Skip to main content

Advertisement

Log in

Spontaneous recovery of functional diversity and rarity of ground-living spiders shed light on the conservation importance of recent woodlands

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Secondary (or recent) woodlands, whose development is favoured by massive farmland abandonment, are increasingly seen as promising habitats that limit losses of biodiversity and ecosystem processes. The importance of temporal forest continuity (i.e. the duration of an uninterrupted forest state) for conservation of the forest fauna has been demonstrated for several taxa, but its influence on functional diversity and conservation importance of communities remains unclear. We studied how temporal continuity can shape taxonomic and functional composition and structure of forest-ground spider communities at a regional scale. According to broad-scale ecological site characteristics, species composition and—to a lesser extent—trait distribution substantially diverged between ancient and recent forest sites. Yet, we found hardly any significant differences in functional β-diversity, community structure, or conservation importance between the two forest categories. The only difference was for functional originality, which quantifies the average functional uniqueness of species within an assemblage: spiders’ communities of the ancient forests was more functionally original than those of the recent woodlands. Thus, in a conservation perspective, our study provides evidence that each forest harbours original species combinations, suggesting that each of them is irreplaceable, especially for ancient forests, which are functionally more original; however, recent woodlands have a high potential to spontaneously recover typical forest fauna communities with very similar structural and functional profiles to those of ancient forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N et al (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18:834–843

    Article  PubMed  PubMed Central  Google Scholar 

  • Assmann T (1999) The ground beetle fauna of ancient and recent woodlands in the lowlands of north-west Germany (Coleoptera, Carabidae). Biodivers Conserv 8:1499–1517

    Article  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeogr 19:134–143

    Article  Google Scholar 

  • Baselga A, Orme CDL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48

    Article  Google Scholar 

  • Bello F, Lepš J, Lavorel S, Moretti M (2007) Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecol 8:163–170

    Article  Google Scholar 

  • Bowen ME, McAlpine CA, House APN, Smith GC (2007) Regrowth forests on abandoned agricultural land: a review of their habitat values for recovering forest fauna. Biol Conserv 140:273–296

    Article  Google Scholar 

  • Brose U, Jonsson T, Berlow EL, Warren P, Banasek-Richter C, Bersier L-F, Blanchard JL, Brey T, Carpenter SR, Blandenier M-FC, Cushing L, Dawah HA, Dell T, Edwards F, Harper-Smith S, Jacob U, Ledger ME, Martinez ND, Memmot J, Mintenbeck K, Pinnegar JK, Rall BC, Rayner TS, Reuman DC, Ruess L, Ulrich W, Williams RJ, Woodward G, Cohen JE (2006) Consumer-resource body-size relationships in natural food webs. Ecology 87:2411–2417

    Article  PubMed  Google Scholar 

  • Buddle CM (2001) Spiders (Araneae) associated with downed woody material in a deciduous forest in central Alberta, Canada. Agr For Entomol 3:241–251

    Article  Google Scholar 

  • Bultman TL, Uetz GW, Brady AR (1982) A comparison of cursorial spider communities along a successional gradient. J Arachnol 10:23–33

    Google Scholar 

  • Buse J (2012) “Ghosts of the past”: flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J Insect Conserv 16:93–102

    Article  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services: functional diversity in ecology and conservation. J Appl Ecol 48:1079–1087

    Article  Google Scholar 

  • Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS ONE 6:e21710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cateau E, Larrieu L, Vallauri D, Savoie J-M, Touroult J, Brustel H (2015) Ancientness and maturity: two complementary qualities of forest ecosystems. C R Biol 338:58–73

    Article  PubMed  Google Scholar 

  • Chase JM (2003) Community assembly: when should history matter? Oecologia 136:489–498

    Article  PubMed  Google Scholar 

  • Davies GM, Gray A (2015) Don’t let spurious accusations of pseudoreplication limit our ability to learn from natural experiments (and other messy kinds of ecological monitoring). Ecol Evol 5(22):5295–5304

    Article  PubMed  PubMed Central  Google Scholar 

  • Desender K, Ervynck A, Tack G (1999) Beetle diversity and historical ecology of woodlands in Flanders. Belg J Zool 129:139–156

    Google Scholar 

  • Dupouey J-L, Dambrine E, Laffite J-D, Moares C (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984

    Article  Google Scholar 

  • Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Global Ecol Biogeogr 16:440–448

    Article  Google Scholar 

  • Flinn KM, Marks PL (2007) Agricultural legacies in forest environments: tree communities, soil properties, and light availability. Ecol Appl 17:452–463

    Article  PubMed  Google Scholar 

  • Fonseca CR, Ganade G (2001) Species functional redundancy, random extinctions and the stability of ecosystems. J Ecol 89:118–125

    Article  Google Scholar 

  • Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23

    Article  Google Scholar 

  • Gallé R (2008) The effect of a naturally fragmented landscape on the spider assemblages. N W J Zool 4:61–71

    Google Scholar 

  • Gallé R, Gallé-Szpisjak N, Torma A (2017) Habitat structure influences the spider fauna of short-rotation poplar plantations more than forest age. Eur J For Res 136:51–58

    Article  Google Scholar 

  • Gobbi M, Ballarin F, Brambilla M, Compostella M, Isaia M, Losapio G, Maffioletti C, Seppi R, Tampucci D, Caccianiga M (2017) Life in harsh environments: carabid and spider trait types and functional diversity on a debris-covered glacier and along its foreland. Ecol Entomol 42(838):848

    Google Scholar 

  • Goßner M, Engel K, Jessel B (2008) Plant and arthropod communities in young oak stands: are they determined by site history? Biodivers Conserv 17:3165–3180

    Article  Google Scholar 

  • Gossner MM, Fonseca CR, Pašalić E, Türke M, Lange M, Weisser WW (2014) Limitations to the use of arthropods as temperate forests indicators. Biodiver Conserv 23:945–962

    Article  Google Scholar 

  • Harvey PR, Nellist DR, Telfer MG (2002) Provisional atlas of British spiders (Arachnida, Araneae). Biological Records Center, Huntington, UK

    Google Scholar 

  • Hermy M, Verheyen K (2007) Legacies of the past in the present-day forest biodiversity: a review of past land-use effects on forest plant species composition and diversity. Ecol Res 22:361–371

    Article  Google Scholar 

  • Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22

    Article  Google Scholar 

  • Hobbs RJ, Higgs E, Hall CM (2013) Novel ecosystems: intervening in the new ecological world order. Wiley-Blackwell, Chichester, UK

    Book  Google Scholar 

  • Hortal J, Borges PAV, Gaspar C (2006) Evaluating the performance of species richness estimators: sensitivity to sample grain size. J Anim Ecol 75:274–287

    Article  PubMed  Google Scholar 

  • Hurd LE, Fagan WF (1992) Cursorial spiders and succession: age or habitat structure? Oecologia 92:215–221

    Article  CAS  PubMed  Google Scholar 

  • Janssen P, Fuhr M, Cateau E, Nusillard B, Bouget C (2017) Forest continuity acts congruently with stand maturity in structuring the functional composition of saproxylic beetles. Biol Conserv 205:1–10

    Article  Google Scholar 

  • Kirby K, Watkins C (2015) Europe’s changing woods and forests: from wildwood to managed landscapes. CAB Int, Wallingford

    Book  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12

  • Leitão RP, Zuanon J, Villéger S, Williams SE, Baraloto C, Fortune C, Mendonça FP, Mouillot D (2016) Rare species contribute disproportionately to the functional structure of species assemblages. Proc R Soc B 283:20160084

    Article  PubMed  Google Scholar 

  • Leprieur F, Oikonomou A (2014) The need for richness-independent measures of turnover when delineating biogeographical regions. J Biogeogr 41:417–420

    Article  Google Scholar 

  • Leroy B (2016) Rarity: calculation of rarity indices for species and assemblages of species. R package version 1-3-6

  • Leroy B, Petillon J, Gallon R, Canard A, Ysnel F (2012) Improving occurrence-based rarity metrics in conservation studies by including multiple rarity cut-off points: multiple cut-offs in rarity metrics. Insect Conserv Divers 5:159–168

    Article  Google Scholar 

  • Leroy B, Canard A, Ysnel F (2013) Integrating multiple scales in rarity assessments of invertebrate taxa. Divers Distrib 19:794–803

    Article  Google Scholar 

  • Magura T, Bogyó D, Mizser S, Nagy DD, Tóthmérész B (2015) Recovery of ground-dwelling assemblages during reforestation with native oak depends on the mobility and feeding habits of the species. For Ecol Manag 339:117–126

    Article  Google Scholar 

  • Maire E, Grenouillet G, Brosse S, Villéger S (2015) How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces: assessing functional space quality. Global Ecol Biogeogr 24:728–740

    Article  Google Scholar 

  • Mallis RE, Hurd LE (2005) Diversity among ground-dwelling spider assemblages: habitat generalists and specialists. J Arachnol 33:101–109

    Article  Google Scholar 

  • Marc P, Canard A, Ysnel F (1999) Spiders (Araneae) useful for pest limitation and bioindication. Agric Ecosyst Environ 74:229–273

    Article  Google Scholar 

  • Miller JR, Bestelmeyer BT (2016) What’s wrong with novel ecosystems, really? Restor Ecol 24:577–582

    Article  Google Scholar 

  • Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876

    Article  Google Scholar 

  • Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, Harmelin-Vivien M, Kulbicki M, Lavergne S, Lavorel S, Mouquet N, Paine CET, Renaud J, Thuiller W (2013a) Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol 11:e1001569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013b) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177

    Article  PubMed  Google Scholar 

  • Murcia C, Aronson J, Kattan GH, Moreno-Mateos D, Dixon K, Simberloff D (2014) A critique of the ‘novel ecosystem’ concept. Trends Ecol Evol 29:548–553

    Article  PubMed  Google Scholar 

  • Nentwig G (1986) Non-webbuilding spiders: prey specialists or generalists? Oecol 69:571–576

    Article  Google Scholar 

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  PubMed  Google Scholar 

  • Nordén B, Dahlberg A, Brandrud TE, Fritz Ö, Ejrnaes R, Ovaskainen O (2014) Effects of ecological continuity on species richness and composition in forests and woodlands: a review. Ecoscience 21:34–45

    Article  Google Scholar 

  • Öberg S, Ekbom B, Bommarco R (2007) Influence of habitat type and surrounding landscape on spider diversity in Swedish agroecosystems. Agric Ecosyst Environ 122:211–219

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, M Friendly, Kindt R, Legendre P, McGlinn D, Minchin RB, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner ES, Wagner H (2017) vegan: Community Ecology Package. R package version 2–4-4

  • Pavoine S, Bonsall MB (2011) Measuring biodiversity to explain community assembly: a unified approach. Biol Rev 86:792–812

    Article  CAS  PubMed  Google Scholar 

  • Pearce JL, Venier LA (2006) The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecol Indic 6:780–793

    Article  Google Scholar 

  • Pearce JL, Venier LA, Eccles G, Pedlar J, MCKenney D (2005) Habitat islands, forest edge and spring-active invertebrate assemblages. Biodiver Conserv 14:2949–2969

    Article  Google Scholar 

  • Pereira HM, Navarro LM (eds) (2015) Rewilding European landscapes. Springer, New York

    Google Scholar 

  • Pinzon J, Wu L, He F, Spence JR (2018) Fine-scale forest variability and biodiversity in the boreal mixedwood forest. Ecography 41:753–769

    Article  Google Scholar 

  • Prieto-Benítez S, Méndez M (2011) Effects of land management on the abundance and richness of spiders (Araneae): a meta-analysis. Biol Conserv 144:683–691

    Article  Google Scholar 

  • Queiroz C, Beilin R, Folke C, Lindborg R (2014) Farmland abandonment: threat or opportunity for biodiversity conservation? A global review. Front Ecol Environ 12:288–296

    Article  Google Scholar 

  • Renwick A, Jansson T, Verburg PH, Revoredo-Giha C, Britz W, Gocht A, McCracken D (2013) Policy reform and agricultural land abandonment in the EU. Land Use Policy 30:446–457

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Roberts MJ (1995) Spiders of Britain & Northern Europe. Harper Collins, London

  • Sala OE (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Schaffers AP, Raemakers IP, Sỳkora KV, Ter Braak CJ (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794

    Article  PubMed  Google Scholar 

  • Simpson GL (2016) permute: functions for generating restricted permutations of data. R package version 0.9-4

  • Soberón J, Jiménez R, Golubov J, Koleff P (2007) Assessing completeness of biodiversity databases at different spatial scales. Ecography 30:152–160

    Article  Google Scholar 

  • Spake R, Ezard THG, Martin PA, Newton AC, Doncaster CP (2015) A meta-analysis of functional group responses to forest recovery outside of the tropics. Conserv Biol 29:1695–1703

    Article  PubMed  PubMed Central  Google Scholar 

  • Vavrek MJ, Vavrek MMJ (2011) fossil: palaeoecological and palaeogeographical analysis tools. Palaeontol Electron 14:1T

    Google Scholar 

  • Villéger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Villéger S, Grenouillet G, Brosse S (2013) Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages: decomposing functional β-diversity. Global Ecol Biogeogr 22:671–681

    Article  Google Scholar 

  • Violle C, Thuiller W, Mouquet N, Munoz F, Kraft NJB, Cadotte MW, Livingstone SW, Mouillot D (2017) Functional rarity: the ecology of outliers. Trends Ecol Evol 32:356–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziesche TM, Roth M (2008) Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: what makes the difference, tree species or microhabitat? For Ecol Manag 255:738–752

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the ‘Région Bretagne’, ‘Conseil départemental des Côtes d’Armor’, ‘Conseil départemental Finistère’, ‘Conseil départemental d’Ille et Vilaine’, ‘Conseil départemental du Morbihan’ and ‘Communauté de communes de Plouha-Lanvollon’ for technical and financial support. Moreover, we also would like to thank the military camp of St-Cyr-Coëtquidan and especially Alexandra Baudart and Sébastien Gautier (ONCFS) as well as Nicolas Le Deuff, Guy Le Reste (ONF) and David Rolland (FDC 22) for their help in acquiring data. We are also very grateful to the many colleagues and friends who helped in the preparation, analysis and treatment of data: Pierre Devogel, Maxime Hervé, Jean-Paul Lechapt, Margot Morin, Melaine Roullaud and Manon Simoneau, as well as the three anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïs Morel.

Additional information

Communicated by Andreas Schuldt.

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morel, L., Dujol, B., Courtial, C. et al. Spontaneous recovery of functional diversity and rarity of ground-living spiders shed light on the conservation importance of recent woodlands. Biodivers Conserv 28, 687–709 (2019). https://doi.org/10.1007/s10531-018-01687-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-01687-3

Keywords

Navigation