Skip to main content

Advertisement

Log in

The role of protected area zoning in invasive plant management

Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

As anthropogenic pressure on the landscape increases, invasive alien species (IAS) pose a growing threat to areas designed to protect high biodiversity habitats. In order to assess the present danger of IAS spread, we examined 23 Czech sites of community importance (SCI) within Natura 2000 protected areas (PA) over 2015 and mapped the occurrence of four IAS: Solidago spp. (goldenrod), Impatiens glandulifera (Himalayan balsam), Heracleum mantegazzianum (giant hogweed) and Fallopia spp. (Japanese knotweed). The model areas were divided into five monitoring zones, graded by conservation importance and habitat disturbance level (core area [A], broader core area [B], semi-natural habitat [C], anthropogenically affected habitat [D], anthropogenically degraded habitat [E]). Despite a high number of IAS occurrences (3222 localities), habitats of European importance (zone A) showed a relatively low level of invasion (< 0.3% total area). Highest IAS occurrence number was in SCI border areas and disturbed habitats (zones C and E). There was a significant positive correlation between level of invasion inside and outside SCIs, related to human activities such as logging and urbanisation. A strong effect for watercourse vicinity was noted for the occurrence of I. glandulifera and Fallopia spp.; but not for H. mantegazzianum and Solidago spp. A stratified management approach, employing zones delimitation to assess what threat pose IAS to the PA objects of conservation, can be useful to prioritize control measures in IAS local action plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Becker T, Dietz H, Billeter R, Buschmann H, Edwards PJ (2005) Altitudinal distribution of alien plant species in the Swiss Alps. Perspect Plant Ecol Evol Syst 7:173–183

    Article  Google Scholar 

  • Beniak M, Pauková Ž, Fehér A (2015) Altitudinal occurrence of non-native plant species (neophytes) and their habitat affinity to anthropogenic biotopes in conditions of South-Western Slovakia. Ekológia 34:163–175

    Article  Google Scholar 

  • Braun M, Schindler S, Essl F (2016) Distribution and management of invasive alien plant species in protected areas in Central Europe. J Nat Conserv 33:48–57

    Article  Google Scholar 

  • Catford JA, Vesk PA, White MD, Wintle BA (2011) Hotspots of plant invasion predicted by propagule pressure and ecosystem characteristics. Divers Distrib 17:1099–1110

    Article  Google Scholar 

  • Chytrý M, Pyšek P, Tichý L, Knollová I, Danihelka J (2005) Invasions by alien plants in the Czech Republik: a quantitative assesment across habitats. Preslia 77:339–354

    Google Scholar 

  • Chytrý M, Jarošík V, Pyšek P, Hájek O, Knollová I, Tichý L, Danihelka J (2008a) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:1541–1553

    Article  PubMed  Google Scholar 

  • Chytrý M, Maskell LC, Pino J, Pyšek P, Vilà M, Font X, Smart SM (2008b) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458

    Article  Google Scholar 

  • Chytrý M, Wild J, Pyšek P, Tichý L, Danihelka J, Knollová I (2009) Maps of the level of invasion of the Czech Republic by alien plants. Preslia 81:187–207

    Google Scholar 

  • Chytrý M, Kučera T, Kočí M, Grulich V, Lustyk P (2010) Katalog biotopů České republiky [Habitat catalogue of the Czech Republic]. Agentura ochrany přírody a krajiny ČR, Praha

    Google Scholar 

  • Cole E, Keller RP, Garbach K (2016) Assessing the success of invasive species prevention efforts at changing the behaviors of recreational boaters. J Environ Manage 184:210–218

    Article  PubMed  Google Scholar 

  • Crall AW, Jarnevich CS, Panke B, Young N, Renz M, Morisette J (2013) Using habitat suitability models to target invasive plant species surveys. Ecol Appl 23:60–72

    Article  PubMed  Google Scholar 

  • Čuda J, Rumlerová Z, Brůna J, Skálová H, Pyšek P (2017) Floods affect the abundance of invasive Impatiens glandulifera and its spread from river corridors. Divers Distrib 23:342–354

    Article  Google Scholar 

  • DAISIE (2017) DAISIE: Delivering alien invasive species inventories for Europe. http://www.europe-aliens.org/

  • Davis MA (2003) Biotic globalization: does competition from introduced species threaten biodiversity? Bioscience 53:481

    Article  Google Scholar 

  • Davis MA, Thompson K, Grime JP (2005) Invasibility: the local mechanism driving community assembly and species diversity. Ecography 28:696–704

    Article  Google Scholar 

  • Deutschewitz K, Lausch A, Kühn I, Klotz S (2003) Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Glob Ecol Biogeogr 12:299–311

    Article  Google Scholar 

  • Diez JM, D’Antonio CM, Dukes JS, Grosholz ED, Olden JD, Sorte CJB, Blumenthal DM et al (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10:249–257

    Article  Google Scholar 

  • EC (2017) Natura 2000—environment. European Commission. http://ec.europa.eu/environment/nature/natura2000/

  • EEA (2015) The European environment—state and outlook 2015: synthesis. European Environment Agency, Copenhagen

    Google Scholar 

  • Foxcroft LC, Rouget M, Richardson DM (2007) Risk assessment of riparian plant invasions into protected areas. Conserv Biol 21:412–421

    Article  PubMed  Google Scholar 

  • Foxcroft L, Jarošík V, Pyšek P, Richardson D, Rouget M (2010) Protected-area boundaries as filters of plant invasions. Conserv Biol 25:400–405

    PubMed  Google Scholar 

  • Foxcroft LC, Pyšek P, Richardson DM, Pergl J, Hulme PE (2014) The bottom line: impacts of alien plant invasion in protected areas. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas patterns, problems and challenges. Springer, Dordrecht, pp 19–41.

    Google Scholar 

  • Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, de Jong H, Simons NK et al (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun 6:8568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaston KJ, Jackson SF, Nagy A, Cantú-Salazar L, Johnson M (2008) Protected areas in Europe: principle and practice. Ann N Y Acad Sci 1134:97–119

    Article  PubMed  Google Scholar 

  • Genovesi P, Butchart SHM, McGeoch MA, Roy DB (2013) Monitoring trends in biological invasion, its impact and policy responses. In: Collen B, Pettorelli N, Baillie J, Durant S (eds) Biodiversity monitoring and conservation. Wiley-Blackwell, Oxford, pp 138–158

    Chapter  Google Scholar 

  • GISD (2017) Global invasive species database. http://www.iucngisd.org/gisd/

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337

    Article  Google Scholar 

  • Hochkirch A, Schmitt T, Beninde J, Hiery M, Kinitz T, Kirschey J, Matenaar D et al (2013) Europe needs a new vision for a natura 2020 network. Conserv Lett 6:462–467

    Article  Google Scholar 

  • Hodkinson DJ, Thompson K (1997) Plant dispersal: the role of man. J Appl Ecol 34:1484–1496

    Article  Google Scholar 

  • Jarošík V, Pyšek P, Foxcroft LC, Richardson DM, Rouget M, MacFadyen S (2011) Predicting incursion of plant invaders into Kruger National Park, South Africa: the interplay of general drivers and species-specific factors. PLoS ONE 6:e28711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Křivánek M, Sádlo J, Bímová K (2004) Odstraňování invazních druhů rostlin. Planeta XII:23–27

    Google Scholar 

  • Lambdon PW, Pyšek P, Basnou C, Hejda M, Arianoutsou M, Essl F, Jarošík V et al (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149

    Google Scholar 

  • Latombe G, Pyšek P, Jeschke JM, Blackburn TM, Bacher S, Capinha C, Costello MJ et al (2016) A vision for global monitoring of biological invasions. Biol Conserv. https://doi.org/10.1016/j.biocon.2016.06.013

    Article  Google Scholar 

  • Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond Ser B 270:775–781

    Article  Google Scholar 

  • Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989

    Article  Google Scholar 

  • Lonsdale W (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:8–11

    Article  Google Scholar 

  • Lososová Z, Chytrý M, Kühn I, Hájek O, Horáková V, Pyšek P, Tichý L (2006) Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspect Plant Ecol Evol Syst 8:69–81

    Article  Google Scholar 

  • Lucy F, Roy H, Simpson A, Carlton J, Hanson JM, Magellan K, Campbell M et al (2016) Invasivesnet towards an international association for open knowledge on invasive alien species. Manag Biol Invasions 7:131–139

    Article  Google Scholar 

  • Lundgren MR, Small CJ, Dreyer GD (2004) Influence of land use and site characteristics on invasive plant abundance in the Quinebaug Highlands of Southern New England. Northeast Nat 11:443–458

    Article  Google Scholar 

  • Mandák B, Pyšek P, Bímová K (2004) History of the invasion and distribution of Reynoutria taxa in the Czech Republic: a hybrid spreading faster than its parents. Preslia 76:15–64

    Google Scholar 

  • McNeely JA, Mooney HA, Neville LE (2001) Global strategy on invasive alien species. IUCN Gland, Gland

    Google Scholar 

  • Meek CS, Richardson DM, Mucina L (2010) A river runs through it: land-use and the composition of vegetation along a riparian corridor in the Cape Floristic Region, South Africa. Biol Conserv 143:156–164

    Article  Google Scholar 

  • Okimura T, Koide D, Mori AS (2016) Differential processes underlying the roadside distributions of native and alien plant assemblages. Biodivers Conserv 25:995–1009

    Article  Google Scholar 

  • Pěknicová J, Berchová-Bímová K (2016) Application of species distribution models for protected areas threatened by invasive plants. J Nat Conserv 34:1–7

    Article  Google Scholar 

  • Pergl J, Dušek J, Hošek M, Knapp M, Simon O, Berchová K, Bogdan V (2016a) Metodiky mapování a monitoringu invazních (vybraných nepůvodních) druhů - úvod. [Methods of invasive (selected alien) species mapping and monitoring]. Technical report, Institute of Botany of the CAS, v.v.i., Czech University of Life Sciences Prague, DHP conservation s.r.o., pp. 119 (in Czech)

  • Pergl J, Sádlo J, Petrusek A, Laštůvka Z, Musil J, Perglová I, Šanda R et al (2016b) Black, grey and watch lists of alien species in the Czech Republic based on environmental impacts and management strategy. NeoBiota 28:1–37

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Pluess T, Jarošík V, Pyšek P, Cannon R, Pergl J, Breukers A, Bacher S (2012) Which factors affect the success or failure of eradication campaigns against alien species? PLoS ONE 7:e48157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pyšek P, Jarošík V, Kučera T (2002a) Patterns of invasion in temperate nature reserves. Biol Conserv 104:13–24

    Article  Google Scholar 

  • Pyšek P, Kučera T, Jarošík V (2002b) Plant species richness of nature reserves: the interplay of area, climate and habitat in a central European landscape. Glob Ecol Biogeogr 11:279–289

    Article  Google Scholar 

  • Pyšek P, Jarošík V, Kučera T (2003) Inclusion of native and alien species in temperate nature reserves: an historical study from Central Europe. Conserv Biol 17:1414–1424

    Article  Google Scholar 

  • Pyšek P, Richardson DM, Williamson M (2004) Predicting and explaining plant invasions through analysis of source area floras: some critical considerations. Divers Distrib 10:179–187

    Article  Google Scholar 

  • Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244

    Article  PubMed  Google Scholar 

  • Pyšek P, Chytrý M, Jarošík V (2010) Habitats and land-use as determinants of plant invasions in the temperate zone of Europe. In: Perrings C, Mooney H, Williamson M (eds) Bioinvasion and globalization. Ecology, economics, management and policy. Oxford University Press, Oxford, pp 66–79

    Google Scholar 

  • Pyšek P, Danihelka J, Sádlo J, Chrtek J, Chytrý M, Jarošík V, Kaplan Z et al (2012a) Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Nepůvodní flóra České republiky: aktualizace seznamu druhů, taxonomická diverzita a průběh invazí. Preslia 84:155–255

    Google Scholar 

  • Pyšek P, Chytrý M, Pergl J, Sádlo J, Wild J (2012b) Plant invasions in the czech republic: current state, introduction dynamics, invasive species and invaded habitats. Preslia 84:575–629

    Google Scholar 

  • Pyšek P, Genovesi P, Pergl J, Monaco A, Wild J (2013) Invasion of protected areas in Europe: an old continent facing new problems. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas. Patterns, problems and challenges. Springer, Dordrecht, pp 209–240

    Chapter  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223

    Article  PubMed  Google Scholar 

  • Richardson DM, Pyšek P, Rejmanek M, Barbour MG, Panetta FD, West J, Mar N (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107

    Article  Google Scholar 

  • Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pyšek P, Hobbs RJ (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13:126–139

    Article  Google Scholar 

  • Roy HE, Hesketh H, Purse BV, Eilenberg J, Santini A, Scalera R, Stentiford GD et al (2017) Alien pathogens on the horizon: opportunities for predicting their threat to wildlife. Conserv Lett 10:476–483

    Article  Google Scholar 

  • Ruwanza S, Gaertner M, Esler KJ, Richardson DM (2015) Allelopathic effects of invasive Eucalyptus camaldulensis on germination and early growth of four native species in the Western Cape, South Africa. South For 77:91–105

    Article  Google Scholar 

  • Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Slavík B, Chrtek J Jr, Tomšovic P (eds) (1997) Květena České republiky. [Flora of the Czech Republic], vol 5. Academia, Praha

    Google Scholar 

  • Slavík B, Štěpánková J, Štěpánek J (eds) (2004) Květena České republiky. [Flora of the Czech Republic], vol 7. Academia, Praha

    Google Scholar 

  • Souza-Alonso P, Guisande-Collazo A, González L (2016) Impact of an invasive N2-fixing tree on arbuscular mycorrhizal fungi and development of native species. AoB Plants 8:plw018

    PubMed  PubMed Central  Google Scholar 

  • Stohlgren TJ, Binkley D, Chong GW, Kalkhan MA, Schell LD, Bull KA, Otsuki Y, Newman G, Bashkin M, Yowhan S (1999) Exotic plant species invade hot spots of native plant diversity. Ecol Monogr 69:25–46

    Article  Google Scholar 

  • Stohlgren TJ, Jarnevich C, Chong GW, Evangelista PH (2006) Scale and plant invasions: a theory of biotic acceptance. Preslia 78:405–426

    Google Scholar 

  • Strong DR, Ayres DR (2013) Ecological and evolutionary misadventures of Spartina. Annu Rev Ecol Evol Syst 44(44):389–410

    Article  Google Scholar 

  • Ter Braak CJF, Šmilauer P (2014) Canoco: software for canonical community ordination. Plant Research International, Wageningen, Netherland. http://www.canoco.com

  • Theoharides K, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stage of invasion. New Phytol 176:256–273

    Article  PubMed  Google Scholar 

  • Timmins SM, Williams P (1991) Weed numbers in New Zealand’s forest and scrub reserves. N Z J Ecol 15:153–162

    Google Scholar 

  • Van Kleunen M, Dawson W, Maurel N (2015) Characteristics of successful alien plants. Mol Ecol 24:1954–1968

    Article  Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Vítková M, Müllerová J, Sádlo J, Pergl J, Pyšek P (2017) Black locust (Robinia pseudoacacia) beloved and despised: a story of an invasive tree in Central Europe. For Ecol Manage 384:287–302

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Der Lippe M, Kowarik I (2007) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv Biol 21:986–996

    Article  PubMed  Google Scholar 

  • Waldner LS (2008) The kudzu connection: exploring the link between land use and invasive species. Land Use Policy 25:399–409

    Article  Google Scholar 

  • Wang C, Zhou J, Liu J, Du D (2017) Responses of soil N-fixing bacteria communities to invasive species over a gradient of simulated nitrogen deposition. Ecol Eng 98:32–39

    Article  Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman and Hall, London

    Google Scholar 

  • Zurlini G, Petrosillo I, Jones KB, Li BL, Riitters KH, Medagli P, Marchiori S, Zaccarelli N (2013) Towards the planning and design of disturbance patterns across scales to counter biological invasions. J Environ Manage 128:192–203

    Article  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported through Project No. EHP-CZ02-OV-1-024-2015 “Monitoring of the Status of Species Listed in the EU Nature Directives in Natura 2000 Sites”, funded by the EEA. We would like to thank all students who were involved in IAS field mapping. Also, we are indebted to Dr. Kevin Roche for his linguistic improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johana Vardarman.

Additional information

Communicated by David Hawksworth.

This article belongs to the Topical Collection: Invasive species.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vardarman, J., Berchová‐Bímová, K. & Pěknicová, J. The role of protected area zoning in invasive plant management. Biodivers Conserv 27, 1811–1829 (2018). https://doi.org/10.1007/s10531-018-1508-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-1508-z

Keywords

Navigation