Advertisement

Biodiversity and Conservation

, Volume 27, Issue 9, pp 2097–2129 | Cite as

Priority caves for biodiversity conservation in a key karst area of Brazil: comparing the applicability of cave conservation indices

  • Lucas Mendes RabeloEmail author
  • Marconi Souza-Silva
  • Rodrigo Lopes Ferreira
Review Paper

Abstract

Landscapes in tropical regions have been greatly altered by human activities, as a product of growing demands for mineral and agricultural production, as well as those related to the generation of energy (e.g., hydroelectric, wind). In this scenario, caves have suffered several impacts, sometimes irreversible, as they are generally associated with rocks of high economic value and are closely related to epigean systems. Several indices have been proposed to guide conservation policies for the world’s speleological heritage, although few of them consider cave biodiversity as a criterion. To address this knowledge gap, we tested the applicability of four newly proposed indices to assist researchers and policy-makers select priority areas for global cave biodiversity conservation. To compare indices, we used data from 48 caves of the largest carbonate region of South America (Bambui geological group), all found within the Cerrado, a global biodiversity hotspot. Each of the four indices considered cave biodiversity as a criterion, although only three adequately evaluated this attribute. Based on results of Simões index and CCPi, which were the most appropriate in relation to indicate priority caves for biodiversity conservation in regions where the fauna and its distribution are not fully known, 15 of the 48 caves were identified as conservation priorities.

Keywords

Neotropic Impact Invertebrate Efficiency Karst 

Notes

Acknowledgements

We thank the taxonomists that helped on identifications (L. Bernardi, A. C. Vasconcelos, R. Bastos-Pereira, A. Brescovit, D. Zeppelini, L. F. Iniesta, L. Ázara, M. Villela); to the team of Center of Studies on Subterranean Biology for the help in field work and on sorting, to the people who helped guiding and accompanying until finding the sampled caves (Santinho, Bira, E. Gomes, E. Veloso, R. Sarmento, Lorão, Aldelice and Nilsinho); to the managers and staff of Parque Estadual da Lapa Grande for the welcome; to the staff of Parque Nacional Cavernas do Peruaçu; to the people who helped indicating caves and maps (F. Gonçalves, L. Zogbi, A. Auler and E. Rubioli); to the groups of speleology that provided topographic maps (EPL, GBPE and SEE), especially the speleogroup Peter Lund which also accompanied in several field works; to Paulo Pompeu, Nelson Curi, Pedro Cardoso, Dirk Schmeller and the other reviewers for the suggestions; and institutions that funded the present project, scholarships and infrastructure (FAPEMIG, Process No APQ 01281-13, CAPES, UFLA and VALE). RLF is also grateful to the CNPq (Grant No. 3046821/2014-4).

References

  1. Absar SM, Preston BL (2015) Extending the shared socioeconomic pathways for sub-national impacts, adaptation, and vulnerability studies. Glob Environ Chang 33:83–96.  https://doi.org/10.1016/j.gloenvcha.2015.04.004 CrossRefGoogle Scholar
  2. Agostinho AA, Pelicice FM, Gomes LC (2008) Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz J Biol 68:1119–1132.  https://doi.org/10.1590/S1519-69842008000500019 CrossRefPubMedGoogle Scholar
  3. Alho C (2008) The value of biodiversity. Braz J Biol 68:1115–1118.  https://doi.org/10.1590/S1519-69842008000500018 CrossRefPubMedGoogle Scholar
  4. Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728.  https://doi.org/10.1127/0941-2948/2013/0507 CrossRefGoogle Scholar
  5. Auler A (2004) America, South. In: Gunn J (ed) Encyclopedia of caves and karst science. Taylor & Francis e-Library, New York, pp 110–118Google Scholar
  6. Barr TC (1968) cave ecology and the evolution of troglobites. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology. Plenun press, New York, pp 35–102CrossRefGoogle Scholar
  7. Bento DDM (2011) Diversidade de Invertebrados em Cavernas: Calcárias do Oeste Potiguar: Subsídios para a Determinação de áreas prioritarias para conservação. Universidade Federal do Rio Grande do NorteGoogle Scholar
  8. Brasil (2008) Decreto No 6.640, de 07 de novembro de 2008. Diário Oficial da União, BrasilGoogle Scholar
  9. Brasil (2009) Instrução Normativa No 2, de 20 de agosto de 2009. Ministério do Meio Ambiente, BrasilGoogle Scholar
  10. Brasil (2016) Registro nacional de unidades de conservação. In: Ministério do Meio Ambient. http://mapas.mma.gov.br/i3geo/datadownload.htm. Accessed 24 Feb 2016
  11. Brasil (2017) Instrução normativa No 1, de 24 de janeiro de 2017. BrasilGoogle Scholar
  12. Buotte PC, Peterson DL, McKelvey KS, Hicke JA (2016) Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources. J Environ Manage 169:313–318.  https://doi.org/10.1016/j.jenvman.2015.12.017 CrossRefPubMedGoogle Scholar
  13. Carvalho LMT, Oliveira AD, Mello JM et al (2006) Projeto monitoramento 2005. In: Scolforo JRS, de Carvalho LMT (eds) Mapeamento e inventario da flora nativa e reflorestamentos de Minas Gerais, 1st edn. Editora UFLA, Lavras, pp 58–63Google Scholar
  14. Cavalcanti LF, de Lima MF, de Medeiros RCS, de Meguerditchian I (2012) Plano De Ação Nacional Para Conservação Do Patrimônio Espeleológico Nas Áreas Cársticas Da Bacia Do Rio São Francisco. Instituto Chico Mendes de Conservação da Biodiversidade, BrasíliaGoogle Scholar
  15. Cetas ER, Yasué M (2017) A systematic review of motivational values and conservation success in and around protected areas. Conserv Biol 31:203–212.  https://doi.org/10.1111/cobi.12770 CrossRefPubMedGoogle Scholar
  16. Christiansen K (1962) Proposition pour la classification des animaux cavernicoles. Spelunca 2:75–78.  https://doi.org/10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  17. Christman MC, Culver DC, Madden MK, White D (2005) Patterns of endemism of the eastern North American cave fauna. J Biogeogr 32:1441–1452.  https://doi.org/10.1111/j.1365-2699.2005.01263.x CrossRefGoogle Scholar
  18. Culver DC, Pipan T (2009) Sources of energy in subterranean environments. In: The biology of caves and other subterranean habitats. Oxford University Press, Oxford, pp 23–39Google Scholar
  19. Culver DC, Pipan T (2010) Climate, abiotic factors, and the evolution of subterranean life. Acta Carsologica 393:577–586Google Scholar
  20. Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62:11–17Google Scholar
  21. Culver DC, Christman MC, Elliott WR et al (2003) The North American obligate cave fauna: regional patterns. Biodivers Conserv 12:441–468.  https://doi.org/10.1023/A:1022425908017 CrossRefGoogle Scholar
  22. de Souza JVC (2013) Congressos Mundiais de Parques Nacionais da UICN (1962-2003): registros e reflexões sobre o surgimento de um novo paradigma para a conservação da natureza. Universidade de BrasíliaGoogle Scholar
  23. de Ázara LN, Bernardi L, Ferreira RL (2016) The first survey on harvestmen in Brazilian artificial cavities, with notes on distribution and natural history. Subterr Biol 17:31–53.  https://doi.org/10.3897/subtbiol.17.6762 CrossRefGoogle Scholar
  24. de Sá Júnior A, de Carvalho LG, da Silva FF, de Alves MC (2012) Application of the Köppen classification for climatic zoning in the state of Minas Gerais, Brazil. Theor Appl Climatol 108:1–7.  https://doi.org/10.1007/s00704-011-0507-8 CrossRefGoogle Scholar
  25. Deharveng L, Bedos A (2012) Diversity patterns in the tropics. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Elsevier Academic Press, Oxford, pp 238–250CrossRefGoogle Scholar
  26. Donato CR, Ribeiro ADS, Souto LDS (2014) A conservation status index, as an auxiliary tool for the management of cave environments. Int J Speleol 43:315–322CrossRefGoogle Scholar
  27. Drummond JA, De Oliveira D, de Franco JL, de Oliveira AD (2010) Uma análise sobre a história e a situação das unidades de conservação no Brasil. In: Ganem RS (ed) Conservação da Biodiversidade: Legislação e Políticas Públicas, 1st edn. Edições câmara, Brasília, pp 341–385Google Scholar
  28. Ferreira J, Aragão LEOC, Barlow J et al (2014) Brazil’s environmental leadership at risk. Science 346:706–707.  https://doi.org/10.1126/science.1260194 CrossRefPubMedGoogle Scholar
  29. Ferreira RL, Oliveira MPA de, Souza-Silva M (2015) Biodiversidade Subterrânea em Geossistemas Ferruginosos. In: do Carmo FF, Kamino LHY (eds) Geossistemas Ferruginosos do Brasil. 3i Editora, Belo Horizonte, pp 195–231Google Scholar
  30. Gallão JE, Bichuette ME (2015) Taxonomic distinctness and conservation of a new high biodiversity subterranean area in Brazil. An Acad Bras Cienc 87:209–217CrossRefPubMedGoogle Scholar
  31. Graening GO, Brown AV (2003) Ecosystem dynamics and pollution effects in an Ozark cave stream. J Am Water Resour Assoc 39:1497–1507.  https://doi.org/10.1111/j.1752-1688.2003.tb04434.x CrossRefGoogle Scholar
  32. He L, Shen J, Zhang Y (2018) Ecological vulnerability assessment for ecological conservation and environmental management. J Environ Manage 206:1115–1125.  https://doi.org/10.1016/j.jenvman.2017.11.059 CrossRefPubMedGoogle Scholar
  33. Hoch H, Ferreira RL (2012) Ferricixius davidi gen. n., sp. n.—the first cavernicolous planthopper from Brazil (Hemiptera, Fulgoromorpha, Cixiidae). Dtsch Entomol Z 59:201–206.  https://doi.org/10.1002/mmnd.201200015 CrossRefGoogle Scholar
  34. Holdgate M, Phillips A (1999) Protected areas in context. In: Walkey M, Swinglan I, Russell S (eds) Integrated protect area managemant. Springer Science + Business Media, Dordrecht, pp 1–24Google Scholar
  35. IBRAM (2014) Informações sobre a Economia Mineral do Estado de Minas Gerais Estatísticas Minerais sobre MG. 14Google Scholar
  36. Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713.  https://doi.org/10.1111/j.1523-1739.2005.00702.x CrossRefGoogle Scholar
  37. Lobo HAS (2006) Caracterização dos impactos ambientais negativos do espeleoturismo e suas possibilidades de manejo. In: IV SeminTUR - Seminário de Pesquisa em Turismo do MERCOSUL. IV SeminTUR, Caxias do Sul, RS, Brasil, p 15Google Scholar
  38. Lovejoy TE (2006) Protected areas: a prism for a changing world. Trends Ecol Evol 21:329–333.  https://doi.org/10.1016/j.tree.2006.04.005 CrossRefPubMedGoogle Scholar
  39. Maru YT, Stafford Smith M, Sparrow A et al (2014) A linked vulnerability and resilience framework for adaptation pathways in remote disadvantaged communities. Glob Environ Chang 28:337–350.  https://doi.org/10.1016/j.gloenvcha.2013.12.007 CrossRefGoogle Scholar
  40. McCormack JE (1989) Reclaming paradise: the global environmental movement. Indiana University Press, BloomingtonGoogle Scholar
  41. Moura ACM, Magalhães DM (2011) A produção de informações sobre a ocorrência de áreas antropizadas como base para análises espaciais urbanas e regionais. In: XIII Conferencia Iberoamericana de Sistemas de Información Geográfica (CONFIBSIG), pp 1–22Google Scholar
  42. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefPubMedGoogle Scholar
  43. Neill H, Gutiérrez M, Aley T (2004) Influences of agricultural practices on water quality of Tumbling Creek cave stream in Taney County, Missouri. Environ Geol 45:550–559.  https://doi.org/10.1007/s00254-003-0910-2 CrossRefGoogle Scholar
  44. Nitzu E, Vlaicu M, Giurginca A et al (2018) Assessing preservation prioritiaes of caves and karst areas using the frequency of endemic cave-dwelling species. Int J Speleol 47:43–52.  https://doi.org/10.5038/1827-806X.47.1.2147 CrossRefGoogle Scholar
  45. Novak T, Perc M, Lipovšek S, Janžekovič F (2012) Duality of terrestrial subterranean fauna. Int J Speleol 41:181–188.  https://doi.org/10.5038/1827-806X.41.2.5 CrossRefGoogle Scholar
  46. Parise M, Pascali V (2003) Surface and subsurface environmental degradation in the karst of Apulia (southern Italy). Environ Geol 44:247–256.  https://doi.org/10.1007/s00254-003-0773-6 CrossRefGoogle Scholar
  47. Pellegrini T, Sales LP, Aguiar P, Lopes Ferreira R (2016) Linking spatial scale dependence of land-use descriptors and invertebrate cave community composition. Subterr Biol 18:17–38.  https://doi.org/10.3897/subtbiol.18.8335 CrossRefGoogle Scholar
  48. Por FD, Dimentman C, Frumkin A, Naaman I (2013) Animal life in the chemoautotrophic ecosystem of the hypogenic groundwater cave of Ayyalon (Israel): a summing up. Nat Sci 5:7–13.  https://doi.org/10.4236/ns.2013.54A002 CrossRefGoogle Scholar
  49. Poulson LT, Lavoie K (2000) The trophic basis of subsurface ecosystems. In: Horst W, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier, Amsterdam, pp 231–250Google Scholar
  50. Poulson LT, White BW (1969) The cave environment. Science 165:971–981CrossRefPubMedGoogle Scholar
  51. Pressey RL, Cabeza M, Watts ME et al (2007) Conservation planning in a changing world. Trends Ecol Evol 22:583–592.  https://doi.org/10.1016/j.tree.2007.10.001 CrossRefPubMedGoogle Scholar
  52. Prous X, Ferreira RL, Jacobi CM (2015) The entrance as a complex ecotone in a Neotropical cave. Int J Speleol 44:177–189.  https://doi.org/10.5038/1827-806X.40.1.2 CrossRefGoogle Scholar
  53. Rebolledo B, Gil A, Flotats X, Sánchez JÁ (2016) Assessment of groundwater vulnerability to nitrates from agricultural sources using a GIS-compatible logic multicriteria model. J Environ Manage 171:70–80.  https://doi.org/10.1016/j.jenvman.2016.01.041 CrossRefPubMedGoogle Scholar
  54. Reyers B, Van Jaarsveld AS, McGeoch MA, James AN (1998) National biodiversity risk assessment: a composite multivariate and index approach. Biodivers Conserv 7:945–965.  https://doi.org/10.1023/A:1008881405539 CrossRefGoogle Scholar
  55. Rheims CA, Franco FP (2003) Invertebrados terrestres de cavernas da área cárstica de São Domingos, Nordeste de Goiás. O Carste 132–137Google Scholar
  56. Rogers S, Xue T (2015) Resettlement and climate change vulnerability: evidence from rural China. Glob Environ Chang 35:62–69.  https://doi.org/10.1016/j.gloenvcha.2015.08.005 CrossRefGoogle Scholar
  57. Rolo V, Rivest D, Lorente M et al (2016) Taxonomic and functional diversity in Mediterranean pastures: insights on the biodiversity-productivity trade-off. J Appl Ecol.  https://doi.org/10.1111/1365-2664.12685 CrossRefGoogle Scholar
  58. Secretariat of the Convention on Biological Diversity (2014) Global biodiversity outlook. MontréalGoogle Scholar
  59. Simaika JP, Samways MJ (2009) An easy-to-use index of ecological integrity for prioritizing freshwater sites and for assessing habitat quality. Biodivers Conserv 18:1171–1185.  https://doi.org/10.1007/s10531-008-9484-3 CrossRefGoogle Scholar
  60. Simões MH, Souza-silva M, Ferreira RL (2014) Cave invertebrates in Northwestern Minas Gerais state, Brazil: endemism, threats and conservation priorities. Acta Carsologica 43:159–174CrossRefGoogle Scholar
  61. Simões MH, Souza-silva M, Ferreira RL (2015) Cave physical attributes influencing the structure of terrestrial invertebrate communities in Neotropics. Subterr Biol 16:103–121.  https://doi.org/10.3897/subtbiol.16.5470 CrossRefGoogle Scholar
  62. Sket B (1999) The nature of biodiversity in hypogean waters and how it is endangered. Biodivers Conserv 8:1319–1338.  https://doi.org/10.1023/A:1008916601121 CrossRefGoogle Scholar
  63. Souza MFVR (2012) Diversidade de invertebrados subterrâneos da região de Cordisburgo, Minas Gerais: subsídios para definição de cavernas prioritárias para conservação e para o manejo biológico de cavidades turísticas. Universidade Federal de LavrasGoogle Scholar
  64. Souza-Silva M (2008) Ecologia e conservação das comunidades de invertebrados cavernícolas na mata atlântica brasileira. Universidade Federal de Minas GeraisGoogle Scholar
  65. Souza-Silva M, Ferreira RL (2016) The first two hotspots of subterranean biodiversity in South America. Subterr Biol 19:1–21.  https://doi.org/10.3897/subtbiol.19.8207 CrossRefGoogle Scholar
  66. Souza-Silva M, Martins RP, Ferreira RL (2011a) Trophic dynamics in a Neotropical Limestone cave. Subterr Biol 9:127–138.  https://doi.org/10.3897/subtbiol.9.2515 CrossRefGoogle Scholar
  67. Souza-Silva M, Martins RP, Ferreira RL (2011b) Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic Rain Forest. Biodivers Conserv 20:1713–1729.  https://doi.org/10.1007/s10531-011-0057-5 CrossRefGoogle Scholar
  68. Souza-Silva M, Nicolau JC, Ferreira RL (2011c) Comunidades de invertebrados terrestres de três cavernas quartzíticas no vale do mandembe, luminárias, MG. Espeleo-tema 22:155–167Google Scholar
  69. Souza-Silva M, Bernardi LFO, Martins RP, Ferreira RL (2012) Transport and consumption of organic detritus in a Neotropical Limestone cave. Acta Carstologica 41:139–150Google Scholar
  70. Souza-Silva M, Martins RP, Ferreira RL (2015) Cave conservation priority index to adopt a rapid protection strategy: a case study in Brazilian Atlantic Rain Forest. Environ Manage 55:279–295.  https://doi.org/10.1007/s00267-014-0414-8 CrossRefPubMedGoogle Scholar
  71. Stevenazzi S, Bonfanti M, Masetti M et al (2017) A versatile method for groundwater vulnerability projections in future scenarios. J Environ Manage 187:365–374.  https://doi.org/10.1016/j.jenvman.2016.10.057 CrossRefPubMedGoogle Scholar
  72. Sugai LSM, Ochoa-Quintero JM, Costa-Pereira R, Roque FO (2015) Beyond above ground. Biodivers Conserv 24:2109–2112.  https://doi.org/10.1007/s10531-015-0918-4 CrossRefGoogle Scholar
  73. Sugden F, Maskey N, Clement F et al (2014) Agrarian stress and climate change in the Eastern Gangetic plains: gendered vulnerability in a stratified social formation. Glob Environ Chang 29:258–269.  https://doi.org/10.1016/j.gloenvcha.2014.10.008 CrossRefGoogle Scholar
  74. van Beynen P, Townsend K (2005) A disturbance index for karst environments. Environ Manage 36:101–116.  https://doi.org/10.1007/s00267-004-0265-9 CrossRefPubMedGoogle Scholar
  75. Watson J, Hamilton-Smith E, Gillieson D, Kiernan K (1997) Guidelines for cave and karst protection. International Union for Conservation of Nature and Natural ResourcesGoogle Scholar
  76. Williams P (2008) World heritage caves and karst. Int Union Conserv Nat World Herit Stud 2:1–50Google Scholar
  77. Yoshizawa K, Ferreira RL, Kamimura Y, Lienhard C (2014) Female penis, male vagina, and their correlated evolution in a cave insect. Curr Biol 24:1–5.  https://doi.org/10.1016/j.cub.2014.03.022 CrossRefGoogle Scholar
  78. Zampaulo RDEA (2010) Diversidade de invertebrados cavernícolas na província espeleológica de Arcos, Pains e Doresópolis (MG): Subsídios para a determinação de áreas prioritárias para conservação. Universidade Federal de LavrasGoogle Scholar
  79. Zeppelini Filho D, Cunha Ribeiro A, Cunha Ribeiro G et al (2003) Faunistic survey of sandstone caves from Altinópolis region, São Paulo state, Brazil. Pap Avulsos Zool 43:93–99CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Lucas Mendes Rabelo
    • 1
    • 2
    Email author
  • Marconi Souza-Silva
    • 2
  • Rodrigo Lopes Ferreira
    • 1
    • 2
  1. 1.Programa de Pós-graduação em Ecologia AplicadaUniversidade Federal de LavrasLavrasBrazil
  2. 2.Centro de Estudos em Biologia Subterrânea, Setor de Zoologia Geral–Departamento de BiologiaUniversidade Federal de LavrasLavrasBrazil

Personalised recommendations