Using herbarium specimens to select indicator species for climate change monitoring

Abstract

Phenology is one of the best indicators to observe plant responses to climate change and predict future changes in plant communities. Choosing indicator species to monitor biological responses to climate change may be improved if herbarium specimens are combined with ongoing monitoring efforts to understand phenological responses over longer periods. We analyzed herbarium specimen data from Colorado’s alpine region, as alpine areas are predicted to be especially sensitive to climate change. We assessed phenological patterns in relation to temperature and precipitation for 287 species and growing degree days (GDD) for 235 species. Average low temperature, maximum GDD, and average precipitation increased over the study period. As temperature and GDD increased, phenology advanced, but as precipitation increased, phenology was delayed. Even with this variability of environmental responses, a significant trend of earlier flowering appeared when all species were analyzed together. Of the species that showed significantly earlier flowering dates, they advanced on average more than 39 days over the 61 years of the study. When assessing only specimens of species monitored in a national program (USA National Phenology Network), we found that these species showed similar trends to the entire dataset. When selecting species for ongoing monitoring efforts, herbarium specimens are an important resource to incorporate historical patterns into assessments of climate change and phenological drivers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ackerfield J (2015) Flora of Colorado. Botanical Research Institute of Texas, Fort Worth

    Google Scholar 

  2. Bertin RI (2015) Climate change and flowering phenology in Worcester County, Massachusetts. Int J Plant Sci 176:107–119. https://doi.org/10.1086/679619

    Article  Google Scholar 

  3. Bjorkman AD, Elmendorf SC, Beamish AL, Vellend M, Henry GHR (2015) Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Glob Change Biol 21:4651–4661. https://doi.org/10.1111/gcb.13051

    Article  Google Scholar 

  4. Brommer J, Lehikoinen A, Valkama J (2012) The breeding ranges of European and Arctic bird species move poleward. PLoS ONE 7:e43648. https://doi.org/10.1371/journal.pone.0043648

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Cabin RJ, Mitchell RJ (2000) To Bonferroni or not to Bonferroni: when and how are the questions. Bull Ecol Soc Am 81(3):246–248

    Google Scholar 

  6. Calinger KM, Queenborough S, Curtis PS (2013) Herbarium specimens reveal the footprint of climate change on flowering trends across north-central North America. Ecol Lett 16:1037–1044. https://doi.org/10.1111/ele.12135

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cao YS, Xiao Y, Huang HQ, Xu JC, Hu WH, Wang N (2016) Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different planting densities. Sci Rep 6:9. https://doi.org/10.1038/srep27835

    Article  Google Scholar 

  8. CaraDonna PJ, Iler AM, Inouye DW (2014) Shifts in flowering phenology reshape a subalpine plant community. Proc Natl Acad Sci USA 111(13):4916–4921

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Cayuela L, Granzow-de la Cerda I, Albuquerque FS, Golicher JD (2012) Taxonstand: an R package for species names standardization in vegetation databases. Methods Ecol Evol 3(6):1078–1083

    Article  Google Scholar 

  10. Cook BI, Wolkovich EM, Parmesan C (2012) Divergent responses to spring and winter warming drive community level flowering trends. Proc Natl Acad Sci USA 109:9000–9005. https://doi.org/10.1073/pnas.1118364109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Davis CC, Willis CG, Connolly B, Kelly C, Ellison AM (2015) Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species’ phenological cueing mechanisms. Am J Bot 102:1599–1609. https://doi.org/10.3732/ajb.1500237

    Article  PubMed  Google Scholar 

  12. Dawson TP (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:664

    CAS  Article  Google Scholar 

  13. de Reaumur RAF (1735) Observation du thérmomètre, faites à Paris pendant l’année 1735, compar-ées avec celles qui ont été faites sous la ligne, à l’Isle de France, à Alger et en quelquesunes de nos isles de l’Amérique. Mémoires de l’Académie Royale des Sciences de Paris 1735:545–576

  14. Duputie A, Rutschmann A, Ronce O, Chuine I (2015) Phenological plasticity will not help all species adapt to climate change. Glob Change Biol 21:3062–3073. https://doi.org/10.1111/gcb.12914

    Article  Google Scholar 

  15. Feeley KJ, Silman MR (2011) Keep collecting: accurate species distribution modeling requires more collections than previously thought. Divers Distrib 17:1–9

    Article  Google Scholar 

  16. Fitchett JM, Grab SW, Thompson DI (2015) Plant phenology and climate change: progress in methodological approaches and application. Prog Phys Geogr 39:460–482. https://doi.org/10.1177/0309133315578940

    Article  Google Scholar 

  17. Fowler J, Nelson BE, Hartman RL (2014) Vascular plant flora of the alpine zone in the Southern Rocky Mountains, USA. J Bot Res Inst Texas 8:611–636

    Google Scholar 

  18. Gallinat AS, Primack RB, Wagner DL (2015) Autumn, the neglected season in climate change research. Trends Ecol Evol 30:169–176. https://doi.org/10.1016/j.tree.2015.01.004

    Article  PubMed  Google Scholar 

  19. Ganjurjav H et al (2016) Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau. Agric For Meteorol 223:233–240. https://doi.org/10.1016/j.agrformet.2016.03.017

    Article  Google Scholar 

  20. Gezon ZJ, Inouye DW, Irwin RE (2016) Phenological change in a spring ephemeral: implications for pollination and plant reproduction. Glob Change Biol 22:1779–1793. https://doi.org/10.1111/gcb.13209

    Article  Google Scholar 

  21. Hart R, Salick J, Ranjitkar S, Xu JC (2014) Herbarium specimens show contrasting phenological responses to Himalayan climate. Proc Natl Acad Sci USA 111:10615–10619. https://doi.org/10.1073/pnas.1403376111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Hufft R, Zelikova TJ (2016) Ecological genetics, local adaptation, and phenotypic plasticity in Bromus tectorum in the context of a changing climate. In: Germino MJ, Chambers JC, Brown C (eds) Exotic brome grasses in rangeland ecosystems of the Western US. Springer, New York

    Google Scholar 

  23. Inouye DW, Wielgolaski FE (2003) High altitude climates. In: Schwartz MD (ed) Phenology: an integrative environmental science for vegetation science, vol 39. Kluwer Academic Publishers, Dordrecht, pp 195–214

    Google Scholar 

  24. Kenney M, Janetos A, Lough G (2016) Building and integrated U.S. National Climate Indicators System. Clim Change 135:85–96

    CAS  Article  Google Scholar 

  25. McMaster GS, Wilhelm WW (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291–300. https://doi.org/10.1016/s0168-1923(97)00027-0

    Article  Google Scholar 

  26. Meng F et al (2016) Changes in phenological sequences of alpine communities across a natural elevation gradient. Agric For Meteorol 224:11–16. https://doi.org/10.1016/j.agrformet.2016.04.013

    Article  Google Scholar 

  27. Meyer C, Weigelt P, Kreft H (2016) Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol Lett 19:992–1006

    Article  PubMed  Google Scholar 

  28. Miller-Rushing AJ, Primack RB, Primack D, Mukunda S (2006) Photographs and herbarium specimens as tools to document phenological changes in response to global warming. Am J Bot 93:1667–1674

    Article  PubMed  Google Scholar 

  29. Mohandass D (2015) Increasing temperature causes flowering onset time changes of alpine ginger Roscoea in the Central Himalayas. J Asia-Pacific Biodiv 8:191–198

    Article  Google Scholar 

  30. Morellato LPC et al (2016) Linking plant phenology to conservation biology. Biol Conserv 195:60–72. https://doi.org/10.1016/j.biocon.2015.12.033

    Article  Google Scholar 

  31. Morris RA, Dou L, Hanken J, Kelly M, Lowery DB et al (2013) Semantic annotation of mutable data. PLoS ONE 8(11):e76093

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Muggeo VMR (2003) Estimating regression models with unknown break-points. Stat Med 22(19):3055–3071

    Article  PubMed  Google Scholar 

  33. Munson SM, Sher AA (2015) Long-term shifts in the phenology of rare and endemic Rocky Mountain plants. Am J Bot 102:1268–1276. https://doi.org/10.3732/ajb.1500156

    CAS  Article  PubMed  Google Scholar 

  34. Park IW (2012) Digital herbarium archives as a spatially extensive, taxonomically discriminate phenological record; a comparison to MODIS satellite imagery. Int J Biometeorol 56:1179–1182

    Article  PubMed  Google Scholar 

  35. Park DS, Davis CC (2017) Implications and alternatives of assigning climate data to geographical centroids. J Biogeogr 44(10):2188–2198

    Article  Google Scholar 

  36. Park IW, Schwartz MD (2015) Long-term herbarium records reveal temperature-dependent changes in flowering phenology in the southeastern USA. Int J Biometeorol 59:347–355. https://doi.org/10.1007/s00484-014-0846-0

    Article  PubMed  Google Scholar 

  37. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  38. Parmesan C, Hanley ME (2015) Plants and climate change: complexities and surprises. Ann Bot 116:849–864. https://doi.org/10.1093/aob/mcv169

    Article  PubMed  PubMed Central  Google Scholar 

  39. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  40. Rawal DS, Kasel S, Keatley MR, Nitschke CR (2015) Herbarium records identify sensitivity of flowering phenology of eucalypts to climate: implications for species response to climate change. Austral Ecol 40:117–125. https://doi.org/10.1111/aec.12183

    Article  Google Scholar 

  41. Robbirt KM, Davy AJ, Hutchings MJ, Roberts DL (2011) Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. J Ecol 99:235–241. https://doi.org/10.1111/j.1365-2745.2010.01727.x

    Article  Google Scholar 

  42. Russelle MP, Wilhelm WW, Olson RA, Power JF (1984) Growth analysis based on degree days. Crop Sci 24:28–32. https://doi.org/10.2135/cropsci1984.0011183X002400010007x

    Article  Google Scholar 

  43. Schmidt-Lebuhn AN, Knerr NJ, Kessler M (2013) Non-geographic collecting biases in herbarium specimens of Australian daisies (Asteraceae). Biodivers Conserv 22:905–919. https://doi.org/10.1007/s10531-013-0457-9

    Article  Google Scholar 

  44. Suhrbier L, Kusber WH, Tschöpe O, Güntsch A, Berendsohn WG (2017) AnnoSys—implementation of a generic annotation system for schema-based data using the example of biodiversity collection data. Database (Oxford)(1):bax018. https://doi.org/10.1093/database/bax018

  45. Thiers B (2017) Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium, New York

    Google Scholar 

  46. Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573. https://doi.org/10.1126/science.aaa4984

    CAS  Article  PubMed  Google Scholar 

  47. U.S. Environmental Protection Agency (2016) Climate change indicators in the United States, 2016, 4th edn. EPA 430-R-16-004. www.epa.gov/climate-indicators

  48. USDA, NRCS (2017) The plants database. National Plant Data Team, Greensboro. http://plants.usda.gov

  49. Walther GR et al (2002) Ecological responses to recent climate change. Nature 416:389–395. https://doi.org/10.1038/416389a

    CAS  Article  PubMed  Google Scholar 

  50. Wheeler JA et al (2016) The snow and the willows: earlier spring snowmelt reduces performance in the low-lying alpine shrub Salix herbacea. J Ecol 104:1041–1050. https://doi.org/10.1111/1365-2745.12579

    CAS  Article  Google Scholar 

  51. White SN, Boyd NS, Van Acker RC (2015) Temperature thresholds and growing-degree-day models for red sorrel (Rumex acetosella) ramet sprouting, emergence, and flowering in wild blueberry. Weed Sci 63:254–263. https://doi.org/10.1614/ws-d-14-00048.1

    Article  Google Scholar 

  52. Wieczorek J et al (2012) Darwin core: an evolving community-developed biodiversity data standard. PLoS ONE 7:e29715. https://doi.org/10.1371/journal.pone.0029715

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Willis CG, Ellwood ER, Primack RB et al (2017a) Old plants, new tricks: phenological research using herbarium specimens trends. Ecol Evol. https://doi.org/10.1016/j.tree.2017.03.015

    Google Scholar 

  54. Willis CG, Law E, Williams AC et al (2017b) CrowdCurio: an online crowdsourcing platform to facilitate climate change studies using herbarium specimens. New Phytol 215(1):479–488

    Article  PubMed  Google Scholar 

  55. Wolf AA, Zavaleta ES, Selmants PC (2017) Flowering phenology shifts in response to biodiversity loss. Proc Natl Acad Sci USA 114:3463–3468

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y, Dong S, Gao Q, Liu S, Zhou H, Ganjurjav H, Wang X (2016) Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau. Sci Total Environ 562:353–363. https://doi.org/10.1016/j.scitotenv.2016.03.221

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to our long-time volunteer, Mo Ewing, for helping to pull together the data used in these analyses and reviewer comments that improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rebecca A. Hufft.

Additional information

Communicated by David Hawksworth.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hufft, R.A., DePrenger-Levin, M.E., Levy, R.A. et al. Using herbarium specimens to select indicator species for climate change monitoring. Biodivers Conserv 27, 1487–1501 (2018). https://doi.org/10.1007/s10531-018-1505-2

Download citation

Keywords

  • Phenology
  • Southern Rocky Mountains
  • Flowering times
  • Temperature
  • Precipitation
  • Growing degree days