Skip to main content

Diversity patterns in sandy forest-steppes: a comparative study from the western and central Palaearctic

Abstract

The Palearctic forest-steppe biome is a narrow vegetation zone between the temperate forest and steppe biomes, which provides important habitats for many endangered species and represents an important hotspot of biodiversity. Although the number of studies on forest–grassland mosaics is increasing, information currently available about the general compositional and structural patterns of Eurasian forest-steppes is scarce. Our study aimed to compare the habitat structure, species composition and diversity patterns of two distant sandy forest-steppes of Eurasia. We compared 72 relevés made in the main habitat components (forest, forest edge and grassland) of sandy forest-steppes in three Hungarian and three Kazakh sites. The size of the plots was 25 m2. Species number, Shannon diversity and species evenness values were calculated for each plot. Fidelity calculations and linear mixed effects models were used for the analyses. We found that the vegetation and diversity patterns of the two forest-steppes are similar and their components play important roles in maintaining landscape-scale diversity. Despite the higher species richness in Hungary, Shannon diversity was higher in Kazakhstan. The deciduous forest edges of both areas had significantly higher species richness than the neighbouring habitats (forests and grasslands); therefore they can be considered local biodiversity hotspots. Due to the special characteristics of this vegetation complex, we emphasize the high conservation value of all landscape components as a coherent system throughout the entire range of the Eurasian forest-steppe biome.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ashcroft MB (2010) Identifying refugia from climate change. J Biogeogr 37:1407–1413

    Google Scholar 

  2. Bátori Z, Csiky J, Farkas T et al (2014) The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: refugia and climate change. Int J Speleol 43:15–26

    Article  Google Scholar 

  3. Bátori Z, Vojtkó A, Farkas T et al (2017) Large- and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia. Ann Bot London 119:301–309

    Article  Google Scholar 

  4. Berg LS (1958) Die geographischen Zonen der Sowjetunion I. Teubner, Leipzig

    Google Scholar 

  5. Bilz M (2011) Dianthus serotinus. The IUCN Red List of Threatened Species 2011: e.T165217A5991480. https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T165217A5991480.en

  6. Biró M, Czúcz B, Horváth F et al (2013) Drivers of grassland loss in Hungary during the post-socialist transformation (1987-1999). Landsc Ecol 28:789–803

    Article  Google Scholar 

  7. Borhidi A, Kevey B, Lendvai G (2012) Plant communities of Hungary. Akadémiai Kiadó, Budapest

    Google Scholar 

  8. Cadenasso ML, Pickett STA, Weathers KC et al (2003) A framework for a theory of ecological boundaries. Bioscience 53:750–758

    Article  Google Scholar 

  9. Cardinale BJ, Nelson K, Palmer MA (2000) Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 91:175–183

    Article  Google Scholar 

  10. Chen IC, Hill JK, Ohlemüller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    CAS  Article  PubMed  Google Scholar 

  11. Chibilyov A (2002) Steppe and forest-steppe. In: Shahgedanova M (ed) The physical geography of northern Eurasia. Oxford University Press, Oxford, pp 248–266

    Google Scholar 

  12. Chytrý M (2012) Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84:427–504

    Google Scholar 

  13. Chytrý M, Tichý L, Holt J et al (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90

    Article  Google Scholar 

  14. Deák B, Tóthmérész B, Valkó O et al (2016) Cultural monuments and nature conservation: a review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodivers Conserv 25:2473–2490

    Article  Google Scholar 

  15. Dengler J, Becker T, Ruprecht E et al (2012) Festuco-Brometea of the Transylvanian Plateau (Romania)—a preliminary overview on syntaxonomy, ecology and biodiversity. Tuexenia 32:319–359

    Google Scholar 

  16. Dobrowski SZ (2010) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17:1022–1035

    Article  Google Scholar 

  17. Dubyna DV, Neuhäuslová Z, Šeljag-Sosonko JR (1995) Vegetation of the Birjučij Island Spit in the Azov Sea. Folia Geobot Phytotx 30:1–31

    Article  Google Scholar 

  18. Dulamsuren C, Hauck M, Mühlenberg M (2005) Vegetation at the taiga forest–steppe borderline in the western Khentey Mountains, northern Mongolia. Ann Bot Fenn 42:411–426

    Google Scholar 

  19. Dulamsuren C, Hauck M, Leuschner C (2010) Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey, Mongolia. Glob Change Biol 16:3024–3035

    Google Scholar 

  20. Dulamsuren C, Khishigjargal M, Leuschner C et al (2014) Response of tree-ring width to climate warming and selective logging in larch forests of the Mongolian Altai. J Plant Ecol 7:24–38

    Article  Google Scholar 

  21. Eliáš P, Sopotlieva D, Dítě D et al (2013) Vegetation diversity of salt-rich grasslands in Southeast Europe. Appl Veg Sci 16:521–537

    Article  Google Scholar 

  22. Erdős L, Gallé R, Bátori Z et al (2011) Properties of shrubforest edges: a case study from South Hungary. Cent Eur J Biol 6:639–658

    Google Scholar 

  23. Erdős L, Cserhalmi D, Bátori Z et al (2013a) Shrub encroachment in a wooded-steppe mosaic: combining GIS methods with landscape historical analysis. Appl Ecol Environ Res 11:371–384

    Article  Google Scholar 

  24. Erdős L, Gallé R, Körmöczi L et al (2013b) Species composition and diversity of natural forest edges: edge responses and local edge species. Community Ecol 14:48–58

    Article  Google Scholar 

  25. Erdős L, Tölgyesi C, Horzse M et al (2014) Habitat complexity of the Pannonian forest-steppe zone and its nature conservation implications. Ecol Complex 17:107–118

    Article  Google Scholar 

  26. Erdős L, Tölgyesi C, Cseh V et al (2015) Vegetation history, recent dynamics and future prospects of a Hungarian sandy forest-steppe reserve: forest-grassland relations, tree species composition and size-class distribution. Community Ecol 16:95–105

    Article  Google Scholar 

  27. Ermakov N, Maltseva T (1999) Phytosociological peculiarities of South Siberian forest meadows. Ann Bot 57:63–72

    Google Scholar 

  28. Fagan WF, Cantrell RS, Cosner C (1999) How habitat edges change species interactions. Am Nat 153:165–182

    Article  Google Scholar 

  29. Fekete G, Molnár Z, Magyari E et al (2014) A new framework for understanding Pannonian vegetation patterns: regularities, deviations and uniqueness. Community Ecol 15:12–26

    Article  Google Scholar 

  30. Feurdean A, Marinova E, Nielsen AB et al (2015) Origin of the forest steppe and exceptional grassland diversity in Transylvania (central-eastern Europe). J Biogeogr 42:951–963

    Article  Google Scholar 

  31. Fraver S (1994) Vegetation responses along edge-to-interior gradients in the mixed hardwood forests of the Roanoke River Basin, North Carolina. Conserv Biol 8:822–832

    Article  Google Scholar 

  32. Habel JC, Dengler J, Janišová M et al (2013) European grassland ecosystems: threatened hotspots of biodiversity. Biodivers Conserv 22:2131–2138

    Article  Google Scholar 

  33. Hartnett DC, Hickman KR, Walter LEF (1996) Effects of bison grazing, fire and topography on floristic diversity in tallgrass prairie. J Range Manag 49:413–420

    Article  Google Scholar 

  34. Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  35. Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520

    Article  PubMed  Google Scholar 

  36. Hoekstra JM, Boucher TM, Ricketts TH et al (2005) Confronting a biome crisis: Global disparities of habitat loss and protection. Ecol Lett 8:23–29

    Article  Google Scholar 

  37. Hoffmann CW, Usoltsev VA (2001) Modelling root biomass distribution in Pinus sylvestris forests of the Turgai Depression of Kazakhstan. For Ecol Manag 149:103–114

    Article  Google Scholar 

  38. Holt RD (1990) The microevolutionary consequences of climate change. Trends Ecol Evol 5:311–315

    CAS  Article  PubMed  Google Scholar 

  39. Horvat I, Glavač V, Ellenberg H (1974) Vegetation Südosteuropas. Gustav Fischer, Stuttgart

    Google Scholar 

  40. Huston M (1979) A general hypothesis of species diversity. Am Nat 113:81–101

    Article  Google Scholar 

  41. Ivanov A (2002) The Far East. In: Shahgedanova M (ed) The physical geography of northern Eurasia. Oxford University Press, Oxford, pp 422–447

    Google Scholar 

  42. Jakucs P (1972) Dynamische Verbindung der Wälder und Rasen. Akadémiai Kiadó, Budapest

    Google Scholar 

  43. Kamp J, Koshkin MA, Bragina TM et al (2016) Persistent and novel threats to the biodiversity of Kazakhstan’s steppes and semi-deserts. Biodivers Conserv 25:2521–2541

    Article  Google Scholar 

  44. Keeley JE, Fotheringham CJ (2005) Plot shape effects on plant species diversity measurements. J Veg Sci 16:249–256

    Article  Google Scholar 

  45. Kelemen A, Valkó O, Kröel-Dulay G et al (2016) The invasion of common milkweed (Asclepias syriaca L.) in sandy old-fields—is it a threat to the native flora? Appl Veg Sci 19:218–224

    Article  Google Scholar 

  46. Kelly DL, Connolly A (2000) A review of the plant communities associated with Scots pine (Pinus sylvestris L.) in Europe, and an evaluation of putative indicator/specialist species. For Syst 1:15–39

    Google Scholar 

  47. Kemball KJ, Wang GG, Dang QL (2005) Response of understory plant community of boreal mixedwood stands to fire, logging, and spruce budworm outbreak. Can J Bot 83:1550–1560

    Article  Google Scholar 

  48. Keppel G, Van Niel KP, Wardell-Johnson GW et al (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21:393–404

    Article  Google Scholar 

  49. Király G (ed) (2007) Vörös Lista. A magyarországi edényes flóra veszélyeztetett fajai, Saját kiadás, Sopron

    Google Scholar 

  50. Király G (ed) (2009) Új magyar füvészkönyv. Magyarország hajtásos növényei, Aggteleki Nemzeti Park Igazgatóság, Jósvafő

    Google Scholar 

  51. Király G, Stevanović V (2011) Dianthus diutinus. The IUCN red list of threatened species 2011: e.T161924A5514465. https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T161924A5514465.en

  52. Kolasa J, Zalewski M (1995) Notes on ecotone attributes and functions. Hydrobiologia 303:1–7

    Article  Google Scholar 

  53. Komarov VL (ed) (1968–2002) Flora of the U.S.S.R. Smithsonian Institution Libraries, Washington, DC

  54. Korotchenko I, Peregrym M (2012) Ukrainian steppes in the past, at present and in the future. In: Werger MJA, van Staalduinen MA (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Dordrecht, pp 173–196

    Chapter  Google Scholar 

  55. Lavrenko EM (1969) Über die Lage des Eurasiatischen Steppengebiets in dem System der Pflanzengeographischen Gliederung des Aussertropischen Eurasiens. Vegetatio 19:11–20

    Article  Google Scholar 

  56. Lavrenko EM, Karamysheva ZV (1993) Steppes of the former Soviet Union and Mongolia. In: Coupland RT (ed) Ecosystems of the world 8B. Natural grasslands, Eastern hemisphere and résumé, Elsevier, Amsterdam, pp 3–59

    Google Scholar 

  57. Liu H, Yin Y, Wang Q et al (2015) Climatic effects on plant species distribution within the forest-steppe ecotone in northern China. Appl Veg Sci 18:43–49

    Article  Google Scholar 

  58. Magyari EK, Chapman JC, Passmore DG et al (2010) Holocene persistence of wooded steppe in the Great Hungarian Plain. J Biogeogr 37:915–935

    Article  Google Scholar 

  59. Mathar WP, Kämpf I, Kleinebecker T et al (2016) Floristic diversity of meadow steppes in the Western Siberian Plain: effects of abiotic site conditions, management and landscape structure. Biodivers Conserv 25:2361–2379

    Article  Google Scholar 

  60. McLaughlin BC, Ackerly DD, Klos PZ, Natali J, Dawson TE, Thompson S (2017) Hydrologic refugia, plants, and climate change. Glob Change Biol. https://doi.org/10.1111/gcb.13629

    Google Scholar 

  61. Mészáros I (1990) Spatial changes in herb layer in a beech forest/clear-cut area ecotone from northern Hungary. In: Krahulec F, Agnew ADQ, Agnew S, Willems JH (eds) Spatial processes in plant communities. Academia, Prague, pp 59–69

    Google Scholar 

  62. Molnár Z (1998) Interpreting present vegetation features by landscape historical data: an example from a woodland-grassland mosaic landscape (Nagykőrös Wood, Kiskunság, Hungary). In: Kirby KJ, Watkins C (eds) The ecological history of European forests. CAB International, Wallingford, pp 241–263

    Google Scholar 

  63. Molnár Z (2003) A Kiskunság száraz homoki növényzete. TermészetBÚVÁR Alapítvány Kiadó, Budapest

    Google Scholar 

  64. Molnár Z, Biró M, Bartha S et al (2012) Past trends, present state and future prospects of Hungarian forest-steppes. In: Werger MJA, van Staalduinen MA (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world, Springer, Dordrecht, pp 209–252

    Google Scholar 

  65. Morrison DA (2002) Effects of fire intensity on plant species composition of sandstone communities in the Sydney region. Austral Ecol 27:433–441

    Article  Google Scholar 

  66. Müller P (1981) Arealsysteme und Biogeographie. Ulmer Verlag, Stuttgart

    Google Scholar 

  67. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    CAS  Article  PubMed  Google Scholar 

  68. Novenko EY, Tsyganov AN, Rudenko OV et al (2016) Mid- and late-Holocene vegetation history, climate and human impact in the forest-steppe ecotone of European Russia: new data and a regional synthesis. Biodivers Conserv 25:2453–2472

    Article  Google Scholar 

  69. Odum EP (1971) Fundamentals of Ecology, 3rd edn. WB Saunders, Philadelphia

    Google Scholar 

  70. Oksanen J, Blanchet FG, Kindt R et al (2015) Vegan: community ecology. http://CRAN.R-project.org/package=vegan

  71. Orczewska A, Glista A (2005) Floristic analysis of the two woodland-meadow ecotones differing in orientation of the forest edge. Pol J Ecol 53:365–382

    Google Scholar 

  72. Parnikoza I, Vasiluk A (2011) Ukrainian steppes: current state and perspectives for protection. Ann Univ Mariae Curie Skłodowska 66:23–37

    Google Scholar 

  73. Peltzer DA, Bast ML, Wilson SD et al (2000) Plant diversity and tree responses following contrasting disturbances in boreal forest. For Ecol Manag 127:191–203

    Article  Google Scholar 

  74. Peters DPC, Gosz JR, Pockman WT et al (2006) Integrating patch and boundary dynamics to understand and predict biotic transitions at multiple scales. Landsc Ecol 21:19–33

    Article  Google Scholar 

  75. Pianka ER (1983) Evolutionary Ecology, 3rd edn. Harper and Raw, New York

    Google Scholar 

  76. Pinheiro J, Bates D, Debroy S et al (2015) R Development Core Team, nlme: linear and nonlinear mixed effects models. R package version 3.1–122. http://CRAN.Rproject.org/package=nlme

  77. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  78. Rachkovskaya EI, Bragina TM (2012) Steppes of Kazakhstan: Diversity and present state. In: Werger MJA, van Staalduinen MA (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world, Springer, Dordrecht, pp 103–148

    Google Scholar 

  79. Risser PG (1995) The status of the science examining ecotones. Bioscience 45:318–325

    Article  Google Scholar 

  80. Sankaran M (2005) Fire, grazing and the dynamics of tall-grass savannas in the Kalakad-Mundanthurai Tiger Reserve, South India. Conserv Soc 3:4–25

    Google Scholar 

  81. Schultz J (2005) The ecozones of the world. Springer, Berlin

    Book  Google Scholar 

  82. Shahgedanova M, Mikhailov N, Larin S et al (2002) The mountains of southern Siberia. In: Shahgedanova M (ed) The physical geography of northern Eurasia. Oxford University Press, Oxford, pp 314–349

    Google Scholar 

  83. Shmida A, Ellner S (1984) Coexistence of plant species with similar niches. Vegetatio 58:29–55

    Google Scholar 

  84. Smekalova T, Maslovky O, Melnyk V (2011) Agropyron dasyanthum. The IUCN Red List of Threatened Species 2011: e.T176502A7254702. http://dx.doi.org/10.2305/IUCN.UK.2011-1.RLTS.T176502A7254702.en. Accessed 08 January 2017

  85. Smelansky IE, Tishkov AA (2012) The steppe biome in Russia: Ecosystem services, conservation status, and actual challenges. In: Werger MJA, van Staalduinen MA (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world, Springer, Dordrecht, pp 45–101

    Google Scholar 

  86. Solomon S, Qin D, Manning M et al (eds) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York NY

    Google Scholar 

  87. Stewart JR, Lister AM, Barnes I et al (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B 277:661–671

    Article  PubMed  Google Scholar 

  88. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453

    Article  Google Scholar 

  89. UNESCO nomination dossier of ‘Saryarka—Steppe and Lakes of Northern Kazakhstan’. For inscription on the list of cultural and natural world heritage of UNESCO, pp 351

  90. Valkó O, Török P, Deák B et al (2014) Review: prospects and limitations of prescribed burning as a management tool in European grasslands. Basic Appl Ecol 15:26–33

    Article  Google Scholar 

  91. van der Maarel E (1990) Ecotones and ecoclines are different. J Veg Sci 1:135–138

    Article  Google Scholar 

  92. Varga Z (1995) Geographical patterns of biological diversity in the Palaearctic Region and the Carpathian Basin. Acta Zool Acad Sci H 41:71–92

    Google Scholar 

  93. Vicherek J (1972) Die Sandpflanzengesellschaften des unteren und mittleren Dnejprstromgebietes (die Ukraine). Folia Geobot Phytotx 7:9–46

    Article  Google Scholar 

  94. Walter H, Breckle SW (2002) Walter’s Vegetation of the Earth, 4th edn. Springer, Berlin

    Google Scholar 

  95. Wesche K, Ambarlı D, Kamp J et al (2016) The Palaearctic steppe biome: a new synthesis. Biodivers Conserv 25:2197–2231

    Article  Google Scholar 

  96. Wiens JA, Crawford CS, Gosz JR (1985) Boundary dynamics: a conceptual framework for studying landscape ecosystems. Oikos 45:421–427

    Article  Google Scholar 

  97. Willis KJ, Rudner E, Sümegi P (2000) The full-glacial forests of Central and southeastern Europe. Quat Res 53:203–213

    Article  Google Scholar 

  98. Zhang JT, Ru W, Li B (2006) Relationships between vegetation and climate on the loess plateau in China. Folia Geobot 41:151–163

    Article  Google Scholar 

  99. Zlotin R (2002) Biodiversity and productivity of ecosystems. In: Shahgedanova M (ed) The physical geography of northern Eurasia. Oxford University Press, Oxford, pp 169–190

    Google Scholar 

  100. Zólyomi B, Fekete G (1994) The Pannonian loess steppe: differentiation in space and time. Abstr Bot 18:29–41

    Google Scholar 

Download references

Acknowledgements

The supports of the Hungarian Scientific Research Fund (AK: OTKA PD 116200; BD: OTKA PD 115627; LE: OTKA PD 116114; OV: OTKA PD111807 and NKFI FK 124404; ZB: NKFI K 124796) are gratefully acknowledged. AK was funded by the MTA’s Post-Doctoral Research Program; BD and OV were funded by the Bolyai János Fellowship of the Hungarian Academy of Sciences, LE’s and OV’s work was supported by the National Youth Excellence Scholarship (NTP-NFTÖ-16-0623, NTP-NTFÖ-16-0107). BD and OV were supported by the ÚNKP-17-4-III-DE-160 and ÚNKP-17-4-III-DE-151 New National Excellence Program of the Ministry of Human Capacities. We express our gratitude to the Kostanay State Pedagogical Institute and the Science-Research Centre of the Problems of Ecology and Biology of KSPI for their support during the period of research in Kazakhstan. We would like to thank Zsolt Pénzes for his help in statistical analysis. Thanks to Karsten Wesche and an anonymous reviewer for their perceptive and helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zoltán Bátori.

Additional information

Communicated by Daniel Sanchez Mata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 48 kb)

Supplementary material 2 (DOC 43 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bátori, Z., Erdős, L., Kelemen, A. et al. Diversity patterns in sandy forest-steppes: a comparative study from the western and central Palaearctic. Biodivers Conserv 27, 1011–1030 (2018). https://doi.org/10.1007/s10531-017-1477-7

Download citation

Keywords

  • Conservation
  • Endemic plant
  • Forest edges
  • Hungary
  • Kazakhstan
  • World heritage site