1995) Breeding biology of the houbara bustard Chlamydotis undulata in Algeria. Alauda 63:291–298

    Google Scholar 

  40. Gelman A (2008) Scaling regression inputs by dividing by two standard deviations. Stat Med 27:2865–2873

    Article  Google Scholar 

  41. Goriup PD (1997) The world status of the houbara bustard Chlamydotis undulata. Bird Conserv Int 7:373–397

    Article  Google Scholar 

  42. Grant TA, Shaffer TL (2012) Time-specific patterns of nest survival for ducks and passerines breeding in North Dakota. Auk 129:1–10

    Article  Google Scholar 

  43. Hardouin LA, Nevoux M, Robert A, Gimenez O, Lacroix F, Hingrat Y (2012) Determinants and costs of natal dispersal in a lekking species. Oikos 121:804–812. https://doi.org/10.1111/j.1600-0706.2012.20313.x

    Article  Google Scholar 

  44. Hardouin LA, Robert A, Nevoux M, Gimenez O, Lacroix F, Hingrat Y (2014) Meteorological conditions influence short-term survival and dispersal in a reinforced bird population. J Appl Ecol 51:1494–1503. https://doi.org/10.1111/1365-2664.12302

    Article  Google Scholar 

  45. Hardouin LA, Hingrat Y, Nevoux M, Lacroix F, Robert A (2015a) Survival and movement of translocated houbara bustards in a mixed conservation area. Anim Conserv 18(5):461–470

    Article  Google Scholar 

  46. Hardouin LA, Legagneux P, Hingrat Y, Robert A (2015b) Sex-specific dispersal responses to inbreeding and kinship. Anim Behav 105:1–10. https://doi.org/10.1016/j.anbehav.2015.04.002

    Article  Google Scholar 

  47. Herzog M (2009) Nestsurvival. R package that performs logistic exposure nest survival analyses

  48. Hill D, Robertson P (1988) Breeding success of wild and hand-reared ring-necked pheasants. J Wildl Manag 52:446–450. https://doi.org/10.2307/3801588

    Article  Google Scholar 

  49. Hoyt D (1979) Practical methods of estimating volume and fresh weight of birg eggs. Auk 96:73–77

    Google Scholar 

  50. Huff DD, Miller LM, Chizinski CJ, Vondracek B (2011) Mixed-source reintroductions lead to outbreeding depression in second-generation descendents of a native North American fish. Mol Ecol 20:4246–4258. https://doi.org/10.1111/j.1365-294X.2011.05271.x

    Article  PubMed  Google Scholar 

  51. IUCN/SSC (2013) Guidelines for reintroductions and other conservation translocations. Version 1.0. Gland, Switzerland. http://www.issg.org/pdf/publications/RSG_ISSG-Reintroduction-Guidelines-2013.pdf

  52. Koshkin M, Burnside RJ, Packman CE, Collar NJ, Dolman PM (2016) Effects of habitat and livestock on nest productivity of the Asian houbara Chlamydotis macqueenii in Bukhara Province, Uzbekistan. Eur J Wildl Res 62:447–459. https://doi.org/10.1007/s10344-016-1018-9

    Article  Google Scholar 

  53. Lacroix F, Seabury J, Al Bowardi M, Renaud J (2003) The Emirates Center for Wildlife Propagation: comprehensive strategy to secure self-sustaining wild populations of houbara bustard (Chlamydotis undulata undulata) in Eastern Morocco. Houbara News 5:60–62

    Google Scholar 

  54. Le Cuziat J, Lacroix F, Roche P, Vidal E, Médail F, Orhant N, Béranger PM (2005) Landscape and human influences on the distribution of the endangered North African houbara bustard (Chlamydotis undulata undulata) in Eastern Morocco. Animal Conserv 8:143–152. https://doi.org/10.1017/S1367943005001903

    Article  Google Scholar 

  55. Le Gouar P, Robert A, Choisy J-P, Henriquet S, Lecuyer P, Tessier C, Sarrazin F (2008) Roles of survival and dispersal in reintroduction success of griffon vulture (Gyps fulvus). Ecol Appl 18:859–872. https://doi.org/10.1890/07-0854.1

    Article  PubMed  Google Scholar 

  56. Le Maho Y, Whittington JD, Hanuise N, Pereira L, Boureau M, Brucker M, Chatelain N, Courtecuisse J, Crenner F, Friess B, Grosbellet E, Kernaléguen L, Olivier F, Saraux C, Vetter N, Viblanc VA, Thierry B, Tremblay P, Groscolas R, Le Bohec C (2014) Rovers minimize human disturbance in research on wild animals. Nat Methods 11:1242–1244. https://doi.org/10.1038/nmeth.3173

    Article  CAS  PubMed  Google Scholar 

  57. Lesobre L, Lacroix F, Caizergues A, Hingrat Y, Chalah T, Jalme MS (2010) Conservation genetics of Houbara Bustard (Chlamydotis undulata undulata): population structure and its implications for the reinforcement of wild populations. Conserv Genet 11:1489–1497. https://doi.org/10.1007/s10592-009-9979-9

    Article  Google Scholar 

  58. Mabee TJ (1997) Using eggshell evidence to determine nest fate of shorebirds. Wilson Bull 109:307–313. https://doi.org/10.1111/j.1557-9263.2006.00037.x

    Article  Google Scholar 

  59. Manolis JC, Andersen DE, Cuthbert FJ (2000) Uncertain nest fates in songbird studies and variation in mayfield estimation. Auk 117:615–626. https://doi.org/10.1642/0004-8038(2000)117%5b0615:UNFISS%5d2.0.CO;2

    Article  Google Scholar 

  60. Martin TE (1995) Avian life history evolution in relation to nest sites, nest predation, and food. Ecol Monogr 65:101–127. https://doi.org/10.2307/2937160

    Article  Google Scholar 

  61. Mauck RA, Huntington CE, Doherty PF Jr (2012) Experience versus effort: what explains dynamic heterogeneity with respect to age? Oikos 121:1379–1390. https://doi.org/10.1111/j.1600-0706.2012.20271.x

    Article  Google Scholar 

  62. Mayfield HF (1975) Suggestions for calculating nest success. Wilson Bull 87:456–466. https://doi.org/10.2307/4160682

    Article  Google Scholar 

  63. Mihoub J-B, Robert A, Gouar PL, Sarrazin F (2011) Post-release dispersal in animal translocations: social attraction and the “vacuum effect”. PLoS ONE 6:e27453. https://doi.org/10.1371/journal.pone.0027453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Monnet A-C, Hingrat Y, Jiguet F (2015) The realized niche of captive-hatched Houbara Bustards translocated in Morocco meets expectations from the wild. Biol Conserv 186:241–250. https://doi.org/10.1016/j.biocon.2015.03.013

    Article  Google Scholar 

  65. Montalvo AM, Ellstrand NC (2001) Nonlocal transplantation and outbreeding depression in the subshrub Lotus scoparius (Fabaceae). Am J Bot 88:258–269

    Article  CAS  PubMed  Google Scholar 

  66. Morales MB, Alonso JC, Alonso J (2002) Annual productivity and individual female reproductive success in a Great Bustard Otis tarda population. Ibis 144:293–300. https://doi.org/10.1046/j.1474-919X.2002.00042.x

    Article  Google Scholar 

  67. Nussey DH, Kruuk LEB, Donald A, Fowlie M, Clutton-Brock TH (2006) The rate of senescence in maternal performance increases with early-life fecundity in red deer. Ecol Lett 9:1342–1350. https://doi.org/10.1111/j.1461-0248.2006.00989.x

    Article  PubMed  Google Scholar 

  68. Pérez JA, Sánchez-García C, Díez C, Bartolomé DJ, Alonso ME, Gaudioso VR (2015) Are parent-reared red-legged partridges (Alectoris rufa) better candidates for re-establishment purposes? Poult Sci 94:2330–2338. https://doi.org/10.3382/ps/pev210

    Article  PubMed  Google Scholar 

  69. Ponjoan A, Bota G, De La Morena ELG, Morales MB, Wolff A, Marco I, Mañosa S (2008) Adverse effects of capture and handling little bustard. J Wildl Manag 72:315–319. https://doi.org/10.2193/2006-443

    Article  Google Scholar 

  70. Robert A (2009) Captive breeding genetics and reintroduction success. Biol Conserv 142:2915–2922. https://doi.org/10.1016/j.biocon.2009.07.016

    Article  Google Scholar 

  71. Robert A, Couvet D, Sarrazin F (2007) Integration of demography and genetics in population restorations. Ecoscience 14:463–471. https://doi.org/10.2980/1195-6860(2007)14%5b463:IODAGI%5d2.0.CO;2

    Article  Google Scholar 

  72. Robert A, Colas B, Guigon I, Kerbiriou C, Mihoub J-B, Saint-Jalme M, Sarrazin F (2015a) Defining reintroduction success using IUCN criteria for threatened species: a demographic assessment. Anim Conserv 18:397–406. https://doi.org/10.1111/acv.12188

    Article  Google Scholar 

  73. Robert A, Bolton M, Jiguet F, Bried J (2015b) The survival–reproduction association becomes stronger when conditions are good. Proc R Soc B 282:20151529. https://doi.org/10.1098/rspb.2015.1529

    Article  PubMed  Google Scholar 

  74. Roche EA, Cuthbert FJ, Arnold TW (2008) Relative fitness of wild and captive-reared piping plovers: does egg salvage contribute to recovery of the endangered Great Lakes population? Biol Conserv 141:3079–3088. https://doi.org/10.1016/j.biocon.2008.09.014

    Article  Google Scholar 

  75. Saint Jalme M, Van Heezik Y (1996) Propagation of the houbara bustard. Paul Keegan, London

    Google Scholar 

  76. Sánchez-García C, Alonso ME, Pérez JA, Rodríguez PL, Gaudioso VR (2011) Comparing fostering success between wild-caught and game farm bred captive red-legged partridges (Alectoris rufa, L.). Appl Anim Behav Sci 133:70–77. https://doi.org/10.1016/j.applanim.2011.04.012

    Article  Google Scholar 

  77. Sarrazin F, Bagnolini C, Pinna JL, Danchin E, Clobert J (1994) High survival estimates of griffon vultures (Gyps fulvus fulvus) in a reintroduced population. Auk 111:853–862. https://doi.org/10.2307/4088817

    Article  Google Scholar 

  78. Sarrazin F, Bagnolinp C, Pinna JL, Danchin E (1996) Breeding biology during establishment of a reintroduced Griffon Vulture Gyps fulvus population. Ibis 138:315–325. https://doi.org/10.1111/j.1474-919X.1996.tb04344.x

    Article  Google Scholar 

  79. Shaffer TL (2004) A unified approach to analyzing nest success. Auk 121:526–540

    Article  Google Scholar 

  80. Sutherland WJ, Armstrong D, Butchart SHM, Earnhardt JM, Ewen J, Jamieson I, Jones CG, Lee R, Newbery P, Nichols JD, Parker KA, Sarrazin F, Seddon PJ, Shah N, Tatayah V (2010) Standards for documenting and monitoring bird reintroduction projects. Conserv Lett 3:229–235. https://doi.org/10.1111/j.1755-263X.2010.00113.x

    Article  Google Scholar 

  81. Tavecchia G, Viedma C, Martínez-Abraín A, Bartolomé M-A, Gómez JA, Oro D (2009) Maximizing re-introduction success: assessing the immediate cost of release in a threatened waterfowl. Biol Conserv 142:3005–3012. https://doi.org/10.1016/j.biocon.2009.07.035

    Article  Google Scholar 

  82. van de Pol M, Verhulst S (2006) Age- dependent traits: a new statistical model to separate within- and between- individual effects. Am Nat 167:766–773. https://doi.org/10.1086/503331

    Article  PubMed  Google Scholar 

  83. Williams TD (1994) Intraspecific variation in egg size and egg composition in birds: effects on offspring fitness. Biol Rev Camb Philos Soc 69:35–59

    Article  CAS  PubMed  Google Scholar 

  84. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R, statistics for biology and health. Springer, New York. https://doi.org/10.1007/978-0-387-87458-6

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Emirates Center for Wildlife Propagation (ECWP), a project of the International Fund for Houbara Conservation (IFHC). We are grateful to H.H. Sheikh Mohammed bin Zayed Al Nahyan, Crown Prince of Abu Dhabi and Chairman of the IFHC and H.E. Mohammed Al Bowardi, Deputy Chairman of IFHC, for their support. This study was conducted under the guidance of Reneco International Wildlife Consultants LLC., a consulting company managing ECWP. We are thankful to Dr. F. Lacroix, managing director, and G. Leveque, project director, for their supervision. We sincerely thank all ECWP staff from the Ecology division who participated in data collection. We are thankful to Pascale Reding and Grégoire Liénart for producing our study area map. We are grateful to Doug Armstrong and two anonymous reviewers for their helpful and constructive comments on the manuscript, as well as to Dr Thomas Martin for improving the English text.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Léo Bacon.

Additional information

Communicated by Jan C Habel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 68 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bacon, L., Robert, A. & Hingrat, Y. Long lasting breeding performance differences between wild-born and released females in a reinforced North African Houbara bustard (Chlamydotis undulata undulata) population: a matter of release strategy. Biodivers Conserv 28, 553–570 (2019). https://doi.org/10.1007/s10531-018-1651-6

Download citation

Keywords

  • Captive-breeding
  • Post-release effect
  • Reinforcement
  • Reproduction
  • Translocation