Skip to main content

Advertisement

Log in

Contrasting impacts of highly invasive plant species on flower-visiting insect communities

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Invasive alien plants threaten biodiversity, ecosystems and service provision worldwide. They can have positive and negative direct and indirect effects on herbivorous insects, including those that provide pollination services. Here, we quantify how three highly invasive plant species (Heracleum mantegazzianum, Impatiens glandulifera and Fallopia japonica) influence the availability of floral resources and flower-visiting insect communities. We compared invaded with comparable uninvaded areas to assess floral resources and used pan-trapping to quantify insect communities. Only F. japonica influenced floral resource availability: sites invaded by this species had a higher flowering plant species richness and abundance of open floral units than uninvaded sites, probably due to its late flowering and the paucity of other flowering species at this time of year. Fallopia japonica was also associated with higher abundances of bumblebees, higher overall insect diversity and higher hoverfly diversity than uninvaded areas. Differences in pollinator communities were also associated with I. glandulifera and H. mantegazzianum, despite there being no detectable differences in floral resources at these sites. Specifically, there were more bumblebees and solitary bees in I. glandulifera sites, and a higher overall diversity of insects, particularly hoverflies. By contrast, H. mantegazzianum sites had a lower abundance of solitary bees and hoverflies. These findings confirm that invasive plant species have a range of species-specific effects on ecological communities. This supports the emerging view that control of invasive species, as required under international obligations, is not simple and that potential losses and gains for biodiversity must be carefully evaluated on a case-by-case basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420

    Article  Google Scholar 

  • Albrecht M, Ramis MR, Traveset A (2016) Pollinator-mediated impacts of alien invasive plants on the pollination of native plants: the role of spatial scale and distinct behaviour among pollinator guilds. Biol Invasions 18:1801–1812

    Article  Google Scholar 

  • Barney JN, Tharayil N, DiTommaso A, Bhowmik PC (2006) The biology of invasive alien plants in Canada. 5. Polygonum cuspidatum Sieb. & Zucc. [= Fallopia japonica (Houtt.) Ronse Decr.]. Can J Plant Sci 86:887–906

    Article  Google Scholar 

  • Beerling DJ, Perrins JM (1993) Biological Flora of the British Isles: Impatiens glandulifera Royle (Impatiens roylei Walp.). J Ecol 81:367–382

    Article  Google Scholar 

  • Beerling DJ, Bailey JP, Conolly AP (1994) Biological Flora of the British Isles: Fallopia japonica (Houtt.) Ronse Decraene. J Ecol 82:959–979

    Article  Google Scholar 

  • Bezemer TM, Harvey JA, Cronin JT (2014) Response of native insect communities to invasive plants. Annu Rev Entomol 59:119–141

    Article  PubMed  CAS  Google Scholar 

  • Bocard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Carolan JC, Murray TE, Fitzpatrick Ú, Crossley J, Schmidt H, Cederberg B, McNally L, Paxton RJ, Williams PH, Brown MJF (2012) Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS ONE 7:e29251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carvell C, Roy DB, Smart SM, Pywell RF, Preston CD, Goulson D (2006) Declines in forage availability for bumblebees at a national scale. Biol Conserv 132:481–489

    Article  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Avoiding surprise effects on Surprise Island: alien species control in a multi-trophic level perspective. Biol Invasions 11:1689–1703

    Article  Google Scholar 

  • Darvill B, Knight ME, Goulson D (2004) Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos 107:471–478

    Article  Google Scholar 

  • Dicks LV, Corbet SA, Pywell RF (2002) Compartmentalization in plant-insect flower visitor webs. J Anim Ecol 71:32–43

    Article  Google Scholar 

  • Dommanget F, Evette A, Spiegelberger T, Galletc C, Pacéa M, Imberta M, Navasd M-L (2014) Differential allelopathic effects of Japanese knotweed on willow and cottonwood cuttings used in riverbank restoration techniques. J Environ Manag 132:71–78

    Article  Google Scholar 

  • Dostál P, Müllerová J, Pyšek P, Pergl J, Klinerová T (2013) The impact of an invasive plant changes over time. Ecol Lett 16:1277–1284

    Article  PubMed  Google Scholar 

  • Drever JC, Hunter JAA (1970) Giant hogweed dermatitis. Scott Med J 15:315–319

    Article  PubMed  CAS  Google Scholar 

  • Fenesi A, Vágási CI, Beldean M, Földesi R, Kolcsár L-P, Shapiro JT, Török E, Kovács-Hostyánszki A (2015) Solidago canadensis impacts on native plant and pollinator communities in different-aged old fields. Basic Appl Ecol 16:335–346

    Article  Google Scholar 

  • Fitzpatrick U, Murray TE, Paxton RJ, Breen J, Cotton D, Santorum V, Brown MJF (2007) Rarity and decline in bumblebees—a test of causes and correlates in the Irish fauna. Biol Conserv 136:185–194

    Article  Google Scholar 

  • Fournier D, Skaug H, Ancheta J, Ianelli J, Magnusson A, Maunder M, Nielsen A, Sibert J (2012) AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249

    Article  Google Scholar 

  • Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71:757–764

    Article  Google Scholar 

  • Hegland SJ, Boeke L (2006) Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol Entomol 31:532–538

    Article  Google Scholar 

  • Heneberg P, Bogusch P (2014) To enrich or not to enrich? Are there any benefits of using multiple colors of pan traps when sampling aculeate Hymenoptera? J Insect Conserv 18:1123–1136

    Article  Google Scholar 

  • Hicks DM, Ouvrard P, Baldock KCR, Baude M, Goddard MA, Kunin WE, Mitschunas N, Memmott J, Morse H, Nikolitsi M, Osgathorpe LM, Potts SG, Robertson KM, Scott AV, Sinclair F, Westbury DB, Stone GN (2016) Food for pollinators: quantifying the nectar and pollen resources of urban flower meadows. PLoS ONE 11:e0158117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hollingsworth ML, Bailey JP (2000) Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese Knotweed). Bot J Linn Soc 133:463–472

    Article  Google Scholar 

  • Hulme PE, Pyšek P, Jarošík V, Pergl J, Schaffner U, Vilà M (2013) Bias and error in understanding plant invasion impacts. Trends Ecol Evol 28:212–218

    Article  PubMed  Google Scholar 

  • Jakubska-Busse A, Sliwinski M, Kobylka M (2013) Identification of bioactive components of essential oils in Heracleum sosnowskyi and Heracleum mantegazzianum (Apiaceae). Arch Bio Sci 65:877–883

    Article  Google Scholar 

  • Kaiser-Bunbury CN, Mougal J, Whittington AE, Valentin T, Gabriel R, Olesen JM, Blüthgen N (2017) Ecosystem restoration strengthens pollination network resilience and function. Nature 542:223–227

    Article  PubMed  CAS  Google Scholar 

  • Kettunen M, Genovesi P, Gollasch S, Pagad S, Starfinger U, ten Brink P, Shine PC (2009) Technical support to EU strategy on invasive species (IAS)—assessment of the impacts of IAS in Europe and the EU (Final module report for the European Commission). IEEP, Brussels

    Google Scholar 

  • Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J (2007) The impact of an alien plant on a native plant-pollinator network: an experimental approach. Ecol Lett 10:539–550

    Article  PubMed  Google Scholar 

  • Love H, Maggs CA, Murray T, Provan J (2013) Genetic evidence for predominantly hydrochoric gene flow in the invasive riparian plant Impatiens glandulifera (Himalayan balsam). Ann Bot 112:1743–1750

    Article  PubMed  PubMed Central  Google Scholar 

  • Mack RN (2000) Assessing the extent, status, and dynamism of plant invasions: current and emerging approaches. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, DC, pp 141–168

    Google Scholar 

  • Morales CL, Traveset A (2009) A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol Lett 12:716–728

    Article  PubMed  Google Scholar 

  • Moroń D, Lenda M, Skórka P, Szentgyörgyi H, Settele J, Woyciechowski M (2009) Wild pollinator communities are negatively affected by invasion of alien goldenrods in grassland landscapes. Biol Conserv 142:1322–1332

    Article  Google Scholar 

  • Nielsen C, Heimes C, Kollmann J (2008) Little evidence for negative effects of an invasive alien plant on pollinator services. Biol Invasions 10:1353–1363

    Article  Google Scholar 

  • Nienhuis CM, Stout JC (2009) Effectiveness of native bumblebees as pollinators of the alien invasive plant Impatiens glandulifera (Balsiminaceae) in Ireland. J. Pollinat Ecol 1:1–11

    Google Scholar 

  • Nienhuis CM, Dietzsch AC, Stout JC (2009) The impacts of an invasive alien plant and its removal on native bees. Apidologie 40:450–463

    Article  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0-9

  • O’Rourke AT, Fitzpatrick U, Stout JC (2014) Spring foraging resources and the behaviour of pollinating insects in fixed dune ecosystems. J Pollinat Ecol 13:161–173

    Google Scholar 

  • Packer JG, Delean S, Kueffer C, Prider J, Abley K, Facelli JM, Carthew SM (2016) Native faunal communities depend on habitat from non-native plants in novel but not in natural ecosystems. Biodivers Conserv 25:503–523

    Article  Google Scholar 

  • Pearson D, Ortega Y, Runyon J, Butler JL (2016) Secondary invasion: the bane of weed management. Biol Conserv 197:8–17

    Article  Google Scholar 

  • Polvi LE, Wohl E, Merritt DM (2014) Modeling the functional influence of vegetation type on streambank cohesion. Earth Surface Process Landf. https://doi.org/10.1002/esp.3577

    Article  Google Scholar 

  • Potts SG, Vulliamy B, Roberts S, O’Toole C, Dafni A, Ne’eman G, Willmer PG (2004) Nectar resource diversity organises flower-visitor community structure. Entomol Exp Appl 113:103–107

    Article  Google Scholar 

  • Power EF, Stout JC (2011) Organic dairy farming: impacts on insect–flower interaction networks and pollination. J Appl Ecol 48:561–569

    Article  Google Scholar 

  • Power EF, Jackson Z, Stout JC (2016) Organic farming and landscape factors affect abundance and richness of hoverflies (Diptera, Syrphidae) in grasslands. Insect Conserv Divers 9:244–253

    Article  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737

    Article  Google Scholar 

  • Raine NE, Chittka L (2007) Nectar production rates of 75 bumblebee-visited flower species in a German flora (Hymenoptera: Apidae: Bombus terrestris). Entomol Gen 30:191–192

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Reynolds PL, Glanz J, Yang S, Hann C, Couture J, Grosholz E (2017) Ghost of invasion past: legacy effects on community disassembly following eradication of an invasive ecosystem engineer. Ecosphere 8

  • Rodriguez LF (2006) Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol Invasions 8:927–939

    Article  Google Scholar 

  • Roulston TAH, Smith SA, Brewster AL (2007) A comparison of pan trap and intensive net sampling techniques for documenting a bee (Hymenoptera: Apiformes) Fauna. J Kansas Entomol Soc 80:179–181

    Article  Google Scholar 

  • Russo L, Memmott J, Montoya D, Shea K, Buckley YM (2014) Patterns of introduced species interactions affect multiple aspects of network structure in plant-pollinator communities. Ecology 95:2953–2963

    Article  Google Scholar 

  • Russo L, Nichol C, Shea K (2016) Pollinator floral provisioning by a plant invader: quantifying beneficial effects of detrimental species. Divers Distrib 22:189–198

    Article  Google Scholar 

  • Simberloff EEA (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Speight MCD (2014) Species accounts of European Syrphidae (Diptera), 2014

  • Stanley DA, Stout JC (2013) Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: a field-scale evaluation reveals taxon-specific responses. J Appl Ecol 50:335–344

    Article  Google Scholar 

  • Starý P, Tkalců B (1998) Bumblebees (Hym., Bombidae) associated with the expansive touch-me-not Impatiens glandulifera in wetland biocorridors. Anzeiger fur Schadlingskunde Pflanzenschutz Umweltschutz 71:85–87

    Article  Google Scholar 

  • Stout JC (2011) Plant invasions: their threats in an Irish context. Biol Environ 3:1–7

    Google Scholar 

  • Stout JC, Casey LM (2014) Relative abundance of an invasive alien plant affects insect–flower interaction networks in Ireland. Acta Oecol 55:78–85

    Article  Google Scholar 

  • Stout JC, Morales CL (2009) Ecological impacts of invasive alien species on bees. Apidologie 40:388–409

    Article  Google Scholar 

  • Stout JC, Tiedeken EJ (2017) Direct interactions between invasive plants and native pollinators: evidence, impacts and approaches. Funct Ecol 31:38–46

    Article  Google Scholar 

  • Sunny A, Diwakar S, Sharma GP (2015) Native insects and invasive plants encounters. Arthropod-Plant Interact 9:323–331

    Article  Google Scholar 

  • Szigeti V, Kőrösi Á, Harnos A, Nagy J, Kis J (2016) Measuring floral resource availability for insect pollinators in temperate grasslands—a review. Ecol Entomol 41:231–240

    Article  Google Scholar 

  • Tanner R, Gange A (2013) The impact of two non-native plant species on native flora performance: potential implications for habitat restoration. Plant Ecol 214:423–432

    Article  Google Scholar 

  • Tiedeken EJ, Stout JC (2015) Insect-flower interaction network structure is resilient to a temporary pulse of floral resources from invasive Rhododendron ponticum. PLoS ONE 10:e0119733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiedeken EJ, Egan PA, Stevenson PC, Wright GA, Brown MJ, Power EF, Farrell I, Matthews SM, Stout JC (2016) Nectar chemistry modulates the impact of an invasive plant on native pollinators. Funct Ecol 30:885–893

    Article  Google Scholar 

  • Torné-Noguera A, Rodrigo A, Arnan X, Osorio S, Barril-Graells H, da Rocha-Filho LC, Bosch J (2014) Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size. PLoS ONE 9:e97255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuell JK, Isaacs R (2009) Elevated pan traps to monitor bees in flowering crop canopies. Entomol Exp Appl 131:93–98

    Article  Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Westphal C, Bommarco R, Carré G, Lamborn E, Morison N, Petanidou T, Potts SG, Roberts SPM, Szentgyörgyi H, Tscheulin T, Woyciechowski M, Biesmeijer JC, Kunin WE, Settele J, Steffan-Dewenter I (2008) Measuring bee diversity in different European habitats and biogeographical regions. Ecol Monogr 78:653–671

    Article  Google Scholar 

  • Wood TJ, Holland JM, Goulson D (2015) A comparison of techniques for assessing farmland bumblebee populations. Oecologia 177:1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Zavaleta ES, Hobbs RJ, Mooney HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16:454–459

    Article  Google Scholar 

  • Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676

    Article  Google Scholar 

Download references

Funding

This work was supported by the European Union’s European Regional Development Fund, Department of the Environment (Northern Ireland) and Department of the Environment, Community and Local Government (Ireland) (INTERREG IVA CIRB project). We thank Inland Fisheries Ireland, Loughs Agency, Northern Ireland Environment Agency, Belfast City Council, Lagan Valley Regional Park, Rivers Agency and many local landowners for support and granting access to sites and Una Fitzpatrick for assistance with insect identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane C. Stout.

Additional information

Communicated by David Hawksworth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, E.S., Kelly, R., Maggs, C.A. et al. Contrasting impacts of highly invasive plant species on flower-visiting insect communities. Biodivers Conserv 27, 2069–2085 (2018). https://doi.org/10.1007/s10531-018-1525-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-1525-y

Keywords

Navigation