Evaluating the long-term effectiveness of terrestrial protected areas: a 40-year look at forest bird diversity

Abstract

Designation of protected areas has become one of the primary approaches to reducing biodiversity loss, with the number of new set-asides growing in the last decades largely from the addition of small protected areas to the global portfolio. Information on the effectiveness of protected areas to stave off species extinction is surprisingly scarce, with almost nothing known about the long-term fate of biodiversity in smaller protected temperate forests. Here we use an uncommonly complete biodiversity inventory of a small protected deciduous forest to evaluate its performance over a 40-year time span. We tracked bird compositional changes using a within-season repeat sampling protocol allowing us unusual accuracy in documenting species gains and losses through time. We found that nearly half the species found in the forest at the time of initial protection are now extirpated, and that yearly forest species composition is highly dynamic. Ground nesting and migratory species were more likely to be extirpated than were canopy breeders, cavity nesters, and year-round residents. Regional population declines explained differences in extirpation probability across species indicating that the study population, to some extent, mirrored larger regional dynamics. However, a substantial number of species declined in abundance within the forest while experiencing no regional declines, or even regional increases, in abundance. Our results reinforce that even with protected status, small forest fragments may not provide the conservation benefits that protection is meant to provide.

This is a preview of subscription content, log in to check access.

Fig. 1

Imagery from Google Earth (2016)

Fig. 2
Fig. 3
Fig. 4

Photo credits: Jim Quinn (left) and Myla Aronson (right)

References

  1. Ando A, Camm J, Polasky S, Solow A (1998) Species distributions, land values, and efficient conservation. Science 279:2126–2128. https://doi.org/10.1126/science.279.5359.2126

    Article  CAS  PubMed  Google Scholar 

  2. Andrén H (1996) Population responses to habitat fragmentation: statistical power and the random sample hypothesis. Oikos 76:235–242. https://doi.org/10.2307/3546195

    Article  Google Scholar 

  3. Aronson MFJ (2007) Ecological change by alien plants in an urban landscape. PhD Thesis, Rutgers University, New Brunswick

  4. Aronson MFJ, Handel SN (2011) Deer and invasive plant species suppress forest herbaceous communities and canopy tree regeneration. Nat Areas J 31:400–407. https://doi.org/10.3375/043.031.0410

    Article  Google Scholar 

  5. Augustine DJ, Jordan PA (1998) Predictors of white-tailed deer grazing intensity in fragmented deciduous forests. J Wildl Manag 62:1076–1085. https://doi.org/10.2307/3802560

    Article  Google Scholar 

  6. Baiser B, Lockwood JL, La Puma D, Aronson MFJ (2008) A perfect storm: two ecosystem engineers interact to degrade deciduous forests of New Jersey. Biol Invasions 10:785–795. https://doi.org/10.1007/s10530-008-9247-9

    Article  Google Scholar 

  7. Bartoń K (2018) MuMIn: multi-model inference

  8. Blake JG, Loiselle BA (2001) Bird assemblages in second-growth and old-growth forests, Costa Rica: perspectives from mist nets and point counts. Auk 118:304–326. https://doi.org/10.2307/4089793

    Article  Google Scholar 

  9. Brittingham MC, Temple SA (1983) Have cowbirds caused forest songbirds to decline? BioScience 33:31–35. https://doi.org/10.2307/1309241

    Article  Google Scholar 

  10. Brown DG, Johnson KM, Loveland TR, Theobald DM (2005) Rural land-use trends in the Conterminous United States, 1950–2000. Ecol Appl 15:1851–1863. https://doi.org/10.1890/03-5220

    Article  Google Scholar 

  11. Bruner AG, Gullison RE, Balmford A (2004) Financial costs and shortfalls of managing and expanding protected-area systems in developing countries. Bioscience 54:1119–1126. https://doi.org/10.1641/0006-3568(2004)054%5b1119:fcasom%5d2.0.co;2

    Article  Google Scholar 

  12. Buell MF (1957) William L Hutcheson Memorial forest bulletin. The State University, New Brunswick

    Google Scholar 

  13. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. https://doi.org/10.1177/0049124104268644

    Article  Google Scholar 

  14. Butaye J, Jacquemyn H, Honnay O et al (2002) The species pool concept applied to forests in a fragmented landscape: dispersal limitation versus habitat limitation. J Veg Sci 13:27–34. https://doi.org/10.1658/1100-9233(2002)013%5b0027:tspcat%5d2.0.co;2

    Article  Google Scholar 

  15. Cameron C, Windmeijer F (2012) R-squared measures for count data regression models with applications to health-care utilization. J Bus Econ Stat. https://doi.org/10.2307/1392433

    Article  Google Scholar 

  16. Chape S, Harrison J, Spalding M, Lysenko I (2005) Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos Trans R Soc Lond B 360:443–455. https://doi.org/10.1098/rstb.2004.1592

    Article  CAS  Google Scholar 

  17. Côté SD, Rooney TP, Tremblay J-P et al (2004) Ecological impacts of deer overabundance. Annu Rev Ecol Evol Syst 35:113–147. https://doi.org/10.1146/annurev.ecolsys.35.021103.105725

    Article  Google Scholar 

  18. Daughtrey ML, Hibben CR (1994) Dogwood anthracnose: a new disease threatens two native cornus species. Annu Rev Phytopathol 32:61–73. https://doi.org/10.1146/annurev.py.32.090194.000425

    Article  Google Scholar 

  19. Davis MD (1993) Old growth in the East: a survey. Cenozoic Society, Richmond

    Google Scholar 

  20. Dearden P, Bennett M, Johnston J (2005) Trends in global protected area governance, 1992–2002. Environ Manag 36:89–100. https://doi.org/10.1007/s00267-004-0131-9

    Article  Google Scholar 

  21. DeFries R, Hansen A, Newton AC, Hansen MC (2005) Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol Appl 15:19–26. https://doi.org/10.1890/03-5258

    Article  Google Scholar 

  22. Diamond JM (1969) Avifaunal equilibria and species turnover rates on the Channel Islands of California. Proc Natl Acad Sci USA 64:57–63

    Article  CAS  PubMed  Google Scholar 

  23. Edwards AM, Phillips RA, Watkins NW et al (2007) Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449:1044–1048. https://doi.org/10.1038/nature06199

    Article  CAS  PubMed  Google Scholar 

  24. Faaborg J, Holmes RT, Anders AD et al (2010) Conserving migratory land birds in the new world: do we know enough? Ecol Appl 20:398–418

    Article  Google Scholar 

  25. Fisichelli NA, Abella SR, Peters M, Krist FJ (2014) Climate, trees, pests, and weeds: change, uncertainty, and biotic stressors in eastern U.S. national park forests. For Ecol Manag 327:31–39. https://doi.org/10.1016/j.foreco.2014.04.033

    Article  Google Scholar 

  26. Fujiwara M, Caswell H (2002) A general approach to temporary emigration in mark–recapture analysis. Ecology 83:3266–3275. https://doi.org/10.1890/0012-9658(2002)083%5b3266:agatte%5d2.0.co;2

    Article  Google Scholar 

  27. Gaston KJ, Jackson SF, Cantú-Salazar L, Cruz-Piñón G (2008) The ecological performance of protected areas. Annu Rev Ecol Evol Syst 39:93–113. https://doi.org/10.1146/annurev.ecolsys.39.110707.173529

    Article  Google Scholar 

  28. Geldmann J, Coad L, Barnes M et al (2015) Changes in protected area management effectiveness over time: a global analysis. Biol Conserv 191:692–699. https://doi.org/10.1016/j.biocon.2015.08.029

    Article  Google Scholar 

  29. Gurd DB, Nudds TD, Rivard DH (2008) Conservation of mammals in eastern North American wildlife reserves: how small is too small? Conserv Biol 15:1355–1363. https://doi.org/10.1111/j.1523-1739.2001.00188.x

    Article  Google Scholar 

  30. Hannah L, Midgley G, Andelman S et al (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138. https://doi.org/10.1890/1540-9295(2007)5%5b131:paniac%5d2.0.co;2

    Article  Google Scholar 

  31. Hanski I (2005) Landscape fragmentation, biodiversity loss and the societal response: the longterm consequences of our use of natural resources may be surprising and unpleasant. EMBO Rep 6:388–392. https://doi.org/10.1038/sj.embor.7400398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hobbs RJ, Yates S, Mooney HA (2007) Long-term data reveal complex dynamics in grassland in relation to climate and disturbance. Ecol Monogr 77:545–568. https://doi.org/10.1890/06-1530.1

    Article  Google Scholar 

  33. Iknayan KJ, Tingley MW, Furnas BJ, Beissinger SR (2014) Detecting diversity: emerging methods to estimate species diversity. Trends Ecol Evol 29:97–106. https://doi.org/10.1016/j.tree.2013.10.012

    Article  PubMed  Google Scholar 

  34. Jokimäki J, Huhta E (2000) Artificial nest predation and abundance of birds along an urban gradient. Condor 102:838–847. https://doi.org/10.1650/0010-5422(2000)102%5b0838:anpaao%5d2.0.co;2

    Article  Google Scholar 

  35. Kéry M, Spillmann JH, Truong C, Holderegger R (2006) How biased are estimates of extinction probability in revisitation studies? J Ecol 94:980–986. https://doi.org/10.1111/j.1365-2745.2006.01151.x

    Article  Google Scholar 

  36. Kissling ML, Garton EO (2006) Estimating detection probability and density from point-count surveys: a combination of distance and double-observer sampling. Auk 123:735–752. https://doi.org/10.1642/0004-8038(2006)123%5b735:edpadf%5d2.0.co;2

    Article  Google Scholar 

  37. Laurance WF, Carolina Useche D, Rendeiro J et al (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489:290–294. https://doi.org/10.1038/nature11318

    Article  CAS  PubMed  Google Scholar 

  38. Leck CF, Murray BG, Swinebroad J (1988) Long-term changes in the breeding bird populations of a New Jersey forest. Biol Conserv 46:145–157. https://doi.org/10.1016/0006-3207(88)90097-3

    Article  Google Scholar 

  39. Link WA, Sauer JR (1998) Estimating population change from count data: application to the North American Breeding Bird Survey. Ecol Appl 8:258–268. https://doi.org/10.1890/1051-0761(1998)008%5b0258:epcfcd%5d2.0.co;2

    Article  Google Scholar 

  40. Loss SR, Will T, Marra PP (2013) The impact of free-ranging domestic cats on wildlife of the United States. Nat Commun 4:1396. https://doi.org/10.1038/ncomms2380

    Article  CAS  PubMed  Google Scholar 

  41. Lovett GM, Canham CD, Arthur MA et al (2006) Forest ecosystem responses to exotic pests and pathogens in eastern North America. Bioscience 56:395–405. https://doi.org/10.1641/0006-3568(2006)056%5b0395:fertep%5d2.0.co;2

    Article  Google Scholar 

  42. MacKenzie DI, Kendall WL (2002) How Should Detection Probability Be Incorporated into Estimates of Relative Abundance? Ecology 83:2387–2393. https://doi.org/10.1890/0012-9658(2002)083[2387:HSDPBI]2.0.CO;2

    Article  Google Scholar 

  43. Maiorano L, Falcucci A, Boitani L (2008) Size-dependent resistance of protected areas to land-use change. Proc R Soc Lond B 275:1297–1304. https://doi.org/10.1098/rspb.2007.1756

    Article  Google Scholar 

  44. Mcdonald RI, Kareiva P, Forman RTT (2008) The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol Conserv 141:1695–1703. https://doi.org/10.1016/j.biocon.2008.04.025

    Article  Google Scholar 

  45. Meiners SJ (2007) Native and exotic plant species exhibit similar population dynamics during succession. Ecology 88:1098–1104. https://doi.org/10.1890/06-1505

    Article  PubMed  Google Scholar 

  46. Metcalfe K, Delavenne J, Garcia C et al (2013) Impacts of data quality on the setting of conservation planning targets using the species-area relationship. Divers Distrib 19:1–13. https://doi.org/10.1111/j.1472-4642.2012.00921.x

    Article  Google Scholar 

  47. Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451. https://doi.org/10.1073/pnas.091093398

    Article  CAS  PubMed  Google Scholar 

  48. Oksanen J, Blanchet FG, Friendly M, et al (2017) Vegan: community ecology package

  49. Opdam P (1991) Metapopulation theory and habitat fragmentation: a review of holarctic breeding bird studies. Landsc Ecol 5:93–106. https://doi.org/10.1007/bf00124663

    Article  Google Scholar 

  50. Paillet Y, Bergès L, Hjältén J et al (2010) Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol 24:101–112. https://doi.org/10.1111/j.1523-1739.2009.01399.x

    Article  Google Scholar 

  51. Podani J (1994) Multivariate data analysis in ecology and systematics: a methodological guide to the SYN-TAX 5.0 Package. SPB Academic Publishers, The Hague

    Google Scholar 

  52. Pollock KH (1982) A capture–recapture design robust to unequal probability of capture. J Wildl Manag 46:752–757. https://doi.org/10.2307/3808568

    Article  Google Scholar 

  53. Ralph CJ, Geupel GR, Pyle P et al (1993) Handbook of field methods for monitoring landbirds. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany

    Google Scholar 

  54. Rayner L, Lindenmayer DB, Wood JT et al (2014) Are protected areas maintaining bird diversity? Ecography 37:43–53. https://doi.org/10.1111/j.1600-0587.2013.00388.x

    Article  Google Scholar 

  55. Robb GN, McDonald RA, Chamberlain DE et al (2008) Winter feeding of birds increases productivity in the subsequent breeding season. Biol Lett 4:220–223. https://doi.org/10.1098/rsbl.2007.0622

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rodrigues ASL, Akçakaya HR, Andelman SJ et al (2004) Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54:1092–1100. https://doi.org/10.1641/0006-3568(2004)054%5b1092:ggaprf%5d2.0.co;2

    Article  Google Scholar 

  57. Roff DA (1973) On the accuracy of some mark–recapture estimators. Oecologia 12:15–34. https://doi.org/10.1007/bf00345468

    Article  CAS  PubMed  Google Scholar 

  58. Sauer JR (2011) The North American Breeding Bird Survey

  59. Sauer JR, Niven DK, Hines JE et al (2017) The north american breeding bird survey, Results and Analysis 1966–2015

  60. Schoener TW (1983) Rate of species turnover decreases from lower to higher organisms: a review of the data. Oikos 41:372–377. https://doi.org/10.2307/3544095

    Article  Google Scholar 

  61. Sigel BJ, Sherry TW, Young BE (2006) Avian community response to lowland tropical rainforest isolation: 40 years of change at La Selva Biological Station, Costa Rica. Conserv Biol 20:111–121. https://doi.org/10.1111/j.1523-1739.2005.00293.x

    Article  PubMed  Google Scholar 

  62. Sigel BJ, Douglas Robinson W, Sherry TW (2010) Comparing bird community responses to forest fragmentation in two lowland Central American reserves. Biol Conserv 143:340–350. https://doi.org/10.1016/j.biocon.2009.10.020

    Article  Google Scholar 

  63. Sparks TH (2007) Lateral thinking on data to identify climate impacts. Trends Ecol Evol 22:169–171. https://doi.org/10.1016/j.tree.2007.01.003

    Article  PubMed  Google Scholar 

  64. Tingley MW, Beissinger SR (2009) Detecting range shifts from historical species occurrences: new perspectives on old data. Trends Ecol Evol 24:625–633. https://doi.org/10.1016/j.tree.2009.05.009

    Article  PubMed  Google Scholar 

  65. UNEP-WCMC (2016) Protected plant: The World Database on Protected Areas (WDPA)

  66. Veall MR, Zimmermann KF (1996) Pseudo-R2 measures for some common limited dependent variable models. J Econ Surv 10:241–259. https://doi.org/10.1111/j.1467-6419.1996.tb00013.x

    Article  Google Scholar 

  67. Virkkala R, Pöyry J, Heikkinen RK et al (2014) Protected areas alleviate climate change effects on northern bird species of conservation concern. Ecol Evol 4:2991–3003. https://doi.org/10.1002/ece3.1162

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang Y, Finch DM (2002) Consistency of mist netting and point counts in assessing landbird species richness and relative abundance during migration. Condor 104:59–72

    Article  Google Scholar 

  69. Watson JEM, Dudley N, Segan DB, Hockings M (2014) The performance and potential of protected areas. Nature 515:67–73. https://doi.org/10.1038/nature13947

    Article  CAS  PubMed  Google Scholar 

  70. Wesołowski T, Czeszczewik D, Hebda G et al (2015) 40 Years of breeding bird community dynamics in a primeval temperate forest (Białowieża National Park, Poland). Acta Ornithol 50:95–120. https://doi.org/10.3161/00016454ao2015.50.1.010

    Article  Google Scholar 

  71. Western D, Russell S, Cuthill I (2009) The status of wildlife in protected areas compared to non-protected areas of Kenya. PLOS ONE 4:e6140. https://doi.org/10.1371/journal.pone.0006140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Whitcomb RF (1981) Forest island dynamics in man-dominated landscapes. Springer-Verlag, New York

    Google Scholar 

  73. World Conservation Union and UNEP-World Conservation Monitoring Center (2017) World database on protected areas. Version 2017. WCMC, Cambridge

    Google Scholar 

Download references

Acknowledgements

Thank you to Bertram Murray for identifying historical net lane locations, Renee Artigues for help banding, and Dan Merchant for help clearing the banding trails. This work was supported by the USDA National Institute of Food and Agriculture McIntire–Stennis Project Accession Number 1010519 through the New Jersey Agricultural Experiment Station, McIntire–Stennis Project NJ17380. Additional funding came from the Hutcheson Memorial Forest Center.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Brown.

Additional information

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Communicated by Grzegorz Mikusinski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brown, J.A., Lockwood, J.L., Avery, J.D. et al. Evaluating the long-term effectiveness of terrestrial protected areas: a 40-year look at forest bird diversity. Biodivers Conserv 28, 811–826 (2019). https://doi.org/10.1007/s10531-018-01693-5

Download citation

Keywords

  • Conservation
  • Forest bird
  • Long-term monitoring
  • Protected area
  • Forest management
  • Urban forest