Advertisement

Biodiversity and Conservation

, Volume 27, Issue 8, pp 1811–1829 | Cite as

The role of protected area zoning in invasive plant management

  • Johana VardarmanEmail author
  • Kateřina Berchová‐Bímová
  • Jana Pěknicová
Original Paper
Part of the following topical collections:
  1. Invasive species

Abstract

As anthropogenic pressure on the landscape increases, invasive alien species (IAS) pose a growing threat to areas designed to protect high biodiversity habitats. In order to assess the present danger of IAS spread, we examined 23 Czech sites of community importance (SCI) within Natura 2000 protected areas (PA) over 2015 and mapped the occurrence of four IAS: Solidago spp. (goldenrod), Impatiens glandulifera (Himalayan balsam), Heracleum mantegazzianum (giant hogweed) and Fallopia spp. (Japanese knotweed). The model areas were divided into five monitoring zones, graded by conservation importance and habitat disturbance level (core area [A], broader core area [B], semi-natural habitat [C], anthropogenically affected habitat [D], anthropogenically degraded habitat [E]). Despite a high number of IAS occurrences (3222 localities), habitats of European importance (zone A) showed a relatively low level of invasion (< 0.3% total area). Highest IAS occurrence number was in SCI border areas and disturbed habitats (zones C and E). There was a significant positive correlation between level of invasion inside and outside SCIs, related to human activities such as logging and urbanisation. A strong effect for watercourse vicinity was noted for the occurrence of I. glandulifera and Fallopia spp.; but not for H. mantegazzianum and Solidago spp. A stratified management approach, employing zones delimitation to assess what threat pose IAS to the PA objects of conservation, can be useful to prioritize control measures in IAS local action plans.

Keywords

Natura 2000 network Level of invasion Species distribution Habitat disturbance Neophytes 

Notes

Acknowledgements

This research was supported through Project No. EHP-CZ02-OV-1-024-2015 “Monitoring of the Status of Species Listed in the EU Nature Directives in Natura 2000 Sites”, funded by the EEA. We would like to thank all students who were involved in IAS field mapping. Also, we are indebted to Dr. Kevin Roche for his linguistic improvements.

Supplementary material

10531_2018_1508_MOESM1_ESM.pdf (63 kb)
Supplementary material 1 (PDF 62 kb)
10531_2018_1508_MOESM2_ESM.pdf (395 kb)
Supplementary material 2 (PDF 394 kb)
10531_2018_1508_MOESM3_ESM.pdf (60 kb)
Supplementary material 3 (PDF 60 kb)
10531_2018_1508_MOESM4_ESM.pdf (14.1 mb)
Supplementary material 4 (PDF 14472 kb)

References

  1. Becker T, Dietz H, Billeter R, Buschmann H, Edwards PJ (2005) Altitudinal distribution of alien plant species in the Swiss Alps. Perspect Plant Ecol Evol Syst 7:173–183CrossRefGoogle Scholar
  2. Beniak M, Pauková Ž, Fehér A (2015) Altitudinal occurrence of non-native plant species (neophytes) and their habitat affinity to anthropogenic biotopes in conditions of South-Western Slovakia. Ekológia 34:163–175CrossRefGoogle Scholar
  3. Braun M, Schindler S, Essl F (2016) Distribution and management of invasive alien plant species in protected areas in Central Europe. J Nat Conserv 33:48–57CrossRefGoogle Scholar
  4. Catford JA, Vesk PA, White MD, Wintle BA (2011) Hotspots of plant invasion predicted by propagule pressure and ecosystem characteristics. Divers Distrib 17:1099–1110CrossRefGoogle Scholar
  5. Chytrý M, Pyšek P, Tichý L, Knollová I, Danihelka J (2005) Invasions by alien plants in the Czech Republik: a quantitative assesment across habitats. Preslia 77:339–354Google Scholar
  6. Chytrý M, Jarošík V, Pyšek P, Hájek O, Knollová I, Tichý L, Danihelka J (2008a) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:1541–1553CrossRefPubMedGoogle Scholar
  7. Chytrý M, Maskell LC, Pino J, Pyšek P, Vilà M, Font X, Smart SM (2008b) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458CrossRefGoogle Scholar
  8. Chytrý M, Wild J, Pyšek P, Tichý L, Danihelka J, Knollová I (2009) Maps of the level of invasion of the Czech Republic by alien plants. Preslia 81:187–207Google Scholar
  9. Chytrý M, Kučera T, Kočí M, Grulich V, Lustyk P (2010) Katalog biotopů České republiky [Habitat catalogue of the Czech Republic]. Agentura ochrany přírody a krajiny ČR, PrahaGoogle Scholar
  10. Cole E, Keller RP, Garbach K (2016) Assessing the success of invasive species prevention efforts at changing the behaviors of recreational boaters. J Environ Manage 184:210–218CrossRefPubMedGoogle Scholar
  11. Crall AW, Jarnevich CS, Panke B, Young N, Renz M, Morisette J (2013) Using habitat suitability models to target invasive plant species surveys. Ecol Appl 23:60–72CrossRefPubMedGoogle Scholar
  12. Čuda J, Rumlerová Z, Brůna J, Skálová H, Pyšek P (2017) Floods affect the abundance of invasive Impatiens glandulifera and its spread from river corridors. Divers Distrib 23:342–354CrossRefGoogle Scholar
  13. DAISIE (2017) DAISIE: Delivering alien invasive species inventories for Europe. http://www.europe-aliens.org/
  14. Davis MA (2003) Biotic globalization: does competition from introduced species threaten biodiversity? Bioscience 53:481CrossRefGoogle Scholar
  15. Davis MA, Thompson K, Grime JP (2005) Invasibility: the local mechanism driving community assembly and species diversity. Ecography 28:696–704CrossRefGoogle Scholar
  16. Deutschewitz K, Lausch A, Kühn I, Klotz S (2003) Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Glob Ecol Biogeogr 12:299–311CrossRefGoogle Scholar
  17. Diez JM, D’Antonio CM, Dukes JS, Grosholz ED, Olden JD, Sorte CJB, Blumenthal DM et al (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10:249–257CrossRefGoogle Scholar
  18. EC (2017) Natura 2000—environment. European Commission. http://ec.europa.eu/environment/nature/natura2000/
  19. EEA (2015) The European environment—state and outlook 2015: synthesis. European Environment Agency, CopenhagenGoogle Scholar
  20. Foxcroft LC, Rouget M, Richardson DM (2007) Risk assessment of riparian plant invasions into protected areas. Conserv Biol 21:412–421CrossRefPubMedGoogle Scholar
  21. Foxcroft L, Jarošík V, Pyšek P, Richardson D, Rouget M (2010) Protected-area boundaries as filters of plant invasions. Conserv Biol 25:400–405PubMedGoogle Scholar
  22. Foxcroft LC, Pyšek P, Richardson DM, Pergl J, Hulme PE (2014) The bottom line: impacts of alien plant invasion in protected areas. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas patterns, problems and challenges. Springer, Dordrecht, pp 19–41.Google Scholar
  23. Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, de Jong H, Simons NK et al (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun 6:8568CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gaston KJ, Jackson SF, Nagy A, Cantú-Salazar L, Johnson M (2008) Protected areas in Europe: principle and practice. Ann N Y Acad Sci 1134:97–119CrossRefPubMedGoogle Scholar
  25. Genovesi P, Butchart SHM, McGeoch MA, Roy DB (2013) Monitoring trends in biological invasion, its impact and policy responses. In: Collen B, Pettorelli N, Baillie J, Durant S (eds) Biodiversity monitoring and conservation. Wiley-Blackwell, Oxford, pp 138–158CrossRefGoogle Scholar
  26. GISD (2017) Global invasive species database. http://www.iucngisd.org/gisd/
  27. Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337CrossRefGoogle Scholar
  28. Hochkirch A, Schmitt T, Beninde J, Hiery M, Kinitz T, Kirschey J, Matenaar D et al (2013) Europe needs a new vision for a natura 2020 network. Conserv Lett 6:462–467CrossRefGoogle Scholar
  29. Hodkinson DJ, Thompson K (1997) Plant dispersal: the role of man. J Appl Ecol 34:1484–1496CrossRefGoogle Scholar
  30. Jarošík V, Pyšek P, Foxcroft LC, Richardson DM, Rouget M, MacFadyen S (2011) Predicting incursion of plant invaders into Kruger National Park, South Africa: the interplay of general drivers and species-specific factors. PLoS ONE 6:e28711CrossRefPubMedPubMedCentralGoogle Scholar
  31. Křivánek M, Sádlo J, Bímová K (2004) Odstraňování invazních druhů rostlin. Planeta XII:23–27Google Scholar
  32. Lambdon PW, Pyšek P, Basnou C, Hejda M, Arianoutsou M, Essl F, Jarošík V et al (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149Google Scholar
  33. Latombe G, Pyšek P, Jeschke JM, Blackburn TM, Bacher S, Capinha C, Costello MJ et al (2016) A vision for global monitoring of biological invasions. Biol Conserv.  https://doi.org/10.1016/j.biocon.2016.06.013 CrossRefGoogle Scholar
  34. Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond Ser B 270:775–781CrossRefGoogle Scholar
  35. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989CrossRefGoogle Scholar
  36. Lonsdale W (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:8–11CrossRefGoogle Scholar
  37. Lososová Z, Chytrý M, Kühn I, Hájek O, Horáková V, Pyšek P, Tichý L (2006) Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspect Plant Ecol Evol Syst 8:69–81CrossRefGoogle Scholar
  38. Lucy F, Roy H, Simpson A, Carlton J, Hanson JM, Magellan K, Campbell M et al (2016) Invasivesnet towards an international association for open knowledge on invasive alien species. Manag Biol Invasions 7:131–139CrossRefGoogle Scholar
  39. Lundgren MR, Small CJ, Dreyer GD (2004) Influence of land use and site characteristics on invasive plant abundance in the Quinebaug Highlands of Southern New England. Northeast Nat 11:443–458CrossRefGoogle Scholar
  40. Mandák B, Pyšek P, Bímová K (2004) History of the invasion and distribution of Reynoutria taxa in the Czech Republic: a hybrid spreading faster than its parents. Preslia 76:15–64Google Scholar
  41. McNeely JA, Mooney HA, Neville LE (2001) Global strategy on invasive alien species. IUCN Gland, GlandGoogle Scholar
  42. Meek CS, Richardson DM, Mucina L (2010) A river runs through it: land-use and the composition of vegetation along a riparian corridor in the Cape Floristic Region, South Africa. Biol Conserv 143:156–164CrossRefGoogle Scholar
  43. Okimura T, Koide D, Mori AS (2016) Differential processes underlying the roadside distributions of native and alien plant assemblages. Biodivers Conserv 25:995–1009CrossRefGoogle Scholar
  44. Pěknicová J, Berchová-Bímová K (2016) Application of species distribution models for protected areas threatened by invasive plants. J Nat Conserv 34:1–7CrossRefGoogle Scholar
  45. Pergl J, Dušek J, Hošek M, Knapp M, Simon O, Berchová K, Bogdan V (2016a) Metodiky mapování a monitoringu invazních (vybraných nepůvodních) druhů - úvod. [Methods of invasive (selected alien) species mapping and monitoring]. Technical report, Institute of Botany of the CAS, v.v.i., Czech University of Life Sciences Prague, DHP conservation s.r.o., pp. 119 (in Czech)Google Scholar
  46. Pergl J, Sádlo J, Petrusek A, Laštůvka Z, Musil J, Perglová I, Šanda R et al (2016b) Black, grey and watch lists of alien species in the Czech Republic based on environmental impacts and management strategy. NeoBiota 28:1–37CrossRefGoogle Scholar
  47. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288CrossRefGoogle Scholar
  48. Pluess T, Jarošík V, Pyšek P, Cannon R, Pergl J, Breukers A, Bacher S (2012) Which factors affect the success or failure of eradication campaigns against alien species? PLoS ONE 7:e48157CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pyšek P, Jarošík V, Kučera T (2002a) Patterns of invasion in temperate nature reserves. Biol Conserv 104:13–24CrossRefGoogle Scholar
  50. Pyšek P, Kučera T, Jarošík V (2002b) Plant species richness of nature reserves: the interplay of area, climate and habitat in a central European landscape. Glob Ecol Biogeogr 11:279–289CrossRefGoogle Scholar
  51. Pyšek P, Jarošík V, Kučera T (2003) Inclusion of native and alien species in temperate nature reserves: an historical study from Central Europe. Conserv Biol 17:1414–1424CrossRefGoogle Scholar
  52. Pyšek P, Richardson DM, Williamson M (2004) Predicting and explaining plant invasions through analysis of source area floras: some critical considerations. Divers Distrib 10:179–187CrossRefGoogle Scholar
  53. Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244CrossRefPubMedGoogle Scholar
  54. Pyšek P, Chytrý M, Jarošík V (2010) Habitats and land-use as determinants of plant invasions in the temperate zone of Europe. In: Perrings C, Mooney H, Williamson M (eds) Bioinvasion and globalization. Ecology, economics, management and policy. Oxford University Press, Oxford, pp 66–79Google Scholar
  55. Pyšek P, Danihelka J, Sádlo J, Chrtek J, Chytrý M, Jarošík V, Kaplan Z et al (2012a) Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Nepůvodní flóra České republiky: aktualizace seznamu druhů, taxonomická diverzita a průběh invazí. Preslia 84:155–255Google Scholar
  56. Pyšek P, Chytrý M, Pergl J, Sádlo J, Wild J (2012b) Plant invasions in the czech republic: current state, introduction dynamics, invasive species and invaded habitats. Preslia 84:575–629Google Scholar
  57. Pyšek P, Genovesi P, Pergl J, Monaco A, Wild J (2013) Invasion of protected areas in Europe: an old continent facing new problems. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas. Patterns, problems and challenges. Springer, Dordrecht, pp 209–240CrossRefGoogle Scholar
  58. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  59. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223CrossRefPubMedGoogle Scholar
  60. Richardson DM, Pyšek P, Rejmanek M, Barbour MG, Panetta FD, West J, Mar N (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107CrossRefGoogle Scholar
  61. Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pyšek P, Hobbs RJ (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13:126–139CrossRefGoogle Scholar
  62. Roy HE, Hesketh H, Purse BV, Eilenberg J, Santini A, Scalera R, Stentiford GD et al (2017) Alien pathogens on the horizon: opportunities for predicting their threat to wildlife. Conserv Lett 10:476–483CrossRefGoogle Scholar
  63. Ruwanza S, Gaertner M, Esler KJ, Richardson DM (2015) Allelopathic effects of invasive Eucalyptus camaldulensis on germination and early growth of four native species in the Western Cape, South Africa. South For 77:91–105CrossRefGoogle Scholar
  64. Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435CrossRefPubMedPubMedCentralGoogle Scholar
  65. Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66CrossRefPubMedGoogle Scholar
  66. Slavík B, Chrtek J Jr, Tomšovic P (eds) (1997) Květena České republiky. [Flora of the Czech Republic], vol 5. Academia, PrahaGoogle Scholar
  67. Slavík B, Štěpánková J, Štěpánek J (eds) (2004) Květena České republiky. [Flora of the Czech Republic], vol 7. Academia, PrahaGoogle Scholar
  68. Souza-Alonso P, Guisande-Collazo A, González L (2016) Impact of an invasive N2-fixing tree on arbuscular mycorrhizal fungi and development of native species. AoB Plants 8:plw018PubMedPubMedCentralGoogle Scholar
  69. Stohlgren TJ, Binkley D, Chong GW, Kalkhan MA, Schell LD, Bull KA, Otsuki Y, Newman G, Bashkin M, Yowhan S (1999) Exotic plant species invade hot spots of native plant diversity. Ecol Monogr 69:25–46CrossRefGoogle Scholar
  70. Stohlgren TJ, Jarnevich C, Chong GW, Evangelista PH (2006) Scale and plant invasions: a theory of biotic acceptance. Preslia 78:405–426Google Scholar
  71. Strong DR, Ayres DR (2013) Ecological and evolutionary misadventures of Spartina. Annu Rev Ecol Evol Syst 44(44):389–410CrossRefGoogle Scholar
  72. Ter Braak CJF, Šmilauer P (2014) Canoco: software for canonical community ordination. Plant Research International, Wageningen, Netherland. http://www.canoco.com
  73. Theoharides K, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stage of invasion. New Phytol 176:256–273CrossRefPubMedGoogle Scholar
  74. Timmins SM, Williams P (1991) Weed numbers in New Zealand’s forest and scrub reserves. N Z J Ecol 15:153–162Google Scholar
  75. Van Kleunen M, Dawson W, Maurel N (2015) Characteristics of successful alien plants. Mol Ecol 24:1954–1968CrossRefGoogle Scholar
  76. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708CrossRefPubMedGoogle Scholar
  77. Vítková M, Müllerová J, Sádlo J, Pergl J, Pyšek P (2017) Black locust (Robinia pseudoacacia) beloved and despised: a story of an invasive tree in Central Europe. For Ecol Manage 384:287–302CrossRefPubMedPubMedCentralGoogle Scholar
  78. Von Der Lippe M, Kowarik I (2007) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv Biol 21:986–996CrossRefPubMedGoogle Scholar
  79. Waldner LS (2008) The kudzu connection: exploring the link between land use and invasive species. Land Use Policy 25:399–409CrossRefGoogle Scholar
  80. Wang C, Zhou J, Liu J, Du D (2017) Responses of soil N-fixing bacteria communities to invasive species over a gradient of simulated nitrogen deposition. Ecol Eng 98:32–39CrossRefGoogle Scholar
  81. Williamson M (1996) Biological invasions. Chapman and Hall, LondonGoogle Scholar
  82. Zurlini G, Petrosillo I, Jones KB, Li BL, Riitters KH, Medagli P, Marchiori S, Zaccarelli N (2013) Towards the planning and design of disturbance patterns across scales to counter biological invasions. J Environ Manage 128:192–203CrossRefPubMedGoogle Scholar
  83. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Ecology, Faculty of Environmental SciencesCzech University of Life Sciences PraguePrague 6 – SuchdolCzech Republic

Personalised recommendations