Functional and taxonomic perspectives for understanding the underlying mechanisms of native and alien plant distributions

Abstract

Land-use changes often facilitate alien species invasion, impacting on biodiversity and ecosystem processes at the regional scale. Transport infrastructure is a potential corridor for biological invasion, but processes underlying invasion of alien species from human settlements along transport networks are uncertain. We surveyed alien and native plant species and their functional traits in roadside vegetation in Shiretoko National Park, Japan. The site is unique because there is a single invasion source (i.e., town). Vegetation, environmental and spatial factors were measured in 362 quadrats on two transects established along roads. Mean species richness within each quadrat (taxonomic α-diversity) was higher for alien assemblages, whereas mean functional richness (functional α-diversity) was higher for native assemblages. Alien species shared similar traits as generalists, which show lower functional diversity than specialists. Functional α-diversity of alien assemblages decreased with increasing distance from the source town, and the nestedness-resultant component of functional β-diversity of alien assemblages accounted for a relatively high proportion of their total functional β-diversity. Alien species with high dispersal ability were widely distributed, whereas other alien species were still limited to areas adjacent to the human settlement. Alien species showed a greater probability of having seed floss, lower percentage of perennial species, and lower seed dry mass than native species. Thus, alien species showed superior dispersal and competitive abilities compared with native species, and exclusion of all alien species is likely impractical. Consideration of functional traits may aid selection of alien species of particular concern for implementation of control and extermination measures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol Conserv 132:183–198. https://doi.org/10.1016/j.biocon.2006.03.023

    Article  Google Scholar 

  2. Antonio CMD, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23:63–87

    Article  Google Scholar 

  3. Arévalo JR, Delgado JD, Otto R et al (2005) Distribution of alien vs. native plant species in roadside communities along an altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspect Plant Ecol Evol Syst 7:185–202. https://doi.org/10.1016/j.ppees.2005.09.003

    Article  Google Scholar 

  4. Augspurger CK, Hogan KP (1983) Wind dispersal of fruits with variable seed number in a tropical tree (Lonchocarpus pentaphyllus: Leguminosae). Am J Bot 70:1031–1037

    Article  Google Scholar 

  5. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  6. Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob Ecol Biogeogr 21(12):1223–1232. https://doi.org/10.1111/j.1466-8238.2011.00756.x

    Article  Google Scholar 

  7. Baselga A, Lobo JM, Svenning J-C et al (2012) Dispersal ability modulates the strength of the latitudinal richness gradient in European beetles. Glob Ecol Biogeogr 21:1106–1113. https://doi.org/10.1111/j.1466-8238.2011.00753.x

    Article  Google Scholar 

  8. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349. https://doi.org/10.2307/1942268

    Article  Google Scholar 

  9. Brooks ML, Antonio CMD, Richardson DM et al (2004) Effects of invasive alien plants on fire regimes. Bioscience 54:677–688

    Article  Google Scholar 

  10. Byun C, de Blois S, Brisson J (2013) Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J Ecol 101:128–139. https://doi.org/10.1111/1365-2745.12016

    Article  Google Scholar 

  11. Christen DC, Matlack GR (2009) The habitat and conduit functions of roads in the spread of three invasive plant species. Biol Invasions 11:453–465. https://doi.org/10.1007/s10530-008-9262-x

    Article  Google Scholar 

  12. Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228. https://doi.org/10.1890/080216

    Article  Google Scholar 

  13. Clough Y, Holzschuh A, Gabriel D et al (2007) Alpha and beta diversity of arthropods and plants in organically and conventionally managed wheat fields. J Appl Ecol 44:804–812. https://doi.org/10.1111/j.1365-2664.2007.01294.x

    Article  Google Scholar 

  14. Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume stable. Ecology 87:1465–1471

    Article  PubMed  Google Scholar 

  15. Czech B, Krausman PR, Devers PK (2000) Economic associations among causes of species endangerment in the United States. Bioscience 50:593. https://doi.org/10.1641/0006-3568(2000)050[0593:EAACOS]2.0.CO;2

  16. Degasperis BG, Motzkin G (2016) Windows of opportunity: historical and ecological controls on Berberis thunbergii invasions. Ecology 88:3115–3125

    Article  Google Scholar 

  17. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139. https://doi.org/10.1016/S0169-5347(98)01554-7

    CAS  Article  PubMed  Google Scholar 

  18. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523. https://doi.org/10.1007/s10021-002-0151-3

    CAS  Article  Google Scholar 

  19. Fallon C, Borders B, Lee-mäder E, Black SH (2015) Milkweeds and monarchs in the Western US. A Xerces Society Guide

  20. Fargione J, Brown CS, Tilman D (2003) Community assembly and invasion: an experimental test of neutral versus niche processes. Proc Natl Acad Sci USA 100:8916–8920

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Findlay CS, Bourdages J (2000) Response time of wetland biodiversity to road construction on adjacent lands. Conserv Biol 14:86–94

    Article  Google Scholar 

  22. Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207–231

    Article  Google Scholar 

  23. Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23:695–703. https://doi.org/10.1016/j.tree.2008.07.013

    Article  PubMed  Google Scholar 

  24. Gaertner M, Den Breeyen A, Hui C, Richardson DM (2009) Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Prog Phys Geogr 33:319–338. https://doi.org/10.1177/0309133309341607

    Article  Google Scholar 

  25. Gallien L, Münkemüller T, Albert CH et al (2010) Predicting potential distributions of invasive species: where to go from here? Divers Distrib 16:331–342. https://doi.org/10.1111/j.1472-4642.2010.00652.x

    Article  Google Scholar 

  26. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometric 27:857–871

    Article  Google Scholar 

  27. Grotkopp E, Rejmánek M, Rost TL (2002) Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. Am Nat 159:2002

    Google Scholar 

  28. Heady HF (1977) Valley grassland. In: Barbour MG, Major J (eds) Terrestrial vegetation of California. Wiley, New York, pp 491–514

    Google Scholar 

  29. Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Midl Nat 93:145–159

    Article  Google Scholar 

  30. Ibisch PL, Hoffmann MT, Kreft S et al (2016) A global map of roadless areas and their conservation status. Science 80(354):1423–1427

    Article  Google Scholar 

  31. Ibrahim AH, Al-Zahrani AA, Wahba HH (2016) The effect of natural and artificial fruit dehiscence on floss properties, seed germination and protein expression in Calotropis procera. Acta Physiol Plant 38:1–11. https://doi.org/10.1007/s11738-015-2033-2

    CAS  Article  Google Scholar 

  32. Johnston FM, Pickering CM (2001) Alien plants in the Australian alps. Mt Res Dev 21:284–291. https://doi.org/10.1659/0276-4741(2001)021[0284:APITAA]2.0.CO;2

  33. Kattge J, Diaz S, Lavorel S et al (2011) TRY—a global database of plant traits. Glob Chang Biol 17:2905–2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x

    Article  PubMed Central  Google Scholar 

  34. Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164. https://doi.org/10.2307/3235676

    Article  Google Scholar 

  35. Kilpatrick AM (2011) Globalization, land use, and the invasion of west nile virus. Science 80(334):323–327. https://doi.org/10.1126/science.1201010

    Article  Google Scholar 

  36. Knapp S, Kühn I, Schweiger O, Klotz S (2008) Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecol Lett 11(10):1054–1064

    Article  PubMed  Google Scholar 

  37. Laughlin DC (2014) Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecol Lett 17:771–784. https://doi.org/10.1111/ele.12288

    Article  PubMed  Google Scholar 

  38. Liao C, Peng R, Luo Y et al (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714. https://doi.org/10.1111/j.1469-8137.2007.02290.x

    CAS  Article  PubMed  Google Scholar 

  39. Lloret F, Médail F, Brundu G, Hulme PE (2004) Local and regional abundance of exotic plant species on Mediterranean islands: are species traits important ? Glob Ecol Biogeogr 13:37–45

    Article  Google Scholar 

  40. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’ s worst invasive alien species. Invasive Species Specialist Group, Auckland

    Google Scholar 

  41. Marini L, Prosser F (2013) Beta-diversity patterns elucidate mechanisms of alien plant invasion in mountains. Glob Ecol Biogeogr 22:450–460. https://doi.org/10.1111/geb.12006

    Article  Google Scholar 

  42. McDowell S (2002) Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). Am J Bot 89:1431–1438. https://doi.org/10.3732/ajb.89.9.1431

    Article  PubMed  Google Scholar 

  43. McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  44. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. https://doi.org/10.1016/S0169-5347(99)01679-1

    CAS  Article  PubMed  Google Scholar 

  45. Mori AS, Ota AT, Fujii S, Seino T (2015) Biotic homogenization and differentiation of soil faunal communities in the production forest landscape: taxonomic and functional perspectives. Oecologia 177:533–544. https://doi.org/10.1007/s00442-014-3111-7

    Article  PubMed  Google Scholar 

  46. Morlon H, Chuyong G, Condit R et al (2008) A general framework for the distance-decay of similarity in ecological communities. Ecol Lett 11:904–917. https://doi.org/10.1111/j.1461-0248.2008.01202.x

    Article  PubMed  PubMed Central  Google Scholar 

  47. Morse DH, Schmitt J (1985) Propagule size, dispersal ability, and seedling performance in Asclepias syriaca. Oecologia 67:372–379

    Article  PubMed  Google Scholar 

  48. Muller B, Garnier E (1990) Components of relative growth rate and sensitivity to nitrogen availability in annual and perennial species of Bromus. Oecologia 84:513–518

    CAS  Article  PubMed  Google Scholar 

  49. Naeem S, Knops JM, Tilman D et al (2000) Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91:97–108. https://doi.org/10.1034/j.1600-0706.2000.910108.x

    Article  Google Scholar 

  50. Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878. https://doi.org/10.1046/j.1365-2699.1999.00305.x

    Article  Google Scholar 

  51. Okimura T, Koide D, Mori AS (2016) distributions of native and alien plant assemblages. Biodivers Conserv 25:995–1009. https://doi.org/10.1007/s10531-016-1103-0

    Article  Google Scholar 

  52. Olden JD (2006) Biotic homogenization: a new research agenda for conservation biogeography. J Biogeogr 33:2027–2039. https://doi.org/10.1111/j.1365-2699.2006.01572.x

    Article  Google Scholar 

  53. Olden JD, Poff NL, Douglas MR et al (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24. https://doi.org/10.1016/j.tree.2003.09.010

    Article  PubMed  Google Scholar 

  54. Paiaro V, Cabido M, Pucheta E (2011) Altitudinal distribution of native and alien plant species in roadside communities from central Argentina. Austral Ecol 36:176–184. https://doi.org/10.1111/j.1442-9993.2010.02134.x

    Article  Google Scholar 

  55. Pakeman RJ (2011) Functional diversity indices reveal the impacts of land use intensification on plant community assembly. J Ecol 99:1143–1151. https://doi.org/10.1111/j.1365-2745.2011.01853.x

    Article  Google Scholar 

  56. Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of South-Central Chile. Conserv Biol 18:238–248. https://doi.org/10.1111/j.1523-1739.2004.00300.x

    Article  Google Scholar 

  57. Pavoine S, Bonsall MB (2011) Measuring biodiversity to explain community assembly: a unified approach. Biol Rev 86:792–812. https://doi.org/10.1111/j.1469-185X.2010.00171.x

    CAS  Article  PubMed  Google Scholar 

  58. Perez-Harguindeguy N, Diaz S, Garnier E et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  59. Purschke O, Schmid BC, Sykes MT et al (2013) Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: insights into assembly processes. J Ecol 101:857–866. https://doi.org/10.1111/1365-2745.12098

    Article  Google Scholar 

  60. Pyšek P, Pyšek A (1995) Invasion by Heracleum mantegazzianum in different habitats in the Czech Republic. J Veg Sci 6:711–718. https://doi.org/10.2307/3236442

    Article  Google Scholar 

  61. Pyšek P, Jarošík V, Hulme PE et al (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x

    Article  Google Scholar 

  62. Qian H (2009) Beta diversity in relation to dispersal ability for vascular plants in North America. Glob Ecol Biogeogr 18:327–332. https://doi.org/10.1111/j.1466-8238.2009.00450.x

    Article  Google Scholar 

  63. Rao CR (1982) Diversity and dissimilarity coefficients: a unified approach. Theor Popul Biol 21:24–43

    Article  Google Scholar 

  64. Scurfield G (1963) The effects of temperature on the early vegetative growth of Phalaris canariensis L. and P. tuberosa L. Crop Pasture Sci 14:165–179

    Article  Google Scholar 

  65. Selva N, Kreft S, Kati V, Jonsson MSB (2011) Roadless and low-traffic areas as conservation targets in Europe. Environ Manage 48:865–877. https://doi.org/10.1007/s00267-011-9751-z

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shiretoko World Natural Heritage Site Scientific Council (2013) A working report for the Ezo sika deer management. http://shiretoko-whc.com/data/meeting/ezoshika_wg/h25/shikawg_H2502_gijiroku.pdf. Accessed 6 Sept 2015

  67. Sullivan JJ, Timmins SM, Williams PA (2005) Movement of exotic plants into coastal native forests from gardens in northern New Zealand. N Z J Ecol 29:1–10

    Google Scholar 

  68. Tecco PA, Díaz S, Cabido M, Urcelay C (2010) Functional traits of alien plants across contrasting climatic and land-use regimes: do aliens join the locals or try harder than them? J Ecol 98:17–27. https://doi.org/10.1111/j.1365-2745.2009.01592.x

    Article  Google Scholar 

  69. The Forest Agency of Japan (2013) A Shiretoko white paper: annaul management report for Shiretoko World Natural Heritage Site. http://shiretoko-whc.com/data/research/annual_report/H25annual_report.pdf. Accessed 6 Sept 2015

  70. The Forest Agency of Japan (2014) A Shiretoko white paper: annaul management report for Shiretoko World Natural Heritage Site. http://dc.shiretoko-whc.com/data/research/annual_report/H26annual_report.pdf

  71. Tobler WR (1970) A computer movie simulating urban growth in the detroit region. Econ Geogr 46:234–240. https://doi.org/10.1126/science.11.277.620

    Article  Google Scholar 

  72. Trentanovi G, Von Der Lippe M, Sitzia T et al (2013) Biotic homogenization at the community scale: disentangling the roles of urbanization and plant invasion. Divers Distrib 19:738–748. https://doi.org/10.1111/ddi.12028

    Article  Google Scholar 

  73. Tyser RW, Worley CA (1992) Alien flora in grasslands adjacent to road and trail corridors in Glacier National Park, Montana (USA). Conserv Biol 6:253–262

    Article  Google Scholar 

  74. Van Kleunen M, Weber E, Fischer M (2010) A meta analysis of trait differences between invasive and non invasive plant species. Ecol Lett 13:235–245. https://doi.org/10.1007/s00442-012-2430-9

    Article  PubMed  Google Scholar 

  75. Vilà M, Tessier M, Suehs CM et al (2006) Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J Biogeogr 33:853–861. https://doi.org/10.1111/j.1365-2699.2005.01430.x

    Article  Google Scholar 

  76. Villéger S, Philip MN, Mouillot D (2011) The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecol Lett 14:561–568. https://doi.org/10.1111/j.1461-0248.2011.01618.x

    Article  PubMed  Google Scholar 

  77. Villéger S, Grenouillet G, Brosse S (2013) Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Glob Ecol Biogeogr 22:671–681. https://doi.org/10.1111/geb.12021

    Article  Google Scholar 

  78. Violle C, Navas M, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x

    Article  Google Scholar 

  79. Vitousek PM (1990) Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57:7–13

    Article  Google Scholar 

  80. Vitousek PM, D’antonio CM, Loope LL et al (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 12:1–16

    Google Scholar 

  81. Von Der Lippe M, Kowarik I (2007) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv Biol 21:986–996. https://doi.org/10.1111/j.1523-1739.2007.00722.x

    Article  PubMed  Google Scholar 

  82. Williamson J, Harrison S (2002) Biotic and abiotic limits to the spread of exotic revegetation species. Ecol Appl 12:40–51. https://doi.org/10.1890/1051-0761(2002)012[0040:BAALTT]2.0.CO;2

  83. Wilson JRU, Dormontt EE, Prentis PJ et al (2009) Something in the way you move: dispersal pathways affect invasion success something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144. https://doi.org/10.1016/j.tree.2008.10.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Young Scientists from the Japan Society for the Promotion of Science (JSPS) (Grant No. 25712015) awarded to ASM. Logistical support for the field study was provided by the Shiretoko Foundation. We thank D. Koide, K. Nishizawa, S. Tatsumi, R. Kitagawa, Y. Takagi, M. Kasahara, S. Fujii, T. Ohgue, M. Maeda, and S. Qian for their assistance in this study.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tokiyo Okimura or Akira S. Mori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article belongs to the Topical Collection: Invasive species.

Communicated by David Hawksworth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 53 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okimura, T., Mori, A.S. Functional and taxonomic perspectives for understanding the underlying mechanisms of native and alien plant distributions. Biodivers Conserv 27, 1453–1469 (2018). https://doi.org/10.1007/s10531-018-1503-4

Download citation

Keywords

  • Beta diversity
  • Functional trait
  • Dispersal ability
  • Transport infrastructure