Skip to main content

Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats

Abstract

Phenology is a key feature in the description of species niches to capture seasonality in resource use and climate requirements. Species distribution models (SDMs) are widespread tools to evaluate a species’ potential distribution and identify its large-scale habitat preferences. Despite its chief importance, data phenology is often neglected in SDM development. Non-migratory bats of temperate regions are good model species to test the effect of data seasonality on SDM outputs because of their different roosting preferences between hibernation and reproduction. We hypothesized that (1) the output of SDMs developed for six non-migratory European bat species will differ between hibernation and reproduction; (2) models built from datasets encompassing both ecological stages will perform better than seasonal models. We employed a dataset of 470 independent occurrences of bat hibernacula and 400 independent records of nursery roosts of selected species and for each species we developed separate winter, summer and mixed (i.e. generated from both winter and summer occurrences) models. Seasonal and mixed potential ranges differed from each other and the direction of this difference was species-specific. Mixed models outperformed seasonal models in representing species niches. Our work highlights the importance of considering data seasonality in the development of SDMs for bats as well as many other organisms, including non-migratory species, otherwise the analysis will lead to significant biases whose consequences for conservation planning and landscape management may be detrimental.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Algar AC, Kharouba HM, Young ER, Kerr JT (2009) Predicting the future of species diversity: macroecological theory climate change and direct tests of alternative forecasting methods. Ecography 32:22–33

    Article  Google Scholar 

  2. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  3. Altringham JD (2011) Bats: from evolution to conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  4. Amorim F, Carvalho SB, Honrado J, Rebelo H (2014) Designing optimized multi-species monitoring networks to detect range shifts driven by climate change: a case study with bats in the North of Portugal. PLoS ONE 9(1):e87291

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. Ardestani EG, Tarkesh M, Bassiri M, Vahabi MR (2015) Potential habitat modeling for reintroduction of three native plant species in central Iran. J Arid Land 7:381–390

    Article  Google Scholar 

  6. Arlettaz R, Christe P, Lugon A, Perrin N, Vogel P (2001) Food availability dictates the timing of parturition in insectivorous mouse-eared bats. Oikos 95:105–111

    Article  Google Scholar 

  7. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  8. Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8

    Article  Google Scholar 

  9. Balestrieri A, Bogliani G, Boano G, Ruiz-González A, Saino N, Costa S, Milanesi P (2016) Modelling the distribution of forest-dependent species in human-dominated landscapes: patterns for the pine marten in intensively cultivated lowlands. PLoS ONE 11:e0158203

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. Barbet-Massin M, Thuiller W, Jiguet F (2010) How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography 33:878–886

    Article  Google Scholar 

  11. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  12. Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modelling. Ecol Model 222:1810–1819

    Article  Google Scholar 

  13. Bates D, Maechler M, Dai B (2008) Lme4: linear-mixed effects models using S4 classes R package version 099375-27. http://www.lme4rforger-projectorg/

  14. Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob Change Biol 13:1368–1385

    Article  Google Scholar 

  15. Bellamy C, Altringham J (2015) Predicting species distributions using record centre data: multi-scale modelling of habitat suitability for bat roosts. PLoS ONE 10:e0128440

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. Biscardi S, Russo D, Casciani V, Cesarini D, Mei M, Boitani L (2007) Foraging requirements of the endangered long-fingered bat: the influence of micro-habitat structure water quality and prey type. J Zool 273:372–381

    Article  Google Scholar 

  17. Bosso L, Mucedda M, Fichera G, Kiefer A, Russo D (2016a) A gap analysis for threatened bat populations on Sardinia. Hystrix 27:212–214

    Google Scholar 

  18. Bosso L, Di Febbraro M, Cristinzio G, Zoina A, Russo D (2016b) Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biol Invasions 18:1759–1768

    Article  Google Scholar 

  19. Bosso L, Luchi N, Maresi G, Cristinzio G, Smeraldo S, Russo D (2017a) Predicting current and future disease outbreaks of Diplodia sapinea shoot blight in Italy: species distribution models as a tool for forest management planning. For Ecol Manag 400:655–664

    Article  Google Scholar 

  20. Bosso L, De Conno C, Russo D (2017b) Modelling the risk posed by the Zebra Mussel Dreissena polymorpha: Italy as a case study. Environ Manag 60:304–313

    Article  Google Scholar 

  21. Bosso L, Smeraldo S, Rapuzzi P, Sama G, Garonna AP, Russo D (2018) Nature protection areas of Europe are insufficient to preserve the threatened beetle Rosalia alpina (Coleoptera: Cerambycidae): evidence from species distribution models and conservation gap analysis. Ecol Entomol 43:192–203. https://doi.org/10.1111/een12485

    Article  Google Scholar 

  22. Breiner FT, Guisan A, Bergamini A, Nobis MP (2015) Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol Evol 6:1210–1218

    Article  Google Scholar 

  23. Breiner FT, Guisan A, Nobis MP, Bergamini A (2017) Including environmental niche information to improve IUCN Red List assessments. Divers Distrib 23:484–495

    Article  Google Scholar 

  24. Burgman MA, Fox JC (2003) Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Anim Conserv Forum 6(1):19–28

    Article  Google Scholar 

  25. Carretero MA, Sillero N (2016) Evaluating how species niche modelling is affected by partial distributions with an empirical case. Acta Oecol 77:207–216

    Article  Google Scholar 

  26. Carvalho SB, Brito JC, Pressey RL, Crespo E, Possingham HP (2010) Simulating the effects of using different types of species distribution data in reserve selection. Biol Conserv 143:426–438

    Article  Google Scholar 

  27. Chuine I (2010) Why does phenology drive species distribution? Philos Trans R Soc Lond B Biol Sci 365:3149–3160

    PubMed  PubMed Central  Article  Google Scholar 

  28. Cooper-Bohannon R, Rebelo H, Jones G, Monadiem A, Schoeman MC, Taylor P, Park K (2016) Predicting bat distributions and diversity hotspots in southern Africa. Hystrix. https://doi.org/10.4404/hystrix-27.1-11722

    Article  Google Scholar 

  29. de Castro Pena JC, Kamino LHY, Rodrigues M, Mariano-Neto E, de Siqueira MF (2014) Assessing the conservation status of species with limited available data and disjunct distribution. Biol Conserv 170:130–136

    Article  Google Scholar 

  30. Di Febbraro M, Roscioni F, Frate L, Carranza ML, De Lisio L, De Rosa D, Loy A (2015) Long-term effects of traditional and conservation-oriented forest management on the distribution of vertebrates in Mediterranean forests: a hierarchical hybrid modelling approach. Divers Distrib 21:1141–1154

    Article  Google Scholar 

  31. Di Febbraro M, Martinoli A, Russo D, Preatoni D, Bertolino S (2016) Modelling the effects of climate change on the risk of invasion by alien squirrels. Hystrix 27(1):1–8

    Google Scholar 

  32. Doko T, Fukui H, Kooiman A, Toxopeus AG, Ichinose T, Chen W, Skidmore AK (2011) Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan. Ecol Model 222:748–761

    Article  Google Scholar 

  33. Domíguez-Vega H, Monroy-Vilchis O, Balderas-Valdivia CJ, Gienger CM, Ariano-Sánchez D (2012) Predicting the potential distribution of the beaded lizard and identification of priority areas for conservation. J Nat Conserv 20:247–253

    Article  Google Scholar 

  34. Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  35. Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat JP, Guisan A (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Divers Distrib 17:1122–1131

    Article  Google Scholar 

  36. Ducci L, Agnelli P, Di Febbraro M, Frate L, Russo D, Loy A, Roscioni F (2015) Different bat guilds perceive their habitat in different ways: a multiscale landscape approach for variable selection in species distribution modelling. Landsc Ecol 30:2147–2159

    Article  Google Scholar 

  37. Engler JO, Rödder D, Stiels D, Förschler MI (2014) Suitable reachable but not colonised: seasonal niche duality in an endemic mountainous songbird. J Ornithol 155:657–669

    Article  Google Scholar 

  38. Erickson JL, West SD (2002) The influence of regional climate and nightly weather conditions on activity patterns of insectivorous bats. Acta Chiropterol 4:17–24

    Article  Google Scholar 

  39. Feng X, Papeş M (2017) Can incomplete knowledge of species’ physiology facilitate ecological niche modelling? A case study with virtual species. Divers Distrib 23:1157–1168

    Article  Google Scholar 

  40. Feuda R, Bannikova AA, Zemlemerova ED, Di Febbraro M, Loy A, Hutterer R, Colangelo P (2015) Tracing the evolutionary history of the mole Talpa europaea through mitochondrial DNA phylogeography and species distribution modelling. Biol J Linn Soc 114:495–512

    Article  Google Scholar 

  41. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  42. Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:e97122

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Fourcade Y, Besnard AG, Secondi J (2018) Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob Ecol Biogeogr 27:245–256

    Article  Google Scholar 

  44. Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  45. Frick WF, Reynolds DS, Kunz TH (2010) Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J Anim Ecol 79:128–136

    PubMed  Article  Google Scholar 

  46. Grindal SD, Collard TS, Brigham RM, Barclay RM (1992) The influence of precipitation on reproduction by Myotis bats in British Columbia. Am Midl Nat 128:339–344

    Article  Google Scholar 

  47. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  48. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  49. Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AI, Martin TG (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    PubMed  PubMed Central  Article  Google Scholar 

  50. Haghani A, Aliabadian M, Sarhangzadeh J, Setoodeh A (2016) Seasonal habitat suitability modeling and factors affecting the distribution of Asian Houbara in East Iran. Heliyon 2:e00142

    PubMed Central  Article  Google Scholar 

  51. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    PubMed  Article  CAS  Google Scholar 

  52. Hayes MA, Cryan PM, Wunder MB (2015) Seasonally-dynamic presence-only species distribution models for a cryptic migratory bat impacted by wind energy development. PLoS ONE 10:e0132599

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. Herkt KMB, Skidmore AK, Fahr J (2017) Macroecological conclusions based on IUCN expert maps: a call for caution. Glob Ecol Biogeogr 26:930–941

    Article  Google Scholar 

  54. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  55. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  56. Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036

    Article  Google Scholar 

  57. Holte D, Köppen U, Schmitz-Ornés A (2017) A comparison of migratory strategies of partial migratory raptors from Germany. J Ornithol 158:579–592

    Article  Google Scholar 

  58. Hoying KM, Kunz TH (1998) Variation in size at birth and post-natal growth in the insectivorous bat Pipistrellus subflavus (Chiroptera: Vespertilionidae). J Zool 245:15–27

    Article  Google Scholar 

  59. Huston MW (2002) Introductory essay: critical issues for improving predictions. In: Scott JM, Hugland PJ, Morrison ML et al (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, DC, pp 7–21

    Google Scholar 

  60. Jiguet F, Barbet-Massin M, Henry PY (2010) Predicting potential distributions of two rare allopatric sister species the globally threatened Doliornis cotingas in the Andes. J Field Ornithol 81:325–339

    Article  Google Scholar 

  61. Kabir M, Hameed S, Ali H, Bosso L, Ud Din J, Bischof R, Redpath S, Ali Nawaz M (2017) Habitat suitability and movement Corridors of Grey Wolf (Canis lupus) in Northern Pakistan. n. PLoS ONE 12(11):e0187027. https://doi.org/10.1371/journal.pone.0187027

    PubMed  PubMed Central  Article  Google Scholar 

  62. Kwon HS, Kim BJ, Jang GS (2016) Modelling the spatial distribution of wildlife animals using presence and absence data. Contemp Probl Ecol 9:515–518

    Article  Google Scholar 

  63. Le Roux M, Redon M, Archaux F, Long J, Vincent S, Luque S (2017) Conservation planning with spatially explicit models: a case for horseshoe bats in complex mountain landscapes. Landsc Ecol 32:1005–1021

    Article  Google Scholar 

  64. Lewis SE (1993) Effect of climatic variation on reproduction by pallid bats (Antrozous pallidus). Can J Zool 71:1429–1433

    Article  Google Scholar 

  65. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  66. Lobo JM, Jimenez-Valverde A, Hortal J (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography 33:103–114

    Article  Google Scholar 

  67. Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Article  Google Scholar 

  68. Masing M, Lutsar L (2007) Hibernation temperatures in seven species of sedentary bats (Chiroptera) in northeastern Europe. Acta Zool Lit 17:47–55

    Article  Google Scholar 

  69. Mathewson PD, Moyer-Horner L, Beever EA, Briscoe NJ, Kearney M, Yahn JM, Porter WP (2017) Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current past and future climates. Glob Chang Biol 23:1048–1064

    PubMed  Article  Google Scholar 

  70. Miller-Rushing AJ, Weltzin J (2009) Phenology as a tool to link ecology and sustainable decision making in a dynamic environment. New Phytol 184:743–745

    PubMed  Article  Google Scholar 

  71. Mitchell-Jones AJ, Amori G, Bogdanowicz W, Spitzenberger F, Krystufek B, Stubbe CM (1999) The Atlas of European mammals. Poyser Natural History, London

    Google Scholar 

  72. Morganti M, Preatoni D, Sarà M (2017) Climate determinants of breeding and wintering ranges of lesser kestrels in Italy and predicted impacts of climate change. J Avian Biol. https://doi.org/10.1111/jav01179

    Article  Google Scholar 

  73. Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205

    Article  Google Scholar 

  74. Nagel A, Nagel R (1991) How do bats choose optimal temperatures for hibernation? Comp Biochem Physiol Part A 99:323–326

    Article  Google Scholar 

  75. Newton I (2008) The migration ecology of birds Elsevier Amsterdam

  76. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GV, Underwood EC, Loucks CJ (2001) Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51:933–938

    Article  Google Scholar 

  77. Olsson O, Rogers DJ (2009) Predicting the distribution of a suitable habitat for the white stork in Southern Sweden: identifying priority areas for reintroduction and habitat restoration. Anim Conserv 12:62–70

    Article  Google Scholar 

  78. Ortega Z, Pérez-Mellado V (2016) Seasonal patterns of body temperature and microhabitat selection in a lacertid lizard. Acta Oecol 77:201–206

    Article  Google Scholar 

  79. Papadatou E, Butlin RK, Altringham JD (2008) Seasonal roosting habits and population structure of the long-fingered bat Myotis capaccinii in Greece. J Mammal 89:503–512

    Article  Google Scholar 

  80. Perry RW (2013) A review of factors affecting cave climates for hibernating bats in temperate North America. Environ Rev 21:28–39

    Article  Google Scholar 

  81. Peterson AT (2011) Ecological niches and geographic distributions (MPB-49)(No 49) Princeton University Press

  82. Pio DV, Engler R, Linder HP, Monadjem A, Cotterill FP, Taylor PJ, Salamin N (2014) Climate change effects on animal and plant phylogenetic diversity in southern Africa. Glob Chang Biol 20:1538–1549

    Article  Google Scholar 

  83. Racey PA, Swift SM (1981) Variations in gestation length in a colony of pipistrelle bats (Pipistrellus pipistrellus) from year to year. J Reprod Fertil 61:123–129

    PubMed  Article  CAS  Google Scholar 

  84. Raes N (2012) Partial versus full species distribution models. Nat Conserv 10:127–138

    Article  Google Scholar 

  85. Razgour O, Rebelo H, Di Febbraro M, Russo D (2016) Painting maps with bats: species distribution modelling in bat research and conservation. Hystrix. https://doi.org/10.4404/hystrix-271-11753

    Article  Google Scholar 

  86. R Development Core Team (2012) R: A language and environment for statistical computing, reference index version, 2(0)

  87. Rebelo H, Tarroso P, Jones G (2010) Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob Chang Biol 16:561–576

    Article  Google Scholar 

  88. Reddy S, Davalos LM (2003) Geographical sampling bias and its implications for conservation priorities in Africa. J Biogeogr 30:1719–1727

    Article  Google Scholar 

  89. Rodrigues L, Zahn A, Rainho A, Palmeirim JM (2003) Contrasting the roosting behaviour and phenology of an insectivorous bat (Myotis myotis) in its southern and northern distribution ranges. Mammalia 67:321–336

    Article  Google Scholar 

  90. Rubio-Salcedo M, Psomas A, Prieto M, Zimmermann NE, Martínez I (2017) Case study of the implications of climate change for lichen diversity and distributions. Biodivers Conserv 26:1121–1141

    Article  Google Scholar 

  91. Russo D, Di Febbraro M, Rebelo H, Mucedda M, Cistrone L, Agnelli P, De Pasquale PP, Martinolo A, Scaravelli D, Spilinga C, Bosso L (2014) What story does geographic separation of insular bats tell? A case study on Sardinian Rhinolophids. PLoS ONE 9:e110894

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. Russo D, Di Febbraro M, Cistrone L, Jones G, Smeraldo S, Garonna AP, Bosso L (2015) Protecting one protecting both? Scale-dependent ecological differences in two species using dead trees the rosalia longicorn beetle and the barbastelle bat. J Zool 297:165–175

    Article  Google Scholar 

  93. Russo D, Cistrone L, Budinski I, Console G, Della Corte M, Milighetti C, Ancillotto L (2017) Sociality influences thermoregulation and roost switching in a forest bat using ephemeral roosts. Ecol Evol 7:5310–5321

    PubMed  PubMed Central  Article  Google Scholar 

  94. Silva TL, Vale CG, Godinho R, Fellous A, Hingrat Y, Alves PC, Brito JC (2017) Ecotypes and evolutionary significant units in endangered North African gazelles. Biol J Linnean Soc 122:286–300

    Google Scholar 

  95. Smeraldo S, Di Febbraro M, Ćirović D, Bosso L, Trbojević I, Russo D (2017) Species distribution models as a tool to predict range expansion after reintroduction: a case study on Eurasian beavers (Castor fiber). J Nat Conserv 37:12–20

    Article  Google Scholar 

  96. Speakman JR, Rowland A (1999) Preparing for inactivity: how insectivorous bats deposit a fat store for hibernation. Proc Nutr Soc 58:123–131

    PubMed  Article  CAS  Google Scholar 

  97. Speakman JR, Thomas DW (2003) Physiological ecology and energetics of bats. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 430–490

    Google Scholar 

  98. Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 8:e55158

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. Thuiller W (2003) BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Chang Biol 9:1353–1362

    Article  Google Scholar 

  100. Thuiller W, Araújo MB, Lavorel S (2004) Do we need land-cover data to model species distributions in Europe? J Biogeog 31(3):353–361

    Article  Google Scholar 

  101. Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol 11:2234–2250

    Article  Google Scholar 

  102. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  103. Tulloch AI, Sutcliffe P, Naujokaitis-Lewis I, Tingley R, Brotons L, Ferraz KMP, Rhodes JR (2016) Conservation planners tend to ignore improved accuracy of modelled species distributions to focus on multiple threats and ecological processes. Biol Conserv 199:157–171

    Article  Google Scholar 

  104. Tuttle MD, Stevenson D (1982) Growth and survival of bats. In: Kunz TH (ed) Ecology of bats. Plenum Press, New York, pp 105–150

    Chapter  Google Scholar 

  105. Vale CG, Campos JC, Silva TL, Gonçalves DV, Sow AS, Martínez-Freiría F, Brito JC (2016) Biogeography and conservation of mammals from the West Sahara-Sahel: an application of ecological niche-based models and GIS. Hystrix 27:1–10

    Google Scholar 

  106. Van Horn B (2002) Approaches to habitat modelling: the tensions between pattern and process and between specificity and generality. In: Scott JM et al (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington

    Google Scholar 

  107. Wiens JA (2002) Predicting species occurrences: progress, problems, and prospects. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, DC, pp 739–749

    Google Scholar 

  108. Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009) Niches models and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci 106:19729–19736

    PubMed  PubMed Central  Article  Google Scholar 

  109. Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  110. Zhang J, Nielsen SE, Chen Y, Georges D, Qin Y, Wang SS, Thuiller W (2017) Extinction risk of North American seed plants elevated by climate and land-use change. J Appl Ecol 54:303–312

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Eurobats Advisory Committee for providing bat occurrence records for many of the countries within the Agreement range. We also thank two anonymous reviewers for the valuable comments made on a previous ms version.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Danilo Russo.

Additional information

Communicated by David Hawksworth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 87 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smeraldo, S., Di Febbraro, M., Bosso, L. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodivers Conserv 27, 2425–2441 (2018). https://doi.org/10.1007/s10531-018-1545-7

Download citation

Keywords

  • Biomod2
  • Hibernation
  • IUCN
  • Reproduction
  • Species distribution models