Biodiversity and Conservation

, Volume 27, Issue 6, pp 1291–1308 | Cite as

The curious case of Bradypus variegatus sloths: populations in threatened habitats are biodiversity components needing protection

  • Sofia Marques Silva
  • José A. Dávila
  • Bryson Voirin
  • Susana Lopes
  • Nuno Ferrand
  • Nadia Moraes-Barros
Original Paper

Abstract

Studying Neotropical wild populations is of particular interest. While this region is facing an escalating habitat degradation, it also has remarkable biodiversity levels, whose origin we are only beginning to understand. A myriad of processes might have had idiosyncratic effects on its numerous species. Within the hottest Neotropical biodiversity hotspot, the Atlantic Forest (AF), species and genetic diversities are organized latitudinally, with decreasing diversity levels southwards. Bradypus variegatus, the brown-throated three-toed sloth, was one of the first species observed to present such pattern. Moreover, within AF, B. variegatus populations seem to be geographically isolated and genetically differentiated. Whether AF B. variegatus isolation, differentiation, and loss of genetic diversity are historical or contemporary (anthropogenic-driven), result from species-specific or general historical events, and if this is of conservation concern remains unclear. Here, we combine micro-evolutionary, multilocus, and high-throughput sequencing approaches to detail the processes responsible for the patterns of genetic diversity on B. variegatus populations in AF, and further understand AF biogeographic history. Few studies made use of similar approaches on Neotropical biodiversity. Our results agree with recent re-interpretations on the AF refugia model and support a species-specific refugium in southern AF, characterized by a metapopulation formation. Finally, we present compelling evidences of the need for conservation actions on AF B. variegatus populations, by comparing genetic diversity levels between populations of different Bradypus species. As far as we know, this is the most comprehensive assessment on Bradypus nuclear DNA diversity.

Keywords

Bradypus pygmaeus Bradypus torquatus Microsatellite loci Next-generation sequencing Nuclear DNA sequences Quaternary climate changes 

Notes

Acknowledgements

Authors acknowledge J. Morgante for all his support, IREC, CTM and LABEC staffs for technical support, and those who helped with sampling: Parque Ambiental Chico Mendes (J. Guimarães and Sr. Josué), LNN-UFPA (P. Sousa); Zoo-CE (Vets. Lucio and Leandro), CETAS-CE (A. Klefasz), CETAS-PB (E. Victor), CETAS-AL (M. Belluci), CETAS-BA (M.C. Pires), UFPE (J.A. Feijó, D.A. Moraes and J.E. Garcia), Retiro Ecológico (R. Siqueira and Sr. Lenilson), UFC (Felipe), UFPB (F. Barros, M. Lima and U. Gonçalves), MHN UFAL (J. Luiz), Instituto Maracajá (S. Chinem and M. Motta), DEPAVE-SP (J. Summa and M.E. Summa), A. Oliveira, C. Clozato, and many others without whom would not be possible to have such sampling effort. We acknowledge the anonymous researchers for very helpful comments on an earlier version on the manuscript. S.M.S. had an FCT PhD Grant (SFRH/BD/40638/2007), and a PNPD/CAPES fellowship at PPGZOO MPEG/UFPA. NM-B was supported by Capes, EU’s Seventh Framework Programme (No 286431) and NORTE-01-0145-FEDER-000007.

Supplementary material

10531_2017_1493_MOESM1_ESM.pdf (299 kb)
Supplementary material 1 (PDF 298 kb)

References

  1. Anderson RP, Handley CO (2001) A new species of three-toed sloth (Mammalia: Xenarthra) from Panama, with a review of the genus Bradypus. Proc Biol Soc Wash 114:1–33Google Scholar
  2. Anderson RP, Handley CO Jr (2002) Dwarfism in insular sloths: biogeography, selection, and evolutionary rate. Evolution 56:1045–1058PubMedCrossRefGoogle Scholar
  3. Antão T, Lopes A, Lopes RJ et al (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinform. 9:323CrossRefGoogle Scholar
  4. Auler AS, Wang X, Edwards RL et al (2004) Quaternary ecological and geomorphic changes associated with rainfall events in presently semi-arid northeastern Brazil. J Quat Sci 19:693–701CrossRefGoogle Scholar
  5. Baker RJ (2000) Systematics of bats of the family Phyllostomidae based on RAG2 DNA sequences. Museum of Texas Tech University, LubbockGoogle Scholar
  6. Batalha-Filho H, Miyaki CY (2016) Late Pleistocene divergence and postglacial expansion in the Brazilian Atlantic Forest: Multilocus phylogeography of Rhopias gularis (Aves: Passeriformes). J Zool Syst Evol Res 54:137–147CrossRefGoogle Scholar
  7. Batalha-Filho H, Cabanne GS, Miyaki CY (2012) Phylogeography of an Atlantic forest passerine reveals demographic stability through the last glacial maximum. Mol Phylogenet Evol 65:892–902PubMedCrossRefGoogle Scholar
  8. Batalha-Filho H, Fjeldsa J, Fabre P-H, Miyaki CY (2013a) Connections between the Atlantic and the Amazonian forest avifaunas represent distinct historical events. J Ornithol 154:41–50CrossRefGoogle Scholar
  9. Batalha-Filho H, Irestedt M, Fjeldsa J et al (2013b) Molecular systematics and evolution of the Synallaxis ruficapilla complex (Aves: Furnariidae) in the Atlantic Forest. Mol Phylogenet Evol 67:86–94PubMedCrossRefGoogle Scholar
  10. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B Biol Sci 263:1619–1626CrossRefGoogle Scholar
  11. Brito D (2004) Lack of adequate taxonomic knowledge may hinder endemic mammal conservation in the Brazilian Atlantic Forest. Biodivers Conserv 13:2135–2144CrossRefGoogle Scholar
  12. Cabanne GS, D’Horta FM, Sari EH et al (2008) Nuclear and mitochondrial phylogeography of the Atlantic forest endemic Xiphorhynchus fuscus (Aves: Dendrocolaptidae): biogeography and systematics implications. Mol Phylogenet Evol 49:760–773PubMedCrossRefGoogle Scholar
  13. Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35:1187–1201CrossRefGoogle Scholar
  14. Carnaval AC, Waltari E, Rodrigues MT et al (2014) Prediction of phylogeographic endemism in an environmentally complex biome. Proc R Soc B Biol Sci.  https://doi.org/10.1098/rspb.2014.1461 Google Scholar
  15. Ceballos G, Ehrlich PR, Barnosky AD et al (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cernansky R (2017) The biodiversity revolution. Nature 546:22–24PubMedCrossRefGoogle Scholar
  17. Cheng H, Sinha A, Cruz FW et al (2013) Climate change patterns in Amazonia and biodiversity. Nat Commun 4:1411PubMedCrossRefGoogle Scholar
  18. Chevalet C, Nikolic N (2010) The distribution of coalescence times and distances between microsatellite alleles with changing effective population size. Theor Popul Biol 77:152–163PubMedCrossRefGoogle Scholar
  19. Chiarello AG, Moraes-Barros N (2014) Bradypus torquatus. IUCN Red List Threatened Species 2014. http://www.iucnredlist.org/details/3036/0. Accessed 19 May 2017
  20. Collen B, Ram M, Zamin T, McRae L (2008) The tropical biodiversity data gap: addressing disparity in global monitoring. Trop Conserv Sci 1:75–88CrossRefGoogle Scholar
  21. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  22. Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295PubMedCrossRefGoogle Scholar
  23. Delsuc F, Vizcaino SF, Douzery EJ (2004) Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans. BMC Evol Biol 4:11PubMedCrossRefPubMedCentralGoogle Scholar
  24. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  25. Ehrlich PR, Daily GC (1993) Population extinction and saving biodiversity. Biodivers Ecol Econ Policy 22:64–68Google Scholar
  26. Elmhagen B, Angerbjörn A (2003) The applicability of metapopulation theory to large mammals. Oikos 94:89–100CrossRefGoogle Scholar
  27. Emmons L (1990) Neotropical rainforest mammals. University of Chicago Press, ChicagoGoogle Scholar
  28. Esteban R, Verborgh P, Gauffier P et al (2016) Using a multi-disciplinary approach to identify a critically endangered killer whale management unit. Ecol Indic 66:291–300CrossRefGoogle Scholar
  29. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  30. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50CrossRefGoogle Scholar
  31. Fitzpatrick SW, Brasileiro CA, Haddad CFB, Zamudio KR (2009) Geographical variation in genetic structure of an Atlantic Coastal Forest frog reveals regional differences in habitat stability. Mol Ecol 18:2877–2896PubMedCrossRefGoogle Scholar
  32. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  33. Frankham R, Ballou JD, Briscoe DA (2004) A primer of conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. Fundação SOS Mata Atlântica, INPE (2011) Atlas dos remanescentes florestais da Mata Atlântica período 2008–2010. Fundação SOS Mata Atlântica and Instituto Nacional de Pesquisas Espaciais—INPE, São PauloGoogle Scholar
  35. Gaggiotti OE, Excoffier L (2000) A simple method of removing the effect of a bottleneck and unequal population sizes on pairwise genetic distances. Proc R Soc B Biol Sci 267:81–87CrossRefGoogle Scholar
  36. Gilpin M (1991) The genetic effective size of a metapopulation. Biol J Linn Soc 42:165–175CrossRefGoogle Scholar
  37. Givens GH, Huebinger RM, Bickham JW et al (2007) Patterns of genetic differentiation in bowhead whales (Balaena mysticetus) from the western Arctic. Annu Meet Sci Comm Int Whal, CommGoogle Scholar
  38. Gomez MDV, Beuchle R, Shimabukuro Y et al (2015) A long-term perspective on deforestation rates in the Brazilian Amazon. Int Arch Photogramm Remote Sens Spat Inf Sci 40:539CrossRefGoogle Scholar
  39. Haag T, Santos AS, Sana DA et al (2010) The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera onca). Mol Ecol 19:4906–4921PubMedCrossRefGoogle Scholar
  40. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series, vol. 41. pp 95–98Google Scholar
  41. Hamilton M, Pincus E, Di Fiore A, Fleischer R (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–507PubMedGoogle Scholar
  42. Hayssen V (2010) Bradypus variegatus (Pilosa: Bradypodidae). Mamm Species 42:19–32CrossRefGoogle Scholar
  43. Hayssen V (2011) Tamandua tetradactyla (Pilosa: Myrmecophagidae). Mamm Species 43:64–74CrossRefGoogle Scholar
  44. Heled J, Drummond A (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:289PubMedCrossRefPubMedCentralGoogle Scholar
  45. Heller R, Lorenzen ED, Okello JB et al (2008) Mid-Holocene decline in African buffalos inferred from Bayesian coalescent-based analyses of microsatellites and mitochondrial DNA. Mol Ecol 17:4845–4858PubMedCrossRefGoogle Scholar
  46. Heywood VH, Watson RT (1995) Global biodiversity assessment. Cambridge University Press, CambridgeGoogle Scholar
  47. Hirsch A, Chiarello AG (2011) The endangered maned sloth Bradypus torquatus of the Brazilian Atlantic forest: a review and update of geographical distribution and habitat preferences. Mamm Rev 42:35–54CrossRefGoogle Scholar
  48. Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164PubMedPubMedCentralGoogle Scholar
  49. Jarne P, Lagoda PJ (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429PubMedCrossRefGoogle Scholar
  50. Jenkins CN, Pimm SL, Joppa LN (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proc Natl Acad Sci USA 110:E2602–E2610PubMedCrossRefPubMedCentralGoogle Scholar
  51. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405PubMedCrossRefGoogle Scholar
  52. Jombart T, Collins C (2015) A tutorial for Discriminant Analysis of Principal Components (DAPC) using adegenet 2.0. 0. Imperial College London, MRC Center Outbreak Anal & Modelling, LondonGoogle Scholar
  53. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kalinowski ST, Wagner AP, Taper ML (2006) ML-relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579CrossRefGoogle Scholar
  55. Kerr KCR, Lijtmaer DA, Barreira AS et al (2009) Probing evolutionary patterns in Neotropical birds through DNA barcodes. PLoS ONE 4:e4379PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576PubMedPubMedCentralGoogle Scholar
  57. Kumar S, Subramanian S (2002) Mutation rates in mammalian genomes. Proc Natl Acad Sci USA 99:803–808PubMedCrossRefPubMedCentralGoogle Scholar
  58. Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol 1:143–158CrossRefGoogle Scholar
  59. Lara-Ruiz P, Chiarello AG, Santos FR (2008) Extreme population divergence and conservation implications for the rare endangered Atlantic Forest sloth, Bradypus torquatus (Pilosa: Bradypodidae). Biol Conserv 141:1332–1342CrossRefGoogle Scholar
  60. Ledru M-P, Mourguiart P, Riccomini C (2009) Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial. Palaeogeogr Palaeoclimatol Palaeoecol 271:140–152CrossRefGoogle Scholar
  61. Ledru M-P, Montade V, Blanchard G, Hély C (2016) Long-term spatial changes in the distribution of the Brazilian Atlantic Forest. Biotropica 48:159–169CrossRefGoogle Scholar
  62. Leite YLR, Costa LP, Loss AC et al (2016) Neotropical forest expansion during the last glacial period challenges refuge hypothesis. Proc Natl Acad Sci USA 113:201513062CrossRefGoogle Scholar
  63. Li WH, Ellsworth DL, Krushkal J et al (1996) Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol Phylogenet Evol 5:182–187PubMedCrossRefGoogle Scholar
  64. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  65. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247PubMedCrossRefGoogle Scholar
  66. Malausa T, Gilles A, Meglécz E et al (2011) High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour 11:638–644PubMedCrossRefGoogle Scholar
  67. Martins F (2011) Historical biogeography of the Brazilian Atlantic forest and the Carnaval–Moritz model of Pleistocene refugia: what do phylogeographical studies tell us? Biol J Linn Soc 104:499–509CrossRefGoogle Scholar
  68. McConkey KR, Drake DR (2006) Flying foxes cease to function as seed dispersers long before they become rare. Ecology 87:271–276PubMedCrossRefGoogle Scholar
  69. Miotto RA, Cervini M, Begotti RA, Galetti PM Jr (2012) Monitoring a Puma (Puma concolor) population in a fragmented landscape in Southeast Brazil. Biotropica 44:98–104CrossRefGoogle Scholar
  70. Montade V, Ledru M-P, Burte J et al (2014) Stability of a Neotropical microrefugium during climatic instability. J Biogeogr 41:1215–1226CrossRefGoogle Scholar
  71. Moraes-Barros N, Arteaga MC (2015) Genetic diversity in Xenarthra and its relevance to patterns of Neotropical biodiversity. J Mammal 96:690–702CrossRefGoogle Scholar
  72. Moraes-Barros N, Silva JA, Miyaki CY, Morgante JS (2006) Comparative phylogeography of the Atlantic forest endemic sloth (Bradypus torquatus) and the widespread three-toed sloth (Bradypus variegatus) (Bradypodidae, Xenarthra). Genetica 126:189–198PubMedCrossRefGoogle Scholar
  73. Moraes-Barros N, Miyaki CY, Morgante JS (2007) Identifying management units in non-endangered species: the example of the sloth Bradypus variegatus Schinz, 1825. Braz J Biol 67:829–837PubMedCrossRefGoogle Scholar
  74. Moraes-Barros N, Silva JAB, Morgante JS (2011) Morphology, molecular phylogeny, and taxonomic inconsistencies in the study of Bradypus sloths (Pilosa: Bradypodidae). J Mammal 92:86–100CrossRefGoogle Scholar
  75. Moraes-Barros N, Chiarello AG, Plese T (2014) Bradypus variegatus. IUCN Red List Threatened Species 2014. http://www.iucnredlist.org/details/3038/0. Accessed 19 May 2017
  76. Moritz C (1994) Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 3:401–411CrossRefGoogle Scholar
  77. Moritz C (1999) Conservation units and translocations: strategies for conserving evolutionary processes. Hereditas 130:217–228CrossRefGoogle Scholar
  78. Murphy WJ, Sun S, Chen ZQ et al (1999) Extensive conservation of sex chromosome organization between cat and human revealed by parallel radiation hybrid mapping. Genome Res 9:1223–1230PubMedCrossRefPubMedCentralGoogle Scholar
  79. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  80. Nikolic N, Chevalet C (2012) Package “VarEff”—variation of effective population size. Manual provided by the authorsGoogle Scholar
  81. Ostrander EA, Jong PM, Rine J, Duyk G (1992) Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc Natl Acad Sci USA 89:3419–3423PubMedCrossRefPubMedCentralGoogle Scholar
  82. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539PubMedCrossRefPubMedCentralGoogle Scholar
  83. Pessenda LCR, Gouveia SEM, Aravena R et al (2004) Holocene fire and vegetation changes in southeastern Brazil as deduced from fossil charcoal and soil carbon isotopes. Quat Int 114:35–43CrossRefGoogle Scholar
  84. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259CrossRefGoogle Scholar
  85. Pimm SL, Jenkins CN, Abell R et al (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752PubMedCrossRefGoogle Scholar
  86. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  87. Porto TJ, Carnaval AC, da Rocha PLB (2013) Evaluating forest refugial models using species distribution models, model filling and inclusion: a case study with 14 Brazilian species. Divers Distrib 19:330–340CrossRefGoogle Scholar
  88. Prates I, Rivera D, Rodrigues MT, Carnaval AC (2016) A mid-Pleistocene rainforest corridor enabled synchronous invasions of the Atlantic Forest by Amazonian anole lizards. Mol Ecol 25:5174–5186PubMedCrossRefGoogle Scholar
  89. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  90. Pritchard JK, Wen X, Falush D (2010) Documentation for structure software: Version 2.3Google Scholar
  91. R Core Team (2016) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, AustriaGoogle Scholar
  92. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100PubMedCrossRefGoogle Scholar
  93. Raposo do Amaral F, Albers PK, Edwards SV, Miyaki CY (2013) Multilocus tests of Pleistocene refugia and ancient divergence in a pair of Atlantic Forest antbirds (Myrmeciza). Mol Ecol 22:3996–4013PubMedCrossRefGoogle Scholar
  94. Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153CrossRefGoogle Scholar
  95. Richardson DM, Whittaker RJ (2010) Conservation biogeography–foundations, concepts and challenges. Divers Distrib 16:313–320CrossRefGoogle Scholar
  96. Ripperger SP, Tschapka M, Kalko EKV et al (2014) Resisting habitat fragmentation: high genetic connectivity among populations of the frugivorous bat Carollia castanea in an agricultural landscape. Agric Ecosyst Environ 185:9–15CrossRefGoogle Scholar
  97. Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615PubMedCrossRefGoogle Scholar
  98. Rozas J (2009) DNA sequence polymorphism analysis using DnaSP. In: Posada D (ed) Bioinformatics for DNA sequence analysis. Humana Press, Springer, Totowa, pp 337–350CrossRefGoogle Scholar
  99. Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. Bioinformatics methods and protocols. Humana Press, Springer, Totowa, pp 365–386CrossRefGoogle Scholar
  100. Ruiz-García M, Chacón D, Plese T et al (2016) Mitogenomics phylogenetic relationships of the current sloth’s genera and species (Bradypodidae and Megalonychidae). Mitochondrial DNA A.  https://doi.org/10.1080/24701394.2016.1275602 Google Scholar
  101. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  102. Scarano FR, Ceotto P (2015) Brazilian Atlantic forest: Impact, vulnerability, and adaptation to climate change. Biodivers Conserv 24:2319–2331CrossRefGoogle Scholar
  103. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539PubMedCrossRefPubMedCentralGoogle Scholar
  104. Silva SM, Moraes-Barros N, Ribas CC et al (2012) Divide to conquer: a complex pattern of biodiversity depicted by vertebrate components in the Brazilian Atlantic Forest. Biol J Linn Soc 107:39–55CrossRefGoogle Scholar
  105. Skrbinšek T, Jelenčič M, Waits LP et al (2012) Using a reference population yardstick to calibrate and compare genetic diversity reported in different studies: An example from the brown bear. Heredity 109:299–305PubMedCrossRefPubMedCentralGoogle Scholar
  106. Slade RW, Moritz C, Heideman A, Hale PT (1993) Rapid assessment of single-copy nuclear DNA variation in diverse species. Mol Ecol 2:359–373PubMedCrossRefGoogle Scholar
  107. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989PubMedCrossRefPubMedCentralGoogle Scholar
  108. Sunquist ME, Montgomery GG (1973) Activity patterns and rates of movement of two-toed and three-toed sloths (Choloepus hoffmanni and Bradypus infuscatus). J Mammal 54:946–954PubMedCrossRefGoogle Scholar
  109. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460PubMedPubMedCentralGoogle Scholar
  110. Thomé MTC, Sequeira F, Brusquetti F, et al (2016) Recurrent connections between Amazon and Atlantic forests shaped diversity in Caatinga four-eyed frogs. J Biogeogr 43:1045–1056CrossRefGoogle Scholar
  111. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  112. Voirin B, Smith D, Chiarello A, Moraes-Barros N (2014) Bradypus pygmaeus. IUCN Red List Threatened Species 2014. http://www.iucnredlist.org/details/61925/0. Accessed 19 May 2017
  113. Wade MJ, McCauley DE (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42:995–1005PubMedCrossRefGoogle Scholar
  114. Wang X, Auler AS, Edwards RL et al (2004) Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432:740–743PubMedCrossRefGoogle Scholar
  115. Wright S (1977) Evolution and the genetics of populations: experimental results and evolutionary deductions. The University of Chicago Press, ChicagoGoogle Scholar
  116. Zenboudji S, Cheylan M, Arnal V et al (2016) Conservation of the endangered Mediterranean tortoise Testudo hermanni hermanni: the contribution of population genetics and historical demography. Biol Conserv 195:279–291CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.LABEC, Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  2. 2.CIBIO/InBioUniversidade do PortoVairãoPortugal
  3. 3.Department of ZoologyMPEGBelémBrazil
  4. 4.IREC, CSIC-UCLM-JCCMCiudad RealSpain
  5. 5.Max-Planck Institute for OrnithologySeewiesenGermany
  6. 6.California Academy of SciencesSan FranciscoUSA

Personalised recommendations