Biodiversity and Conservation

, Volume 27, Issue 4, pp 795–814 | Cite as

Cryobiotechnology of forest trees: recent advances and future prospects

  • Jing-Wei Li
  • Elif Aylin Ozudogru
  • Jiao Li
  • Min-Rui Wang
  • Wen-Lu Bi
  • Maurizio Lambardi
  • Qiao-Chun Wang
Review Paper
  • 64 Downloads
Part of the following topical collections:
  1. Ex-situ conservation

Abstract

Globally, forests are of great economic importance and play a vital role in maintaining friendly ecological environments, sustainability of eco-systems, and biodiversity. Harsh environments, human activities and climate warming have long threatened the diversity of forest genetic resources. Among all conservation strategies, cryopreservation is at present time considered an ideal means for long-term conservation of plant genetic resources. To date, studies on cryopreservation of forest trees have been far behind agricultural and horticultural crops. The present review provides a comprehensive and update information on recent advances in cryopreservation of shoot tips, somatic embryogenic callus and seeds of forest trees. Assessments of genetic stability in the regenerants following cryopreservation were also analyzed and addressed. Further studies on cryopreservation of forest trees are proposed and needed. By doing so, we expect to re-evoke research interests and promote further developments in forest tree cryobiotechnology, thus assisting to ensure maintenance of biodiversity of genetic resources of forest trees.

Keywords

Cryopreservation Embryogenic callus Forest Genetic resource Genetic stability Seeds Shoot tips 

Notes

Acknowledgements

J.-W. Li thanks for a financial support through the President Foundation of Northwest A&F University. E.A. Ozudogru and M. Lambardi gratefully acknowledge the financial support from the Italian project RGV-FAO on the conservation of plant genetic resources.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Adu-Gyambi R, Wetten A (2012) Cryopreservation of cacao (Theobroma cacao L.) somatic embryos by vitrification. CryoLetters 33:494–505Google Scholar
  2. Álvarez JM, Cortizo M, Ordas RJ (2012) Cryopreservation of somatic embryogenic cultures of Pinus pinaster: effects on regrowth and embryo maturation. CryoLett 33:476–484Google Scholar
  3. Aronen T, Ryynänen L (2014) Cryopreservation of dormant in vivo-buds of hybrid aspen: timing as critical factor. CryoLett 35:385–394Google Scholar
  4. Aronen T, Krajnakova J, Häggman H, Ryynänen L (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172CrossRefGoogle Scholar
  5. Bamberg JB, Martin MW, Abad J, Jenderek MM, Tanner J, Donnelly DJ, Nassar AMK, Veilleux RE, Novy RG (2016) In vitro technology at the US Potato Genebank. In Vitro Cell. Dev. Biol. Plant 52:213–225Google Scholar
  6. Barazani O, Mayzlish-Gati E, Lifshitz D, Hadas R, Keren-Keiserman A, Golan S, Faraj T, Singer A, Beerman A, Perevolotsky A (2017) Strategies and priorities in field collections for ex situ conservation: the case of the Israel plant gene bank. Genet Resour Crop Evol 64:1–5CrossRefGoogle Scholar
  7. Barra-Jimenez A, Aronen TS, Alegre J, Toribio M (2015) Cryopreservation of embryogenic tissues from mature holm oak trees. Cryobiol 70:217–225CrossRefGoogle Scholar
  8. Benelli C, De Carlo A, Engelmann F (2013) Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol Adv 31:175–185PubMedCrossRefGoogle Scholar
  9. Benson EE (2008a) Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Cri Rev Plant Sci 27:141–219CrossRefGoogle Scholar
  10. Benson EE (2008b) Cryopreservation theory. In: Reed B (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 15–32CrossRefGoogle Scholar
  11. Blakesley D, Kiernan RJ (2001) Cryopreservation of axillary buds of a Eucalyptus grandis × Eucalyptus camaldulensis hybrid. CryoLett 22:13–18Google Scholar
  12. Blakesley D, Pask N, Henshaw GG, Fay MF (1996) Biotechnology and the conservation of forest genetic resources: in vitro strategies and cryopreservation. Plant Growth Regul 20:11–16CrossRefGoogle Scholar
  13. Bonnart R, Waddell J, Haiby K, Widrlechner MP, Volk GM (2014) Cryopreservation of Populus trichocarpa and Salix dormant buds with recovery by grafting or direct rooting. CryoLett 35:507–515Google Scholar
  14. Chmielarz P (2009) Cryopreservation of dormant European ash (Fraxinus excelsior) orthodox seeds. Tree Physiol 29:1279–1285PubMedCrossRefGoogle Scholar
  15. Chmielarz P, Grenier-de March G, de Boucaud M-T (2005) Cryopreservation of Quercus robur L. embryogenic callus. CryoLett 26:349–355Google Scholar
  16. Ciccarese L, Mattsson A, Pettenella D (2012) Ecosystem services from forest restoration: thinking ahead. New Fore 43:543–560CrossRefGoogle Scholar
  17. Corredoira E, San-José MC, Ballester A, Vieitez AM (2004) Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. CryoLett 25:33–42Google Scholar
  18. Cyr DR, Lazaroff WR, Grimes SMA, Quan G, Bethune TD, Dunstan DJ, Roberts DR (1994) Cryopreservation of interior spruce (Picea glauca × engelmanni complex) embryogenic cultures. Plant Cell Rep 13:574–577PubMedCrossRefGoogle Scholar
  19. DeVerno LL, Park YS, Bonga YM, Barrett JD (1999) Somaclonal variation in cryopreserved embryogenic clones of white spruce [Picea glauca (Moench) Voss.]. Plant Cell Rep 18:948–953CrossRefGoogle Scholar
  20. Dumet D, Berjak P (2002) Cryopreservation of neem (Azadirachta indica A. Juss.) seeds. In: Towill LE, Bajaj YPS (eds) Biotechnology in agriculture and forestry. Cryopreservation of plant germplasm II, vol 50. Springer, Berlin, pp 213–219CrossRefGoogle Scholar
  21. Engelmann F (1997) In vitro conservation methods. In: Callow JA, Ford-Lloyd BV, Newbury HJ (eds) Biotechnology and plant genetic resources. CAB International, Oxford, pp 119–161Google Scholar
  22. Feng C-H, Yin Z-F, Ma Y-L, Chen L, Zhang ZB, Wang B, Wang Q-C (2011) Cryopreservation of sweetpotato (Ipomoea batatas) and its pathogen eradication by cryotherapy. Biotechn Adv 29:84–93CrossRefGoogle Scholar
  23. Fernandes P, Rodriguez E, Pinto G, Roldàn-Ruiz I, de Loose M, Santos C (2008) Cryopreservation of Quercus suber somatic embryos by encapsulation-dehydration and evaluation of genetic stability. Tree Physiol 28:1841–1850PubMedCrossRefGoogle Scholar
  24. Find JI, Kristensen MMH, Nørgaard JV, Krogstrup P (1998) Effect of culture period and cell density on regrowth following cryopreservation of embryogenic suspension cultures of Norway spruce and Sitka spruce. Plant Cell Tiss Org Cult 53:27–33CrossRefGoogle Scholar
  25. Ford CS, Jones NB, Van Staden J (2000) Optimization of a working cryopreservation protocol for Pinus patula embryogenic tissue. In Vitro Cell Dev Biol Plant 36:366–369CrossRefGoogle Scholar
  26. Gale S, John A, Benson EE (2007) Cryopreservation of Picea sitchensis (Sitka spruce) embryogenic suspensor masses. CryoLetters 28:225–239PubMedGoogle Scholar
  27. Gale S, John A, Harding K, Benson EE (2008) Developing cryopreservation for Picea sitchensis (Sitka spruce) somatic embryos: a comparison of vitrification protocols. CryoLett 29:135–144Google Scholar
  28. Gale S, Benson EE, Harding K (2013) A life cycle model to enable research of cryostorage recalcitrance in temperate woody species: the case of Sitka spruce (Picea sitchensis). CryoLett 34:30–39Google Scholar
  29. Gantait S, Kundu S, Wani SH, Das PK (2016) Cryopreservation of forest tree seeds: A mini-review. J For Environ Sci 32:311–322Google Scholar
  30. González-Benito ME, Perez-Ruiz C (1992) Cryopreservation of Quercus faginea embryonic axes. Cryobiol 29:685–690CrossRefGoogle Scholar
  31. González-Benito ME, Prieto R-M, Herradón E, Martín C (2002) Cryopreservation of Quercus suber and Quercus ilex embryonic axes: in vitro culture, desiccation and cooling factors. CryoLett 23:283–290Google Scholar
  32. Häggman H, Ryynänen L, Aronen T, Krajnakova J (1998) Cryopreservation of embryogenic cultures of Scots pine. Plant Cell Tiss Org Cult 54:45–53CrossRefGoogle Scholar
  33. Häggman H, Rusanen M, Jokipii S (2008) Cryopreservation of in vitro tissues of deciduous trees. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 365–386CrossRefGoogle Scholar
  34. Halmagyi A (2008) The effects of preculture on plant regeneration from cryopreserved shoot tips of redwood (Sequoia sempervirens (D. Don.) Endl.). Contrib Bot 43:122–124Google Scholar
  35. Halmagyi A, Deliu C (2011) Cryopreservation of redwood (Sequoia sempervirens (D. Don.) Endl.) shoot apices by encapsulation-dehydration. Contrib Bot 46:117–125Google Scholar
  36. Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLett 25:3–22Google Scholar
  37. Hargreaves CL, Grace LJ, Holden DG (2002) Nurse culture for efficient recovery of cryopreserved Pinus radiata D. Don embryogenic cell lines. Plant Cell Rep 21:40–45CrossRefGoogle Scholar
  38. Harvengt L, Meier-Dinkel A, Dumas E, Collin E (2004) Establishment of a cryopreserved gene bank of European elms. Can J For Res 34:43–55CrossRefGoogle Scholar
  39. Hazubska-Przybył T, Chmielarz P, Michalak M, Bojarczuk K (2010) Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell Tiss Org Cult 102:35–44CrossRefGoogle Scholar
  40. Hazubska-Przybył T, Chmielarz P, Michalak M, Dering M, Bojarczuk K (2013) Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth-dehydration method. Plant Cell Tiss Org Cult 113:303–313CrossRefGoogle Scholar
  41. Högberg KA, Ekberg I, Norell L, Von Arnold S (1998) Integration of somatic embryogenesis in a tree breeding programme: a case study with Picea abies. Can J Fort Res 28:1536–1545CrossRefGoogle Scholar
  42. Jokipii S, Ryynänen L, Kallio PT, Aronen T, Häggman HA (2004) Cryopreservation method maintaining the genetic fidelity of a model forest tree, Populus tremula L. × Populus tremuloides Michx. Plant Sci 166:799–806CrossRefGoogle Scholar
  43. Kaczmarczyk A, Rokka VM, Keller ERJ (2011) Potato shoot tip cryopreservation, a review. Potato Res 54:45–79CrossRefGoogle Scholar
  44. Kalita V, Choudhury H, Kumaria S, Tandon P (2012) Vitrification-based cryopreservation of shoot tips of Pinus kesiya Royle Ex Gord. CryoLetters 33:58–68PubMedGoogle Scholar
  45. Kartha KK, Fowke LC, Leung NL, Caswell KL, Hakman I (1988) Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). J Plant Physiol 132:529–539CrossRefGoogle Scholar
  46. Kaya E, Alves A, Rodrigues L, Jenderek M, Hermandez-Ellis M, Ozudogru A, Ellis D (2013) Cryopreservation of eucalyptus genetic resources. CryoLett 34:608–618Google Scholar
  47. Krajňáková J, Sutela S, Aronen T, Gömöry D, Vianello A, Häggman H (2011) Long-term cryopreservation of Greek fir embryogenic cell lines: recovery, maturation and genetic fidelity. Cryobiol 63:17–25CrossRefGoogle Scholar
  48. Kristensen MMH, Find JI, Floto F, Møller JD, Nørgaard JV, Krogstrup P (1994) The origin and development of somatic embryos following cryopreservation of an embryogenic suspension culture of Picea sitchensis. Protoplasma 182:65–70CrossRefGoogle Scholar
  49. Kulus D, Zalewska M (2014) Cryopreservation as a tool used in long-term storage of ornamental species—a review. Sci Hortic 168:88–107CrossRefGoogle Scholar
  50. Lainé E, Bade P, David A (1992) Recovery of plants from cryopreserved embryogenic cell suspensions of Pinus caribaca. Plant Cell Rep 11:295–298PubMedGoogle Scholar
  51. Lambardi M, Fabbri A, Caccavale A (2000) Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Rep 19:213–218CrossRefGoogle Scholar
  52. Lambardi M, De Carlo A, Capuana M (2005) Cryopreservation of embryogenic callus of Aesculus hippocastanum L. by vitrification/one-step freezing. CryoLett 26:185–192Google Scholar
  53. Lambardi M, Ozudogru EA, Benelli C (2008) Cryopreservation of embryogenic cultures. In: Reed B (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 177–210CrossRefGoogle Scholar
  54. Latutrie M, Aronen T (2013) Long-term cryopreservation of embryogenic Pinus sylvestris cultures. Scan J Fort Res 28:103–109CrossRefGoogle Scholar
  55. Lombardo G, Scialabba A, Schicchi R (2013) Seed cryopreservation of Fraxinus angustifolia Vahl. Afr J Biotechnol 12:1930–1936CrossRefGoogle Scholar
  56. Martínez MT, Ballester A, Vieitez AM (2003) Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiol 46:182–189CrossRefGoogle Scholar
  57. Marum L, Estêvão C, Oliveira MM, Amâncio S, Rodriguez L, Miguel C (2004) Recovery of cryopreserved embryogenic cultures of maritime pine—effect of cryoprotectant and suspension density. CryoLett 25:363–374Google Scholar
  58. Maruyama E, Kinoshita I, Ishii K, Ohba K, Sakai A (1996) Cryopreservation approach for the germplasm conservation of the tropical forest tree species. Cedrela odorata L., Guazuma crinita Mart., and Jacaranda mimosaefolia D. Don. Plant Tiss Cult Lett 13:297–310CrossRefGoogle Scholar
  59. Maruyama E, Tanaka T, Hosoi Y, Ishii K, Morohoshi N (2000) Embryogenic cell culture, protoplast regeneration, cryopreservation, biolistic gene transfer and plant regeneration in Japanese cedar (Crytomeria japonica D. Don.). Plant Biotechnol 17:281–296CrossRefGoogle Scholar
  60. Marzalina M, Krishnapillay B (1999) Recalcitrant seed biotechnology applications to rain forest conservation. In: Benson EE (ed) Plant conservation biotechnology. Taylor & Francis, pp 265–276Google Scholar
  61. Mathur G, Alkutkar VA, Nadgauda RS (2003) Cryopreservation of embryogenic culture of Pinus roxburghii. Biol Plant 46:205–210CrossRefGoogle Scholar
  62. Matsumoto T, Sakai A, Yamada K (1994) Cryopreservatrion of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13(8):442–446PubMedCrossRefGoogle Scholar
  63. Medeiros AC, Czarneski CM, Freitas GF (1992) Criopreservação de sementes de aroeira (Astronium urundeuva (Fr. All.). Engl.). Rev Inst Florest 4:544–547Google Scholar
  64. Nadarajan J, Staines HJ, Benson EE, Marzalina M, Krishnapillay B, Harding K (2006) Optimization of cryopreservation protocol for Sterculia cordata zygotic embryos using taguchi experiments. J Trop For Sci 18:222–230Google Scholar
  65. Nørgaard JV, Duran V, Johnsen Ø, Krogstrup P, Baldursson S, Von Arnold S (1993) Variations in cryotolerance of embryogenic Picea abies cell lines and the association to genetic, morphological, and physiological factors. Can J For Res 23:2560–2567CrossRefGoogle Scholar
  66. Normah MN, Makeen AM (2008) Cryopreservation of excised embryos and embryonic axes. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 211–240CrossRefGoogle Scholar
  67. Ozudogru EA, Lambardi M (2016) Cryotechniques for the long-term conservation of embryogenic cultures from woody plants. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Springer, New York, pp 537–550CrossRefGoogle Scholar
  68. Ozudogru EA, Capuana M, Kaya E, Panis B, Lambardi M (2010) Cryopreservation of Fraxinus excelsior L. embryogenic callus by one-step freezing and slow cooling techniques. CryoLett 31:63–75Google Scholar
  69. Ozudogru EA, Kirdok E, Kaya E, Capuana M, Benelli C, Engelmann F (2011) Cryopreservation of redwood (Sequoia sempervirens (D. Don.) Endl.) in vitro buds using vitrification-based techniques. CryoLett 32:99–110Google Scholar
  70. Padayachee K, Watt MP, Edwards N, Mycock DJ (2009) Cryopreservation as a tool for the conservation of Eucalyptus genetic variability: concepts and challenges. South For 71:165–170Google Scholar
  71. Panis B, Lambardi M (2006) Status of cryopreservation technologies in plants (crops and forest trees). In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome, pp 61–78Google Scholar
  72. Plitta BP, Mirosława MM, Naskret-Barciszewska Z, Barciszewski J, Chmielarz P (2014) DNA methylation of Quercus robur L. plumules following cryopretreatment and cryopreservation. Plant Cell Tiss Org Cult 117:31–37CrossRefGoogle Scholar
  73. Popova E, Kim HH, Saxena PK, Engelmann F, Pritchard HW (2016) Frozen beauty: the cryobiotechnology of orchid diversity. Biotechnol Adv 34:380–403PubMedCrossRefGoogle Scholar
  74. Pritchard HW (1995) Cryopreservation of seeds. In: Day JG, McLellan MR (eds) Methods in molecular biology: cryopreservation and freeze-drying protocols. Humana Press Inc, New Jersey, pp 133–144CrossRefGoogle Scholar
  75. Pukacki PM, Juszczyk K (2015) Desiccation sensitivity and cryopreservation of the embryonic axes of the seeds of two Acer species. Trees 29:385–396CrossRefGoogle Scholar
  76. Rittenhouse CD, Rissman AR (2012) Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs among land-use change scenarios. Environ Sci Pol 21:94–105CrossRefGoogle Scholar
  77. Royal Botanic Gardens Kew (2016) State of the World’s Plants. https://stateoftheworldsplants.com/report/sotwp_2016.pdf
  78. Ryynänen L (1996a) Survival and regeneration of dormant silver birch buds stored at super-low temperatures. Can J For Res 26:617–623CrossRefGoogle Scholar
  79. Ryynänen L (1996b) Cold hardening and slow cooling: tools for successful cryopreservation and recovery of in vitro shoot tips of silver birch. Can J For Res 26:2015–2022CrossRefGoogle Scholar
  80. Ryynänen L (1998) Effect of abscisic acid, cold hardening, and photoperiod on recovery of cryopreserved in vitro shoot tips of Silver Birch. Cryobiol 36:32–39CrossRefGoogle Scholar
  81. Ryynänen L (1999) Effect of early spring birch bud type on post-thaw re-growth after prolonged cryostorage. Can J For Res 29:47–52CrossRefGoogle Scholar
  82. Ryynänen L (2011) Cold hardening and slow cooling: tools for successful cryopreservation and recovery of in vitro shoot tips of silver birch. Can J For Res 26:2015–2022CrossRefGoogle Scholar
  83. Ryynänen L, Aronen T (2005a) Vitrification, a complementary cryopreservation method for Betula pendula Roth. Cryobiol 51:2008–2019CrossRefGoogle Scholar
  84. Ryynänen LA, Aronen TS (2005b) Genome fidelity during short- and long-term tissue culture and differentially cryostored meristems of silver birch (Betula pendula). Plant Cell Tissue Org Cult 83:21–32CrossRefGoogle Scholar
  85. Ryynänen L, Häggman H (1999) Substitution of ammonium ions during cold hardening and post-thaw cultivation enhances recovery of cryopreserved shoot tips of Betula pendula Roth. J Plant Physiol 154:735–742CrossRefGoogle Scholar
  86. Ryynänen LA, Häggman HM (2001) Recovery of cryopreserved silver birch shoot tips is affected by the pre-freezing age of the cultures and ammonium substitution. Plant Cell Rep 20:354–360CrossRefGoogle Scholar
  87. Ryynänen L, Ryynänen M (1986) Propagation of adult curly birth succeeds with tissue culture. Silva Fennica 20:139–147CrossRefGoogle Scholar
  88. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33PubMedCrossRefGoogle Scholar
  89. Salaj T, Panis B, Swennen R, Salaj J (2007) Cryopreservation of embryogenic tissues of Pinus nigra Arn. by a slow freezing method. CryoLett 28:69–76Google Scholar
  90. Salaj T, Matušiková I, Panis B, Swennen R, Salaj J (2010) Recovery and characterisation of hybrid firs (Abies alba x A. cephalonica, Abies alba x A. numidica) embryogenic tissues after cryopreservation. CryoLett 31:206–217Google Scholar
  91. Salaj T, Matušiková I, Fráterová L, Piršelová B, Salaj J (2011) Regrowth of embryogenic tissues of Pinus nigra following cryopreservation. Plant Cell Tiss Org Cult 106:55–61CrossRefGoogle Scholar
  92. Sánchez MC, Martínez MT, Vidal N, San Jose MC, Valladares S, Vieitez AM (2008) Preservation of Quercus robur germplasm by cryostorage of embryogenic cultures derived from mature trees and RAPD analysis of genetic stability. CryoLett 29:493–504Google Scholar
  93. Sarropoulou VN, Therios IN, Dimassi-Theriou KN (2012) Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and MxM 60 (P. avium × P. mahaleb). J Pineal Res 52:38–46PubMedCrossRefGoogle Scholar
  94. Scocchi A, Faloci M, Medina R, Olmos S, Mroginski L (2004) Plant recovery of cryopreserved apical meristem-tips of Melia azedarach L. using encapsulation-dehydration and assessment of their genetic stability. Euphytica 135:29–38CrossRefGoogle Scholar
  95. Serrano-Martinez F, Casas JL (2011) Cryopreservation of Tetraclinis articulate (Vahl.) masters. CryoLett 32:248–255Google Scholar
  96. Shi H, Chen K, Wei Y, He C (2016) Fundamental issues of melatonin-mediated stress signaling in plants. Front Plant Sci 7:1124.  https://doi.org/10.3389/fpls.2016.01124 PubMedPubMedCentralGoogle Scholar
  97. Solberg SØ, Yndgaard F, Poulsen G, von Bothmer R (2017) Seed yield and protein content in the Weibullsholm Pisum collection. Genet Resour Crop Evol.  https://doi.org/10.1007/s10722-017-0494-4 Google Scholar
  98. Suzuki M, Tandon P, Ishikawa M, Toyomasu T (2008) Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds. Plant Biotechnol Rep 2:123–131CrossRefGoogle Scholar
  99. Tonon G, Lambardi M, De Carlo A, Rossi C (2001) Crioconservazione di linee embriogeniche di Fraxinus angustifolia Vhal. In: Russo G (ed) Atti del ‘VI Convegno Nazionale Biodiversità’. Bari, Italy, pp 619–625Google Scholar
  100. Touchell DH, Dixon KW (1993) Cryopreservation of seed of Western Australian native species. Biodivers Conserv 2:594–602CrossRefGoogle Scholar
  101. Touchell DH, Walters C (2000) Recovery of embryos of Zizania palustris following exposure to liquid nitrogen. CryoLett 21:261–270Google Scholar
  102. Touchell DH, Chiang VL, Tsai CJ (2002) Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21:118–124CrossRefGoogle Scholar
  103. Tsai C-J, Hubscher SJ (2004) Cryopreservation in Populus functional genomics. New Phytol 164:73–81CrossRefGoogle Scholar
  104. Uchendu EE, Shukla MR, Reed BM, Saxena PK (2013) Melatonin enhances the recovery of cryopreserved shoot tips of American elm (Ulmus americana L.). J Pineal Res 55:435–442PubMedGoogle Scholar
  105. Valladares S, Toribio M, Celestino C, Vieitez AM (2004) Cryopreservation of embryogenic cultures from mature Quercus suber trees using vitrification. CryoLett 25:177–186Google Scholar
  106. Varghese D, Berjak P, Pammenter NW (2009) Cryopreservation of shoot tips of Trichilia emetica, a tropical recalcitrant-seeded species. CryoLett 30:280–290Google Scholar
  107. Vendrame WA, Holliday CP, Montello PM, Smith DR, Merkle SA (2001) Cryopreservation of yellow-poplar (Liriodendron tulipifera) and sweetgum (Liquidambar spp.) embryogenic cultures. New For 21:283–292CrossRefGoogle Scholar
  108. Verleysen H, Fernandes P, Sánchez PI, Van Bockstaele E, Debergh P (2005) Cryopreservation of Robinia pseudoacacia. Plant Cell Tiss Org Cult 81:193–202CrossRefGoogle Scholar
  109. Vidal N, Sänchez C, Jorquera L, Ballester A, Vietez AM (2005) Cryopreservation of chestnut by vitrification of in vitro-grown shoot tips. In Vitro Cell Dev Biol 41:63–68CrossRefGoogle Scholar
  110. Vidal N, Vieitez AM, Fernandez MR, Cuenca B, Ballester A (2010) Establishment of cryopreserved gene banks of European chestnut and cork oak. Euro J For Res 129:635–643CrossRefGoogle Scholar
  111. Vieitez AM, San-José MC, Corredoira E (2010) Cryopreservation of zygotic embryonic axes and somatic embryos of European chestnut. Meth Mol Biol 710:201–213CrossRefGoogle Scholar
  112. Volk GM, Bonnar R, Waddell J, Widrlechner MP (2009) Cryopreservation of dormant buds from from diverse Fraxinus species. CryoLett 30:262–267Google Scholar
  113. Wang B, Yin ZF, Feng CH, Shi X, Li YP, Wang QC (2009) Cryopreservation of potato shoot tips. In: Benkeblia N, Tennant P (eds) Potato I. fruit, vegetable and cereal science and biotechnology 2 (special issue 1). Global Science Book, London, pp 46–53Google Scholar
  114. Wang B, Wang R-R, Cui Z-H, Li J-W, Bi W-L, Li B-Q, Ozudogru EA, Volk GM, Wang Q-C (2014a) Potential applications of cryobiotechnology to plant genetic transformation and pathogen eradication. Biotechnol Adv 32:583–595PubMedCrossRefGoogle Scholar
  115. Wang B, Li J-W, Zhang Z, Wang R-R, Ma Y-L, Blystad D-R, Keller ERJ, Wang Q-C (2014b) Three vitrification-based cryopreservation procedures cause different cryo-injury to potato shoot tips while all maintain genetic integrity in regenerants. J Biotechnol 84:47–55CrossRefGoogle Scholar
  116. Wen B (2009) Storage of recalcitrant seeds: a case study of the Chinese fan palm, Livistona chinensis. Seed Sci Technol 37:167–179CrossRefGoogle Scholar
  117. Wen B, Wang X, Tan Y, Song S (2013) Differential responses of Mimusops elengi and Manilkara zapota seeds and embryos to cryopreservation. In Vitro Cell Dev Biol 49:717–723CrossRefGoogle Scholar
  118. Yang XY, Zhang XL (2010) Regulation of somatic embryogenesis in higher plants. Cri Rev Plant Sci 29:36–57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Crop Stress Biology for Arid Areas, College of HorticultureNorthwest A&F UniversityYanglingChina
  2. 2.IVALSA, Trees and Timber Institute, National Research Council (CNR)Sesto Fiorentino, FlorenceItaly
  3. 3.College of Life ScienceSichuan Normal UniversityChengduChina

Personalised recommendations