Can large unmanaged trees replace ancient pollarded trees as habitats for lichenized fungi, non-lichenized fungi and bryophytes?

Abstract

Management of ancient trees constitutes a major dilemma in the conservation of associated biodiversity. While traditional methods are often advocated, such practices may incur considerable costs and their effects have rarely been scientifically evaluated. We compared the communities of lichenized fungi, non-lichenized fungi, and bryophytes among equal number of coarse previously pollarded and unmanaged trees (n = 340). On 400 Ulmus glabra and 280 Fraxinus excelsior trees at 62 sites in Norway, we found 209 lichenized fungi, 128 non-lichenized fungi, and 115 bryophytes. Pollarded trees were richer in microhabitats than unmanaged trees and had significantly higher richness of bryophytes (ash) and non-lichenized fungi (ash and elm), the latter increasing with the availability of dead wood, cavities and coarse bark structure in pollarded trees. Further, the average total number of red-listed species, and red-listed lichenized fungi separately, were significantly higher on pollarded versus unmanaged trees, with diversity related to trunk circumference, depth of bark fissures and number of cavities. Our results underline the importance of microhabitats associated with old trees, but we cannot establish with certainty the importance of pollarding per se. Since we did not find any negative effect of canopy cover for community diversity, we assume that old trees with rich epiphytic communities can develop without management intervention. The high share (37 out of 49) of red-listed species occurring on unmanaged trees, and the fact that 11 red-listed species were found exclusively on unmanaged trees, may further indicate that unmanaged trees can with time replace the ancient pollarded trees as habitats for rich cryptogamic communities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Austad I (1988) Tree pollarding in W Norway. In: Birks HH, Birks HJB, Kaland PE, Moe D (eds) The cultural landscape, past, present and future. Cambridge University Press, Cambridge, pp 13–29

    Google Scholar 

  2. Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes: including a taxonomic survey and description of their vegetation units in Europe. Van Gorcum, Assen

    Google Scholar 

  3. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  4. Bergendorff C, Emanuelsson U (1996) History and traces of coppicing and pollarding in Scania, South Sweden. In: Slotte H, Göransson H (eds) Lövtäkt och stubbskottsbruk II. Stockholm, Kungl. Skogs- och Lantbruksakademien, pp 235–304

    Google Scholar 

  5. Bernes C, Jonsson BG, Junninen K, Lõhmus A, Macdonald E, Müller J, Sandström J (2015) What is the impact of active management on biodiversity in boreal and temperate forests set asides for conservation or restoration? A systematic map. Environ Evid 4:25

    Article  Google Scholar 

  6. Castro A, De Murguia LM, Fernandez J, Casis A, Molino-Olmedo F (2012) Size and quality of wood used by Rosalia alpina (Linnaeus, 1758) (Coleoptera: Cerambycidae) in beech woodlands of Gipuzkoa (northern Spain). Munibe 60:77–100

    Google Scholar 

  7. Clark J, May R (2002) Taxonomic bias in conservation research. Science (N Y) 297(5579):191–192

    CAS  Article  Google Scholar 

  8. Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder M, Nielsen A, Sibert J (2012) AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249

    Article  Google Scholar 

  9. Fritz Ö, Heilmann-Clausen J (2010) Rot holes create key microhabitats for epiphytic lichens and bryophytes on beech (Fagus sylvatica). Biol Conserv 143:1008–1016

    Article  Google Scholar 

  10. Fritz Ö, Niklasson M, Churski M (2009) Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl Veg Sci 12:93–106

    Article  Google Scholar 

  11. Götmark F (2013) Habitat management alternatives for conservation forests in the temperate zone: review, synthesis, and implications. For Ecol Manag 306:292–307

    Article  Google Scholar 

  12. Hallingbäck T (2016) Mossor en fältguide. Naturcentrum

  13. Hansen L, Knudsen H (eds) (1997) Nordic Macromycetes (Vol 3) Heterobasidioid, Aphyllophoroid, Gasteromycetoid Basidiomycetes. Nordsvamp, Copenhagen

    Google Scholar 

  14. Hansen L, Knudsen H (eds) (2000) Nordic Macromycetes (Vol 1) Ascomycetes. Nordsvamp, Copenhagen

    Google Scholar 

  15. Henriksen S, Hilmo O (eds) (2015) Norsk rødliste for arter 2015. Artsdatabanken, Norge

    Google Scholar 

  16. Höjer O, Hultengren S (2004) Åtgärdsprogram för särskilt skyddsvärda träd i kulturlandskapet (Rapport/Naturvårdsverket, 5411). Naturvårdsverket, Stockholm (in Swedish with English summary)

    Google Scholar 

  17. Johansson V, Ranius T, Snäll T (2014) Development of secondary woodland decreases epiphyte metapopulation sizes in wooded grasslands. Biol Conserv 172:49–55

    Article  Google Scholar 

  18. Jönsson MT, Thor G, Johansson P (2011) Environmental and historical effects on lichen diversity in managed and unmanaged wooded meadows. Appl Veg Sci 14:120–131

    Article  Google Scholar 

  19. Knudsen H, Vesterholt J (eds) (2012) Funga Nordica. Agaricoid, boletoid, clavarioid, cyphelloid and gastroid genera, 2nd edn. Nordsvamp, Copenhagen

    Google Scholar 

  20. Lang P, Jeschke M, Wommelsdorf T, Backes T, Lv C, Zhang X, Frank MT (2015) Wood harvest by pollarding exerts long-term effects on Populus euphratica stands in riparian forests at the Tarim River, NW China. For Ecol Manag 353:87–96

    Article  Google Scholar 

  21. Leppik E, Jueriado I, Liira J (2011) Changes in stand structure due to the cessation of traditional land use in wooded meadows impoverish epiphytic lichen communities. Lichenologist 43:257–274

    Article  Google Scholar 

  22. Lonsdale D (ed) (2013) Ancient and other veteran trees: further guidance on management. The Tree Council, London

    Google Scholar 

  23. Mansion D (2010) Les trognes—l’arbre paysan aux mille usages. Editions Ouest-France, Rennes

    Google Scholar 

  24. Mežaka A, Brūmelis G, Piterāns A (2012) Tree and stand-scale factors affecting richness and composition of epiphytic bryophytes and lichens in deciduous woodland key habitats. Biodivers Conserv 21:3221–3241

    Article  Google Scholar 

  25. Miljødirektoratet (2012) Naturbase. www.naturbase.no. Accessed 23 Jan 2012

  26. Mitchell RJ, Beaton JK, Bellamy PE, Broome A, Chetcuti J, Eaton S, Ellis CJ, Gimona A, Harmere R, Hester AJ, Hewison RL, Hodgetts NG, Iason GR, Kerr G, Littlewood NA, Newey S, Potts JM, Pozsgai G, Ray D, Sim DA, Stockan JA, Taylor AFS, Woodward S (2014) Ash dieback in the UK: a review of the ecological and conservation implications and potential management options. Biol Conserv 175:95–109

    Article  Google Scholar 

  27. Moe B, Botnen A (1997) A quantitative study of the epiphytic vegetation on pollarded trunks of Fraxinus excelsior at Havrå, Osterøy, western Norway. Plant Ecol 129:157–177

    Article  Google Scholar 

  28. Moe B, Botnen A (2000) Epiphytic vegetation on pollarded trunks of Fraxinus excelsior in four different habitats at Grinde, Leikanger, western Norway. Plant Ecol 151:143–159

    Article  Google Scholar 

  29. Moen A (1999) National atlas of Norway. Vegetation. Statens kartverk, Hønefoss

    Google Scholar 

  30. Nakagawa S, Cuthill I (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605

    Article  PubMed  Google Scholar 

  31. Nilsson SG, Arup U, Baranowski R, Ekman S (1994) Trädbundna lavar och skalbaggar i ålderdomliga kulturlanskap. Svensk bot Tidskr 88:1–12

    Google Scholar 

  32. Nordén B, Jordal JB, Bratli H (2013) Bacidia incompta, Pyrenula nitidella and Schismatomma decolorans, three lichen species on old deciduous trees new to Norway. Graphis Scripta 25:44–47

    Google Scholar 

  33. Nordén B, Evju M, Jordal JB (2015) Old temperate deciduous trees—a hotspot habitat. Final report from the third period of the ARKO project (Survey and monitoring of red-listed species). NINA Rapport 1168 (in Norwegian with English summary)

  34. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens HH, Szoecs E, Wagner H (2016) vegan: community ecology package. R package version 2.4-1. http://CRAN.R-project.org/package=vegan

  35. Paltto H, Nordberg A, Nordén B, Snäll T (2011) Development of secondary woodland in oak wood pastures reduces the richness of rare epiphytic lichens. PLoS ONE 6:e24675

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Pankhurst M (2013) There’s more to a pollard than meets the eye! The views and experience of a woodland ranger. Arboricul J 35:91–98

    Article  Google Scholar 

  37. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  38. Ranius T, Johansson P, Berg N, Niklasson M (2008) Influence of tree age and microhabitat quality on the occurrence of crustose lichens associated with old oaks. J Veg Sci 19:653–662

    Article  Google Scholar 

  39. Read HJ (ed) (1996) Pollard and veteran tree management II—incorporating the proceedings of the meeting hosted by the corporation of London at Epping Forest in 1993. Richmond Publishing Company, Berkshire

  40. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1(2):103–113

    Article  Google Scholar 

  41. Sebek P, Altman J, Platek M, Cizek L (2013) Is active management the key to the conservation of saproxylic biodiversity? Pollarding promotes the formation of tree hollows. PLoS ONE 8:e60456. https://doi.org/10.1371/journal.pone.0060456

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Sjölund MJ, Jump AS (2013) The benefits and hazards of exploiting vegetative regeneration for forest conservation management in a warming world. Forestry 86:503–513. https://doi.org/10.1093/forestry/cpt030

    Article  Google Scholar 

  43. Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert O, James PW, Wolseley PA (eds) (2009) The lichens of Great Britain and Ireland. British Lichen Society, London

    Google Scholar 

  44. Solheim H, Eriksen R, Hietala AM (2011) Dutch elm disease has currently a low incidence on wych elm in Norway. For Pathol 41:182–188

    Article  Google Scholar 

  45. Ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–371

    Article  Google Scholar 

  46. Thor G, Johansson P, Jönsson MT (2010) Lichen diversity and red-listed lichen species relationships with tree species and diameter in wooded meadows. Biodivers Conserv 19:2307–2328

    Article  Google Scholar 

  47. Timdal E (2012) Norsk Lavdatabase. http://www.nhm.uio.no/lichens. First posted 16 April 1997, latest update 06 Feb 2012

  48. Tønsberg T, Gauslaa Y, Haugan R, Holien H, Timdal E (1996) The threatened macrolichens of Norway 1995. Sommerfeltia 23:1–258

    Google Scholar 

  49. Vatne S (2010) Gamle styvingstre i Flostranda naturreservat: Kartlegging av epifyttisk lavflora og tilrådingar til restaurering, nyetablering og skjøtsel. Økolog Vatne rapport 1-2010. http://sognogfjordane.miljostatus.no/dm_documents/Vatne_2010-1_Restaurering_av_styvingstre_i_Flostranda_NR_iBUKQ.pdf (in Norwegian)

  50. Watson MF, Hawksworth DL, Rose F (1988) Lichens on elms in the British Isles and the effect of Dutch Elm Disease on their Status. The Lichenologist 20:327–352

    Article  Google Scholar 

Download references

Acknowledgements

We carried out the fieldwork as part of the project ‘Areas for red-listed species—survey and monitoring’ (ARKO), subproject ‘Old temperate deciduous trees’ funded by the Norwegian Environment Agency and performed at the Norwegian Institute for Nature Research (NINA). BN thanks NINA for funding ‘free research time’ to write this paper. The Norwegian Biodiversity Information Centre supported part of the fieldwork through a grant (project ‘Pyrenomycetes (Sordariomycetes and similar fungi) in temperate deciduous forests of southern and western Norway to BN. We thank Håkon Holien (Steinkjer), Tor Tønsberg (Bergen), Per Magnus Jørgensen (Bergen), Einar Timdal (Oslo), Göran Thor (Uppsala), and Othmar Breuss (Wien) for confirmination of some specimens of lichenized fungi, and Hans H. Blom (Bergen); Kristian Hassel (Trondheim), Torbjørn Høitomt (Oslo), og Perry G. Larssen (Ålesund) for help with bryophytes. Thomas Læssøe (København), Jacques Fournier (Las Muros), Karen Hansen (Stockholm), Hans-Otto Baral (Tübingen) and Hanna Tuovila (Jyväskylä) confirmed or determined some specimens of non-lichenized ascomycetes, and Slava Spirin (Helsinki) and Karl Henrik Larsson (Oslo) assisted with basidiomycetes. Finally, we wish to thank the landowners who gave permissions for the surveys and in many cases assisted us with information during the fieldwork.’

Funding

This research was initiated by the first author and was performed as an independent project. The funding sources did not take any part in design or performance of this study, nor in the interpretation of results.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Björn Nordén.

Additional information

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Communicated by David Hawksworth.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nordén, B., Jordal, J.B. & Evju, M. Can large unmanaged trees replace ancient pollarded trees as habitats for lichenized fungi, non-lichenized fungi and bryophytes?. Biodivers Conserv 27, 1095–1114 (2018). https://doi.org/10.1007/s10531-017-1482-x

Download citation

Keywords

  • Temperate deciduous forest
  • Broad-leaf forest
  • Wood-decaying fungi
  • Bark-living fungi
  • Ecological restoration