Skip to main content

Advertisement

Log in

When introduced equals invasive: normative use of “invasive” with ascidians

Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

This study aimed to understand the use of “invasive species” as a normative concept and discuss its implications in conservation science, using introduced ascidians worldwide as model species. A specific search in Web of Science was performed and articles suitable for analysis were selected. Each article was classified according to the type of environment, species under study, type of effects and spread that ascidians are linked to. Most of the 184 articles analysed did not consider dispersal or effects as study subject (82 and 71%, respectively). Most research was conducted in laboratory conditions (41%) or human-made environments (32%) or indicating few escapes to natural environments. Almost half of the articles (47%) were made with the six more conspicuous introduced ascidians and this raised to 70% while considering articles that worked with two or more (pooled) species. The normative use of “invasive” is widely used regarding introduced ascidians. Spread and effects, necessary conditions to consider a species as invasive, are notoriously understudied. Most research was not conducted in natural environments and over a few species, weakening the perception of introduced ascidians as a conservation problem. To discuss the extent of the normative use of invasion science is important to distinguish two phenomena: are some species intrinsically problematic for conservation (i.e. invasive) or is the movement of non-native species (i.e. biological invasion) the conservation problem? By using invasive as a normative concept, we risk ending with a weakened concept potentially hindering the progress of invasion science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aldred N, Clare AS (2014) Mini-review: impact and dynamics of surface fouling by solitary and compound ascidians. Biofouling 30:259–270

    Article  PubMed  Google Scholar 

  • Barney JN, Tekiela DR, Dollete ES, Tomasek BJ (2013) What is the “real” impact of invasive plant species? Front Ecol Environ 11:322–329

    Article  Google Scholar 

  • Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent extinctions. Biol Lett 12:20150623

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Blum JC, Chang AL, Liljesthröm M et al (2007) The non-native solitary ascidian Ciona intestinalis (L.) depresses species richness. J Exp Mar Biol Ecol 342:5–14

    Article  Google Scholar 

  • Brunson JC (2017) ggalluvial: alluvial diagrams in ‘ggplot2’. R package version 0.5.0. https://CRAN.R-project.org/package=ggalluvial

  • Bullard SG, Lambert G, Carman MR et al (2007) The colonial ascidian Didemnum sp. A: current distribution, basic biology and potential threat to marine communities of the northeast and west coasts of North America. J Exp Mar Biol Ecol 342:99–108

    Article  Google Scholar 

  • Castilla JC, Guiñez R, Caro AU, Ortiz V (2004a) Invasion of a rocky intertidal shore by the tunicate Pyura praeputialis in the Bay of Antofagasta, Chile. Proc Natl Acad Sci USA 101:8517–8524

    Article  CAS  PubMed  Google Scholar 

  • Castilla JC, Lagos NA, Cerda M (2004b) Marine ecosystem engineering by the alien ascidian Pyura praeputialis on a mid-intertidal rocky shore. Mar Ecol Prog Ser 268:119–130

    Article  Google Scholar 

  • Castilla JC, Manríquez PH, Delgado A et al (2014) Rocky intertidal zonation pattern in Antofagasta, Chile: invasive species and shellfish gathering. PLoS ONE 9:e110301

    Article  PubMed  PubMed Central  Google Scholar 

  • Chew MK (2015) Ecologists, environmentalists, experts, and the invasion of the second greatest threat. Int Rev Env Hist 1:7–40

    Google Scholar 

  • Chew M, Carroll SP (2011) The invasive ideology: biologists and conservationists are too eager to demonize non-native species. Scientist 7

  • Cima F, Ballarin L, Caicci F et al (2015) Life history and ecological genetics of the colonial ascidian Botryllus schlosseri. Zool Anz 257:54–70

    Article  Google Scholar 

  • Çinar ME (2016) The alien ascidian Styela clava now invading the Sea of Marmara (Tunicata: Ascidiacea). ZooKeys. https://doi.org/10.3897/zookeys.563.6836

    Article  PubMed  PubMed Central  Google Scholar 

  • Colautti RI, MacIsaac HJ (2004) A neutral terminology to define “invasive”species. Divers Distrib 10:135–141

    Article  Google Scholar 

  • Collin SB, Edwards PK, Leung B, Johnson LE (2013) Optimizing early detection of non-indigenous species: estimating the scale of dispersal of a nascent population of the invasive tunicate Ciona intestinalis (L.). Mar Pollut Bull 73:64–69

    Article  CAS  PubMed  Google Scholar 

  • Comeau LA, Filgueira R, Guyondet T, Sonier R (2015) The impact of invasive tunicates on the demand for phytoplankton in longline mussel farms. Aquaculture 441:95–105

    Article  Google Scholar 

  • Comeau LA, Sonier R, Guyondet T et al (2017) Behavioural response of bivalve molluscs to calcium hydroxide. Aquaculture 466:78–85

    Article  CAS  Google Scholar 

  • Davis MA (2009) Invasion biology. Oxford University Press, Oxford

    Google Scholar 

  • Davis MA, Thompson K (2000) Eight ways to be a colonizer; two ways to be an invader: a proposed nomenclature scheme for invasion ecology. Bull Ecol Soc Am 81:226–230

    Google Scholar 

  • Davis MA, Chew MK, Hobbs RJ et al (2011) Don’t judge species on their origins. Nature 474:153

    Article  CAS  PubMed  Google Scholar 

  • Ellis EC, Ramankutty N (2008) Putting people in the map: antropogenic biomes of the world. Front Ecol Evol 6:439–447

    Article  Google Scholar 

  • Filip N, Pustam A, Ells V, Grosicki KMT, Yang J, Oguejiofor I, Bishop CD, DeMont ME, Smith-Palmer T, Wyeth RC (2016) Fouling-release and chemical activity effects of a siloxane-based material on tunicates. Mar Environ Res 116:41–50

    Article  CAS  PubMed  Google Scholar 

  • Fletcher LM, Forrest BM, Bell JJ (2013) Impacts of the invasive ascidian Didemnum vexillum on green-lipped mussel Perna canaliculus aquaculture in New Zealand. Aquac Environ Interact 4:17–30

    Article  Google Scholar 

  • Gittenberger A (2007) Recent population expansions of non-native ascidians in The Netherlands. J Exp Mar Biol Ecol 342:122–126

    Article  Google Scholar 

  • Goldstien SJ, Dupont L, Viard F et al (2011) Global phylogeography of the widely introduced North West Pacific ascidian Styela clava. PLoS ONE 6:e16755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerin GR, Martín-Forés I, Sparrow B, Lowe AJ (2018) The biodiversity impacts of non-native species should not be extrapolated from biased single-species studies. Biodivers Conserv 27:785–790

    Article  Google Scholar 

  • Heger T, Saul W-C, Trepl L (2013) What biological invasions “are” is a matter of perspective. J Nat Conserv 21:93–96

    Article  Google Scholar 

  • Hodges KE (2008) Defining the problem: terminology and progress in ecology. Front Ecol Environ 6:35–42

    Article  Google Scholar 

  • Huang X, Gao Y, Jiang B et al (2016) Reference gene selection for quantitative gene expression studies during biological invasions: a test on multiple genes and tissues in a model ascidian Ciona savignyi. Gene 576:79–87

    Article  CAS  PubMed  Google Scholar 

  • Hulme PE, Pyšek P, Jarošík V et al (2013) Bias and error in understanding plant invasion impacts. Trends Ecol Evol 28:212–218

    Article  PubMed  Google Scholar 

  • Kanamori M, Baba K, Natsuike M, Goshima S (2017) Life history traits and population dynamics of the invasive ascidian, Ascidiella aspersa, on cultured scallops in Funka Bay, Hokkaido, northern Japan. J Mar Biol Assoc 97:387–399

    Google Scholar 

  • Kueffer C, Pyšek P, Richardson DM (2013) Integrative invasion science: model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytol 200:615–633

    Article  PubMed  Google Scholar 

  • Lacoursière-Roussel A, Forrest BM, Guichard F et al (2012) Modeling biofouling from boat and source characteristics: a comparative study between Canada and New Zealand. Biol Invasions 14:2301–2314

    Article  Google Scholar 

  • Lambert G (2007) Invasive sea squirts: a growing global problem. J Exp Mar Biol Ecol 342:3–4

    Article  Google Scholar 

  • Larson BM (2011) Embodied realism and invasive species. Elsevier, Amsterdam

    Book  Google Scholar 

  • Lawton JH (1999) Are there general laws in ecology? Oikos 84(2):177–192

    Article  Google Scholar 

  • Lins DM, Marco P, Andrade AF, Rocha RM (2018) Predicting global ascidian invasions. Divers Distrib 24(5):692–704

    Article  Google Scholar 

  • Long HA, Grosholz ED (2015) Overgrowth of eelgrass by the invasive colonial tunicate Didemnum vexillum: consequences for tunicate and eelgrass growth and epifauna abundance. J Exp Mar Biol Ecol 473:188–194

    Article  Google Scholar 

  • Maggi E, Benedetti-Cecchi L, Castelli A et al (2015) Ecological impacts of invading seaweeds: a meta-analysis of their effects at different trophic levels. Divers Distrib 21:1–12

    Article  Google Scholar 

  • Maier DS (2012) What’s so good about biodiversity? A call for better reasoning about nature’s value. Springer, Dordrecht

    Book  Google Scholar 

  • Maltagliati F, Lupi L, Castelli A, Pannacciulli FG (2016) The genetic structure of the exotic ascidian Styela plicata (Tunicata) from Italian ports, with a re-appraisal of its worldwide genetic pattern. Mar Ecol 37:492–502

    Article  Google Scholar 

  • Manríquez PH, Castilla JC, Ortiz V, Jara ME (2016) Empirical evidence for large-scale human impact on intertidal aggregations, larval supply and recruitment of Pyura praeputialis around the Bay of Antofagasta, Chile. Austral Ecol 41:701–714

    Article  Google Scholar 

  • Marraffini ML, Ashton GV, Brown CW et al (2017) Settlement plates as monitoring devices for non-indigenous species in marine fouling communities. Manag Biol Invasions 8:559–566

    Article  Google Scholar 

  • McCann LD, Holzer KK, Davidson IC et al (2013) Promoting invasive species control and eradication in the sea: options for managing the tunicate invader Didemnum vexillum in Sitka, Alaska. Mar Pollut Bull 77:165–171

    Article  CAS  PubMed  Google Scholar 

  • Pereyra PJ (2016) Revisiting the use of the invasive species concept: an empirical approach. Austral Ecol 41:519–528

    Article  Google Scholar 

  • Pereyra PJ, de la Barra P, Gastaldi M et al (2017) When the tiny help the mighty: facilitation between two introduced species, a solitary ascidian and a macroalga in northern Patagonia, Argentina. Mar Biol 164:185

    Article  Google Scholar 

  • Poe S, Latella IM (2018) Empirical test of the native-nonnative distinction: native and nonnative assamblages of Anolis lizards are similar in morphology and phylogeny. Func Ecol. https://doi.org/10.1111/1365-2435.13185

    Article  Google Scholar 

  • Pyšek P, Richardson DM, Pergl J et al (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244

    Article  PubMed  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Ricciardi A, Ryan R (2017) The exponential growth of invasive species denialism. Biol Invasions 20(3):549–553

    Article  Google Scholar 

  • Richardson DM, Pyšek P (2012) Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol 196:383–396

    Article  PubMed  Google Scholar 

  • Richardson DM, Ricciardi A (2013) Misleading criticisms of invasion science: a field guide. Divers Distrib 19:1461–1467

    Article  Google Scholar 

  • Richardson DM, Pyšek P, Rejmánek M et al (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107

    Article  Google Scholar 

  • Robinson TB, Havenga B, van der Merwe M, Jackson S (2017) Mind the gap–context dependency in invasive species impacts: a case study of the ascidian Ciona robusta. NeoBiota 32:127

    Article  Google Scholar 

  • Rolheiser KC, Dunham A, Switzer SE et al (2012) Assessment of chemical treatments for controlling Didemnum vexillum, other biofouling, and predatory sea stars in Pacific oyster aquaculture. Aquaculture 364:53–60

    Article  Google Scholar 

  • Rosa M, Holohan BA, Shumway SE et al (2013) Biofouling ascidians on aquaculture gear as potential vectors of harmful algal introductions. Harmful Algae 23:1–7

    Article  Google Scholar 

  • RStudio Team 2016. RStudio: integrated development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/. Version 1.1.345

  • Russell JC, Blackburn TM (2017) The rise of invasive species denialism. Trends Ecol Evol 32:3–6

    Article  PubMed  Google Scholar 

  • Shackelford N, Hobbs RJ, Heller NE et al (2013) Finding a middle-ground: the native/non-native debate. Biol Conserv 158:55–62

    Article  Google Scholar 

  • Sherman CDH, Lotterhos KE, Richardson MF et al (2016) What are we missing about marine invasions? Filling in the gaps with evolutionary genomics. Mar Biol 163:198

    Article  Google Scholar 

  • Simberloff D, Alexander J, Allendorf F et al (2011) Non-natives: 141 scientists object. Nature 475:36

    Article  CAS  PubMed  Google Scholar 

  • Simkanin C, Davidson IC, Dower JF et al (2012) Anthropogenic structures and the infiltration of natural benthos by invasive ascidians. Mar Ecol 33:499–511

    Article  Google Scholar 

  • Simkanin C, Fofonoff PW, Larson K et al (2016) Spatial and temporal dynamics of ascidian invasions in the continental United States and Alaska. Mar Biol 163:163

    Article  Google Scholar 

  • Simpson TS, Wernberg T, McDonald JI (2016) Distribution and localised effects of the invasive ascidian Didemnum perlucidum (Monniot 1983) in an urban estuary. PLoS ONE 11:e0154201

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith BE, Collie JS, Lengyel NL (2014) Fish trophic engineering: ecological effects of the invasive ascidian Didemnum vexillum (Georges Bank, northwestern Atlantic). J Exp Mar Biol Ecol 461:489–498

    Article  Google Scholar 

  • Stefaniak LM, Whitlatch RB (2014) Life history attributes of a global invader: factors contributing to the invasion potential of Didemnum vexillum. Aquat Biol 21:221–229

    Article  Google Scholar 

  • Tait L, Inglis G, Seaward K (2018) Enhancing passive sampling tools for detecting marine bioinvasions. Mar Pollut Bull 128:41–50

    Article  CAS  PubMed  Google Scholar 

  • Thompson K (2014) Where do camels belong. Greystone books, Vancouver

    Google Scholar 

  • Valéry L, Fritz H, Lefeuvre J-C, Simberloff D (2008) In search of a real definition of the biological invasion phenomenon itself. Biol Invasions 10:1345–1351

    Article  Google Scholar 

  • Warren RJ, King JR, Tarsa C et al (2017) A systematic review of context bias in invasion biology. PLoS ONE 12(8):e0182502

    Article  PubMed  PubMed Central  Google Scholar 

  • Wickham H (2017) tidyverse: easily install and load ‘Tidyverse’ Packages. R package version 1.1.1. https://CRAN.R-project.org/package=tidyverse

  • Wong MC, Vercaemer B (2012) Effects of invasive colonial tunicates and a native sponge on the growth, survival, and light attenuation of eelgrass (Zostera marina). Aquat Invasions 7(3):315–326

    Article  Google Scholar 

  • York A, Gallager S, Taylor R, et al (2008) Using a towed optical habitat mapping system to monitor the invasive tunicate species Didemnum sp. along the northeast continental shelf. In: OCEANS 2008. IEEE, pp 1–9

  • Zabin CJ, Marraffini M, Lonhart SI et al (2018) Non-native species colonization of highly diverse, wave swept outer coast habitats in Central California. Mar Biol 165:31

    Article  Google Scholar 

  • Zhan A, Macisaac HJ, Cristescu ME (2010) Invasion genetics of the Ciona intestinalis species complex: from regional endemism to global homogeneity. Mol Ecol 19:4678–4694

    Article  CAS  PubMed  Google Scholar 

  • Zhan A, Briski E, Bock DG et al (2015) Ascidians as models for studying invasion success. Mar Biol. https://doi.org/10.1007/s00227-015-2734-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Javier Pereyra.

Additional information

Communicated by Angus Jackson.

This article belongs to the Topical Collection: Coastal and marine biodiversity.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereyra, P.J., Ocampo Reinaldo, M. When introduced equals invasive: normative use of “invasive” with ascidians. Biodivers Conserv 27, 3621–3636 (2018). https://doi.org/10.1007/s10531-018-1617-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-1617-8

Keywords

Navigation